Properties

Label 7644.2.e.o.4705.9
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,10,0,0,0,0,0,10,0,0,0,1,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 37x^{8} + 408x^{6} + 1219x^{4} + 1072x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.9
Root \(3.99442i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.o.4705.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +3.99442i q^{5} +1.00000 q^{9} +5.96039i q^{11} +(3.53216 - 0.723785i) q^{13} +3.99442i q^{15} -2.84934 q^{17} +8.14855i q^{19} -5.21498 q^{23} -10.9554 q^{25} +1.00000 q^{27} -6.35580 q^{29} -2.72746i q^{31} +5.96039i q^{33} +1.80626i q^{37} +(3.53216 - 0.723785i) q^{39} -10.6409i q^{41} +1.84934 q^{43} +3.99442i q^{45} +6.88159i q^{47} -2.84934 q^{51} +8.83033 q^{53} -23.8083 q^{55} +8.14855i q^{57} +2.88716i q^{59} -11.2793 q^{61} +(2.89110 + 14.1089i) q^{65} +0.900292i q^{67} -5.21498 q^{69} -2.56776i q^{71} -13.5696i q^{73} -10.9554 q^{75} +2.61536 q^{79} +1.00000 q^{81} +0.740592i q^{83} -11.3815i q^{85} -6.35580 q^{87} -0.921202i q^{89} -2.72746i q^{93} -32.5487 q^{95} -5.09624i q^{97} +5.96039i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 10 q^{9} + q^{13} - 4 q^{17} - 8 q^{23} - 24 q^{25} + 10 q^{27} - 2 q^{29} + q^{39} - 6 q^{43} - 4 q^{51} + 24 q^{53} - 12 q^{55} + 12 q^{65} - 8 q^{69} - 24 q^{75} + 6 q^{79} + 10 q^{81}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 3.99442i 1.78636i 0.449699 + 0.893180i \(0.351531\pi\)
−0.449699 + 0.893180i \(0.648469\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.96039i 1.79712i 0.438847 + 0.898562i \(0.355387\pi\)
−0.438847 + 0.898562i \(0.644613\pi\)
\(12\) 0 0
\(13\) 3.53216 0.723785i 0.979644 0.200742i
\(14\) 0 0
\(15\) 3.99442i 1.03136i
\(16\) 0 0
\(17\) −2.84934 −0.691066 −0.345533 0.938407i \(-0.612302\pi\)
−0.345533 + 0.938407i \(0.612302\pi\)
\(18\) 0 0
\(19\) 8.14855i 1.86940i 0.355431 + 0.934702i \(0.384334\pi\)
−0.355431 + 0.934702i \(0.615666\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.21498 −1.08740 −0.543699 0.839280i \(-0.682977\pi\)
−0.543699 + 0.839280i \(0.682977\pi\)
\(24\) 0 0
\(25\) −10.9554 −2.19108
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.35580 −1.18024 −0.590121 0.807315i \(-0.700920\pi\)
−0.590121 + 0.807315i \(0.700920\pi\)
\(30\) 0 0
\(31\) 2.72746i 0.489867i −0.969540 0.244934i \(-0.921234\pi\)
0.969540 0.244934i \(-0.0787661\pi\)
\(32\) 0 0
\(33\) 5.96039i 1.03757i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.80626i 0.296948i 0.988916 + 0.148474i \(0.0474361\pi\)
−0.988916 + 0.148474i \(0.952564\pi\)
\(38\) 0 0
\(39\) 3.53216 0.723785i 0.565598 0.115898i
\(40\) 0 0
\(41\) 10.6409i 1.66183i −0.556403 0.830913i \(-0.687819\pi\)
0.556403 0.830913i \(-0.312181\pi\)
\(42\) 0 0
\(43\) 1.84934 0.282022 0.141011 0.990008i \(-0.454965\pi\)
0.141011 + 0.990008i \(0.454965\pi\)
\(44\) 0 0
\(45\) 3.99442i 0.595453i
\(46\) 0 0
\(47\) 6.88159i 1.00378i 0.864931 + 0.501891i \(0.167362\pi\)
−0.864931 + 0.501891i \(0.832638\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.84934 −0.398987
\(52\) 0 0
\(53\) 8.83033 1.21294 0.606470 0.795107i \(-0.292585\pi\)
0.606470 + 0.795107i \(0.292585\pi\)
\(54\) 0 0
\(55\) −23.8083 −3.21031
\(56\) 0 0
\(57\) 8.14855i 1.07930i
\(58\) 0 0
\(59\) 2.88716i 0.375877i 0.982181 + 0.187938i \(0.0601805\pi\)
−0.982181 + 0.187938i \(0.939819\pi\)
\(60\) 0 0
\(61\) −11.2793 −1.44417 −0.722083 0.691807i \(-0.756815\pi\)
−0.722083 + 0.691807i \(0.756815\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.89110 + 14.1089i 0.358597 + 1.75000i
\(66\) 0 0
\(67\) 0.900292i 0.109988i 0.998487 + 0.0549941i \(0.0175140\pi\)
−0.998487 + 0.0549941i \(0.982486\pi\)
\(68\) 0 0
\(69\) −5.21498 −0.627809
\(70\) 0 0
\(71\) 2.56776i 0.304738i −0.988324 0.152369i \(-0.951310\pi\)
0.988324 0.152369i \(-0.0486901\pi\)
\(72\) 0 0
\(73\) 13.5696i 1.58820i −0.607784 0.794102i \(-0.707941\pi\)
0.607784 0.794102i \(-0.292059\pi\)
\(74\) 0 0
\(75\) −10.9554 −1.26502
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.61536 0.294251 0.147125 0.989118i \(-0.452998\pi\)
0.147125 + 0.989118i \(0.452998\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 0.740592i 0.0812905i 0.999174 + 0.0406452i \(0.0129413\pi\)
−0.999174 + 0.0406452i \(0.987059\pi\)
\(84\) 0 0
\(85\) 11.3815i 1.23449i
\(86\) 0 0
\(87\) −6.35580 −0.681413
\(88\) 0 0
\(89\) 0.921202i 0.0976473i −0.998807 0.0488236i \(-0.984453\pi\)
0.998807 0.0488236i \(-0.0155472\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.72746i 0.282825i
\(94\) 0 0
\(95\) −32.5487 −3.33943
\(96\) 0 0
\(97\) 5.09624i 0.517444i −0.965952 0.258722i \(-0.916699\pi\)
0.965952 0.258722i \(-0.0833014\pi\)
\(98\) 0 0
\(99\) 5.96039i 0.599041i
\(100\) 0 0
\(101\) 6.72144 0.668808 0.334404 0.942430i \(-0.391465\pi\)
0.334404 + 0.942430i \(0.391465\pi\)
\(102\) 0 0
\(103\) 2.40740 0.237208 0.118604 0.992942i \(-0.462158\pi\)
0.118604 + 0.992942i \(0.462158\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.91365 0.668368 0.334184 0.942508i \(-0.391539\pi\)
0.334184 + 0.942508i \(0.391539\pi\)
\(108\) 0 0
\(109\) 1.56315i 0.149723i 0.997194 + 0.0748614i \(0.0238514\pi\)
−0.997194 + 0.0748614i \(0.976149\pi\)
\(110\) 0 0
\(111\) 1.80626i 0.171443i
\(112\) 0 0
\(113\) 14.2375 1.33935 0.669677 0.742653i \(-0.266433\pi\)
0.669677 + 0.742653i \(0.266433\pi\)
\(114\) 0 0
\(115\) 20.8308i 1.94248i
\(116\) 0 0
\(117\) 3.53216 0.723785i 0.326548 0.0669139i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −24.5262 −2.22965
\(122\) 0 0
\(123\) 10.6409i 0.959455i
\(124\) 0 0
\(125\) 23.7885i 2.12770i
\(126\) 0 0
\(127\) −1.85918 −0.164975 −0.0824876 0.996592i \(-0.526286\pi\)
−0.0824876 + 0.996592i \(0.526286\pi\)
\(128\) 0 0
\(129\) 1.84934 0.162825
\(130\) 0 0
\(131\) 7.87189 0.687770 0.343885 0.939012i \(-0.388257\pi\)
0.343885 + 0.939012i \(0.388257\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 3.99442i 0.343785i
\(136\) 0 0
\(137\) 11.3815i 0.972384i 0.873852 + 0.486192i \(0.161615\pi\)
−0.873852 + 0.486192i \(0.838385\pi\)
\(138\) 0 0
\(139\) 10.3976 0.881910 0.440955 0.897529i \(-0.354640\pi\)
0.440955 + 0.897529i \(0.354640\pi\)
\(140\) 0 0
\(141\) 6.88159i 0.579534i
\(142\) 0 0
\(143\) 4.31404 + 21.0530i 0.360758 + 1.76054i
\(144\) 0 0
\(145\) 25.3878i 2.10834i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.89933i 0.483292i 0.970365 + 0.241646i \(0.0776872\pi\)
−0.970365 + 0.241646i \(0.922313\pi\)
\(150\) 0 0
\(151\) 0.264875i 0.0215552i −0.999942 0.0107776i \(-0.996569\pi\)
0.999942 0.0107776i \(-0.00343069\pi\)
\(152\) 0 0
\(153\) −2.84934 −0.230355
\(154\) 0 0
\(155\) 10.8946 0.875079
\(156\) 0 0
\(157\) 15.0962 1.20481 0.602406 0.798190i \(-0.294209\pi\)
0.602406 + 0.798190i \(0.294209\pi\)
\(158\) 0 0
\(159\) 8.83033 0.700291
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.5455i 1.45259i −0.687382 0.726296i \(-0.741240\pi\)
0.687382 0.726296i \(-0.258760\pi\)
\(164\) 0 0
\(165\) −23.8083 −1.85347
\(166\) 0 0
\(167\) 10.3135i 0.798083i 0.916933 + 0.399041i \(0.130657\pi\)
−0.916933 + 0.399041i \(0.869343\pi\)
\(168\) 0 0
\(169\) 11.9523 5.11304i 0.919405 0.393311i
\(170\) 0 0
\(171\) 8.14855i 0.623135i
\(172\) 0 0
\(173\) −8.79559 −0.668716 −0.334358 0.942446i \(-0.608519\pi\)
−0.334358 + 0.942446i \(0.608519\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.88716i 0.217013i
\(178\) 0 0
\(179\) 17.9456 1.34132 0.670658 0.741767i \(-0.266012\pi\)
0.670658 + 0.741767i \(0.266012\pi\)
\(180\) 0 0
\(181\) −15.4044 −1.14500 −0.572499 0.819905i \(-0.694026\pi\)
−0.572499 + 0.819905i \(0.694026\pi\)
\(182\) 0 0
\(183\) −11.2793 −0.833789
\(184\) 0 0
\(185\) −7.21498 −0.530456
\(186\) 0 0
\(187\) 16.9832i 1.24193i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 17.9207 1.29669 0.648347 0.761345i \(-0.275461\pi\)
0.648347 + 0.761345i \(0.275461\pi\)
\(192\) 0 0
\(193\) 17.8602i 1.28561i 0.766030 + 0.642804i \(0.222229\pi\)
−0.766030 + 0.642804i \(0.777771\pi\)
\(194\) 0 0
\(195\) 2.89110 + 14.1089i 0.207036 + 1.01036i
\(196\) 0 0
\(197\) 10.0744i 0.717769i 0.933382 + 0.358884i \(0.116843\pi\)
−0.933382 + 0.358884i \(0.883157\pi\)
\(198\) 0 0
\(199\) 15.3626 1.08903 0.544513 0.838752i \(-0.316714\pi\)
0.544513 + 0.838752i \(0.316714\pi\)
\(200\) 0 0
\(201\) 0.900292i 0.0635017i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 42.5042 2.96862
\(206\) 0 0
\(207\) −5.21498 −0.362466
\(208\) 0 0
\(209\) −48.5685 −3.35955
\(210\) 0 0
\(211\) −0.656915 −0.0452239 −0.0226120 0.999744i \(-0.507198\pi\)
−0.0226120 + 0.999744i \(0.507198\pi\)
\(212\) 0 0
\(213\) 2.56776i 0.175940i
\(214\) 0 0
\(215\) 7.38704i 0.503792i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 13.5696i 0.916951i
\(220\) 0 0
\(221\) −10.0643 + 2.06231i −0.676999 + 0.138726i
\(222\) 0 0
\(223\) 6.16821i 0.413054i −0.978441 0.206527i \(-0.933784\pi\)
0.978441 0.206527i \(-0.0662161\pi\)
\(224\) 0 0
\(225\) −10.9554 −0.730361
\(226\) 0 0
\(227\) 9.75897i 0.647725i 0.946104 + 0.323863i \(0.104982\pi\)
−0.946104 + 0.323863i \(0.895018\pi\)
\(228\) 0 0
\(229\) 14.2405i 0.941036i −0.882390 0.470518i \(-0.844067\pi\)
0.882390 0.470518i \(-0.155933\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −9.36282 −0.613379 −0.306689 0.951810i \(-0.599221\pi\)
−0.306689 + 0.951810i \(0.599221\pi\)
\(234\) 0 0
\(235\) −27.4880 −1.79312
\(236\) 0 0
\(237\) 2.61536 0.169886
\(238\) 0 0
\(239\) 7.28210i 0.471040i 0.971870 + 0.235520i \(0.0756793\pi\)
−0.971870 + 0.235520i \(0.924321\pi\)
\(240\) 0 0
\(241\) 3.67502i 0.236729i −0.992970 0.118365i \(-0.962235\pi\)
0.992970 0.118365i \(-0.0377651\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.89779 + 28.7819i 0.375268 + 1.83135i
\(248\) 0 0
\(249\) 0.740592i 0.0469331i
\(250\) 0 0
\(251\) −11.1894 −0.706269 −0.353134 0.935573i \(-0.614884\pi\)
−0.353134 + 0.935573i \(0.614884\pi\)
\(252\) 0 0
\(253\) 31.0833i 1.95419i
\(254\) 0 0
\(255\) 11.3815i 0.712735i
\(256\) 0 0
\(257\) −14.1634 −0.883487 −0.441744 0.897141i \(-0.645640\pi\)
−0.441744 + 0.897141i \(0.645640\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −6.35580 −0.393414
\(262\) 0 0
\(263\) 10.2567 0.632458 0.316229 0.948683i \(-0.397583\pi\)
0.316229 + 0.948683i \(0.397583\pi\)
\(264\) 0 0
\(265\) 35.2721i 2.16675i
\(266\) 0 0
\(267\) 0.921202i 0.0563767i
\(268\) 0 0
\(269\) −20.4398 −1.24624 −0.623120 0.782126i \(-0.714135\pi\)
−0.623120 + 0.782126i \(0.714135\pi\)
\(270\) 0 0
\(271\) 22.4381i 1.36302i −0.731810 0.681508i \(-0.761324\pi\)
0.731810 0.681508i \(-0.238676\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 65.2985i 3.93765i
\(276\) 0 0
\(277\) 7.45486 0.447919 0.223960 0.974598i \(-0.428102\pi\)
0.223960 + 0.974598i \(0.428102\pi\)
\(278\) 0 0
\(279\) 2.72746i 0.163289i
\(280\) 0 0
\(281\) 18.9000i 1.12748i 0.825952 + 0.563741i \(0.190638\pi\)
−0.825952 + 0.563741i \(0.809362\pi\)
\(282\) 0 0
\(283\) −30.6994 −1.82489 −0.912445 0.409199i \(-0.865808\pi\)
−0.912445 + 0.409199i \(0.865808\pi\)
\(284\) 0 0
\(285\) −32.5487 −1.92802
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.88127 −0.522427
\(290\) 0 0
\(291\) 5.09624i 0.298747i
\(292\) 0 0
\(293\) 11.0693i 0.646677i 0.946283 + 0.323338i \(0.104805\pi\)
−0.946283 + 0.323338i \(0.895195\pi\)
\(294\) 0 0
\(295\) −11.5326 −0.671451
\(296\) 0 0
\(297\) 5.96039i 0.345857i
\(298\) 0 0
\(299\) −18.4201 + 3.77452i −1.06526 + 0.218286i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.72144 0.386136
\(304\) 0 0
\(305\) 45.0543i 2.57980i
\(306\) 0 0
\(307\) 12.4977i 0.713279i −0.934242 0.356640i \(-0.883922\pi\)
0.934242 0.356640i \(-0.116078\pi\)
\(308\) 0 0
\(309\) 2.40740 0.136952
\(310\) 0 0
\(311\) −12.5933 −0.714102 −0.357051 0.934085i \(-0.616218\pi\)
−0.357051 + 0.934085i \(0.616218\pi\)
\(312\) 0 0
\(313\) −8.49708 −0.480284 −0.240142 0.970738i \(-0.577194\pi\)
−0.240142 + 0.970738i \(0.577194\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.1746i 0.852291i 0.904655 + 0.426145i \(0.140129\pi\)
−0.904655 + 0.426145i \(0.859871\pi\)
\(318\) 0 0
\(319\) 37.8830i 2.12104i
\(320\) 0 0
\(321\) 6.91365 0.385883
\(322\) 0 0
\(323\) 23.2180i 1.29188i
\(324\) 0 0
\(325\) −38.6963 + 7.92936i −2.14648 + 0.439842i
\(326\) 0 0
\(327\) 1.56315i 0.0864425i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.81317i 0.154626i 0.997007 + 0.0773129i \(0.0246340\pi\)
−0.997007 + 0.0773129i \(0.975366\pi\)
\(332\) 0 0
\(333\) 1.80626i 0.0989826i
\(334\) 0 0
\(335\) −3.59615 −0.196478
\(336\) 0 0
\(337\) −3.94840 −0.215083 −0.107542 0.994201i \(-0.534298\pi\)
−0.107542 + 0.994201i \(0.534298\pi\)
\(338\) 0 0
\(339\) 14.2375 0.773276
\(340\) 0 0
\(341\) 16.2567 0.880352
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 20.8308i 1.12149i
\(346\) 0 0
\(347\) 17.3338 0.930525 0.465263 0.885173i \(-0.345960\pi\)
0.465263 + 0.885173i \(0.345960\pi\)
\(348\) 0 0
\(349\) 27.4475i 1.46923i 0.678483 + 0.734616i \(0.262638\pi\)
−0.678483 + 0.734616i \(0.737362\pi\)
\(350\) 0 0
\(351\) 3.53216 0.723785i 0.188533 0.0386328i
\(352\) 0 0
\(353\) 20.9968i 1.11755i 0.829320 + 0.558774i \(0.188728\pi\)
−0.829320 + 0.558774i \(0.811272\pi\)
\(354\) 0 0
\(355\) 10.2567 0.544371
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 11.8420i 0.624994i −0.949919 0.312497i \(-0.898835\pi\)
0.949919 0.312497i \(-0.101165\pi\)
\(360\) 0 0
\(361\) −47.3988 −2.49467
\(362\) 0 0
\(363\) −24.5262 −1.28729
\(364\) 0 0
\(365\) 54.2028 2.83711
\(366\) 0 0
\(367\) −4.62453 −0.241398 −0.120699 0.992689i \(-0.538514\pi\)
−0.120699 + 0.992689i \(0.538514\pi\)
\(368\) 0 0
\(369\) 10.6409i 0.553942i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.73127 −0.400310 −0.200155 0.979764i \(-0.564145\pi\)
−0.200155 + 0.979764i \(0.564145\pi\)
\(374\) 0 0
\(375\) 23.7885i 1.22843i
\(376\) 0 0
\(377\) −22.4497 + 4.60023i −1.15622 + 0.236924i
\(378\) 0 0
\(379\) 30.9806i 1.59137i 0.605712 + 0.795684i \(0.292888\pi\)
−0.605712 + 0.795684i \(0.707112\pi\)
\(380\) 0 0
\(381\) −1.85918 −0.0952485
\(382\) 0 0
\(383\) 19.5630i 0.999623i 0.866134 + 0.499811i \(0.166597\pi\)
−0.866134 + 0.499811i \(0.833403\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.84934 0.0940072
\(388\) 0 0
\(389\) 12.7700 0.647465 0.323733 0.946149i \(-0.395062\pi\)
0.323733 + 0.946149i \(0.395062\pi\)
\(390\) 0 0
\(391\) 14.8592 0.751464
\(392\) 0 0
\(393\) 7.87189 0.397084
\(394\) 0 0
\(395\) 10.4468i 0.525638i
\(396\) 0 0
\(397\) 28.5661i 1.43369i −0.697231 0.716847i \(-0.745585\pi\)
0.697231 0.716847i \(-0.254415\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.5101i 1.17404i 0.809574 + 0.587018i \(0.199698\pi\)
−0.809574 + 0.587018i \(0.800302\pi\)
\(402\) 0 0
\(403\) −1.97410 9.63383i −0.0983368 0.479895i
\(404\) 0 0
\(405\) 3.99442i 0.198484i
\(406\) 0 0
\(407\) −10.7660 −0.533652
\(408\) 0 0
\(409\) 34.4125i 1.70159i 0.525498 + 0.850795i \(0.323879\pi\)
−0.525498 + 0.850795i \(0.676121\pi\)
\(410\) 0 0
\(411\) 11.3815i 0.561406i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.95824 −0.145214
\(416\) 0 0
\(417\) 10.3976 0.509171
\(418\) 0 0
\(419\) 20.0998 0.981939 0.490969 0.871177i \(-0.336643\pi\)
0.490969 + 0.871177i \(0.336643\pi\)
\(420\) 0 0
\(421\) 2.91208i 0.141926i −0.997479 0.0709630i \(-0.977393\pi\)
0.997479 0.0709630i \(-0.0226072\pi\)
\(422\) 0 0
\(423\) 6.88159i 0.334594i
\(424\) 0 0
\(425\) 31.2157 1.51418
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.31404 + 21.0530i 0.208284 + 1.01645i
\(430\) 0 0
\(431\) 30.1348i 1.45154i −0.687935 0.725772i \(-0.741483\pi\)
0.687935 0.725772i \(-0.258517\pi\)
\(432\) 0 0
\(433\) −13.5835 −0.652781 −0.326390 0.945235i \(-0.605832\pi\)
−0.326390 + 0.945235i \(0.605832\pi\)
\(434\) 0 0
\(435\) 25.3878i 1.21725i
\(436\) 0 0
\(437\) 42.4945i 2.03279i
\(438\) 0 0
\(439\) −31.7090 −1.51339 −0.756695 0.653768i \(-0.773187\pi\)
−0.756695 + 0.653768i \(0.773187\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.3626 1.10999 0.554996 0.831853i \(-0.312720\pi\)
0.554996 + 0.831853i \(0.312720\pi\)
\(444\) 0 0
\(445\) 3.67967 0.174433
\(446\) 0 0
\(447\) 5.89933i 0.279029i
\(448\) 0 0
\(449\) 8.37327i 0.395159i 0.980287 + 0.197580i \(0.0633081\pi\)
−0.980287 + 0.197580i \(0.936692\pi\)
\(450\) 0 0
\(451\) 63.4237 2.98651
\(452\) 0 0
\(453\) 0.264875i 0.0124449i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.5884i 0.542084i 0.962568 + 0.271042i \(0.0873682\pi\)
−0.962568 + 0.271042i \(0.912632\pi\)
\(458\) 0 0
\(459\) −2.84934 −0.132996
\(460\) 0 0
\(461\) 4.75569i 0.221495i 0.993849 + 0.110747i \(0.0353244\pi\)
−0.993849 + 0.110747i \(0.964676\pi\)
\(462\) 0 0
\(463\) 12.3181i 0.572472i −0.958159 0.286236i \(-0.907596\pi\)
0.958159 0.286236i \(-0.0924042\pi\)
\(464\) 0 0
\(465\) 10.8946 0.505227
\(466\) 0 0
\(467\) 14.1188 0.653340 0.326670 0.945138i \(-0.394073\pi\)
0.326670 + 0.945138i \(0.394073\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.0962 0.695598
\(472\) 0 0
\(473\) 11.0228i 0.506828i
\(474\) 0 0
\(475\) 89.2707i 4.09602i
\(476\) 0 0
\(477\) 8.83033 0.404313
\(478\) 0 0
\(479\) 12.5443i 0.573165i −0.958056 0.286583i \(-0.907481\pi\)
0.958056 0.286583i \(-0.0925193\pi\)
\(480\) 0 0
\(481\) 1.30734 + 6.38000i 0.0596098 + 0.290903i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 20.3565 0.924342
\(486\) 0 0
\(487\) 13.8970i 0.629733i −0.949136 0.314867i \(-0.898040\pi\)
0.949136 0.314867i \(-0.101960\pi\)
\(488\) 0 0
\(489\) 18.5455i 0.838655i
\(490\) 0 0
\(491\) −29.6443 −1.33783 −0.668913 0.743340i \(-0.733240\pi\)
−0.668913 + 0.743340i \(0.733240\pi\)
\(492\) 0 0
\(493\) 18.1098 0.815626
\(494\) 0 0
\(495\) −23.8083 −1.07010
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.9064i 0.846369i −0.906044 0.423184i \(-0.860912\pi\)
0.906044 0.423184i \(-0.139088\pi\)
\(500\) 0 0
\(501\) 10.3135i 0.460773i
\(502\) 0 0
\(503\) −29.0970 −1.29737 −0.648685 0.761057i \(-0.724681\pi\)
−0.648685 + 0.761057i \(0.724681\pi\)
\(504\) 0 0
\(505\) 26.8483i 1.19473i
\(506\) 0 0
\(507\) 11.9523 5.11304i 0.530819 0.227078i
\(508\) 0 0
\(509\) 6.35752i 0.281792i −0.990024 0.140896i \(-0.955002\pi\)
0.990024 0.140896i \(-0.0449983\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 8.14855i 0.359767i
\(514\) 0 0
\(515\) 9.61617i 0.423739i
\(516\) 0 0
\(517\) −41.0169 −1.80392
\(518\) 0 0
\(519\) −8.79559 −0.386083
\(520\) 0 0
\(521\) −35.0970 −1.53763 −0.768813 0.639474i \(-0.779152\pi\)
−0.768813 + 0.639474i \(0.779152\pi\)
\(522\) 0 0
\(523\) −20.6358 −0.902341 −0.451171 0.892438i \(-0.648993\pi\)
−0.451171 + 0.892438i \(0.648993\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.77147i 0.338531i
\(528\) 0 0
\(529\) 4.19597 0.182433
\(530\) 0 0
\(531\) 2.88716i 0.125292i
\(532\) 0 0
\(533\) −7.70170 37.5852i −0.333598 1.62800i
\(534\) 0 0
\(535\) 27.6161i 1.19395i
\(536\) 0 0
\(537\) 17.9456 0.774409
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.7830i 0.635572i 0.948163 + 0.317786i \(0.102939\pi\)
−0.948163 + 0.317786i \(0.897061\pi\)
\(542\) 0 0
\(543\) −15.4044 −0.661065
\(544\) 0 0
\(545\) −6.24389 −0.267459
\(546\) 0 0
\(547\) 12.8400 0.548997 0.274499 0.961587i \(-0.411488\pi\)
0.274499 + 0.961587i \(0.411488\pi\)
\(548\) 0 0
\(549\) −11.2793 −0.481388
\(550\) 0 0
\(551\) 51.7905i 2.20635i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.21498 −0.306259
\(556\) 0 0
\(557\) 16.5500i 0.701246i 0.936517 + 0.350623i \(0.114030\pi\)
−0.936517 + 0.350623i \(0.885970\pi\)
\(558\) 0 0
\(559\) 6.53216 1.33852i 0.276281 0.0566135i
\(560\) 0 0
\(561\) 16.9832i 0.717030i
\(562\) 0 0
\(563\) −31.7926 −1.33990 −0.669948 0.742408i \(-0.733684\pi\)
−0.669948 + 0.742408i \(0.733684\pi\)
\(564\) 0 0
\(565\) 56.8707i 2.39257i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.4936 −0.942981 −0.471490 0.881871i \(-0.656284\pi\)
−0.471490 + 0.881871i \(0.656284\pi\)
\(570\) 0 0
\(571\) −20.9015 −0.874699 −0.437349 0.899292i \(-0.644083\pi\)
−0.437349 + 0.899292i \(0.644083\pi\)
\(572\) 0 0
\(573\) 17.9207 0.748647
\(574\) 0 0
\(575\) 57.1322 2.38258
\(576\) 0 0
\(577\) 5.92739i 0.246761i 0.992359 + 0.123380i \(0.0393735\pi\)
−0.992359 + 0.123380i \(0.960627\pi\)
\(578\) 0 0
\(579\) 17.8602i 0.742246i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 52.6322i 2.17980i
\(584\) 0 0
\(585\) 2.89110 + 14.1089i 0.119532 + 0.583333i
\(586\) 0 0
\(587\) 28.9883i 1.19648i 0.801319 + 0.598238i \(0.204132\pi\)
−0.801319 + 0.598238i \(0.795868\pi\)
\(588\) 0 0
\(589\) 22.2249 0.915760
\(590\) 0 0
\(591\) 10.0744i 0.414404i
\(592\) 0 0
\(593\) 27.8824i 1.14499i 0.819908 + 0.572496i \(0.194025\pi\)
−0.819908 + 0.572496i \(0.805975\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.3626 0.628750
\(598\) 0 0
\(599\) −9.54540 −0.390015 −0.195007 0.980802i \(-0.562473\pi\)
−0.195007 + 0.980802i \(0.562473\pi\)
\(600\) 0 0
\(601\) 40.2155 1.64042 0.820212 0.572059i \(-0.193855\pi\)
0.820212 + 0.572059i \(0.193855\pi\)
\(602\) 0 0
\(603\) 0.900292i 0.0366627i
\(604\) 0 0
\(605\) 97.9680i 3.98297i
\(606\) 0 0
\(607\) −40.9214 −1.66095 −0.830474 0.557057i \(-0.811930\pi\)
−0.830474 + 0.557057i \(0.811930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.98079 + 24.3069i 0.201501 + 0.983350i
\(612\) 0 0
\(613\) 32.0549i 1.29468i 0.762199 + 0.647342i \(0.224120\pi\)
−0.762199 + 0.647342i \(0.775880\pi\)
\(614\) 0 0
\(615\) 42.5042 1.71393
\(616\) 0 0
\(617\) 6.94517i 0.279602i 0.990180 + 0.139801i \(0.0446463\pi\)
−0.990180 + 0.139801i \(0.955354\pi\)
\(618\) 0 0
\(619\) 44.7194i 1.79742i −0.438539 0.898712i \(-0.644504\pi\)
0.438539 0.898712i \(-0.355496\pi\)
\(620\) 0 0
\(621\) −5.21498 −0.209270
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 40.2441 1.60976
\(626\) 0 0
\(627\) −48.5685 −1.93964
\(628\) 0 0
\(629\) 5.14665i 0.205211i
\(630\) 0 0
\(631\) 8.73344i 0.347673i 0.984775 + 0.173836i \(0.0556164\pi\)
−0.984775 + 0.173836i \(0.944384\pi\)
\(632\) 0 0
\(633\) −0.656915 −0.0261100
\(634\) 0 0
\(635\) 7.42634i 0.294705i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.56776i 0.101579i
\(640\) 0 0
\(641\) 36.4305 1.43892 0.719459 0.694535i \(-0.244390\pi\)
0.719459 + 0.694535i \(0.244390\pi\)
\(642\) 0 0
\(643\) 13.3836i 0.527797i −0.964551 0.263898i \(-0.914992\pi\)
0.964551 0.263898i \(-0.0850083\pi\)
\(644\) 0 0
\(645\) 7.38704i 0.290865i
\(646\) 0 0
\(647\) −15.0319 −0.590966 −0.295483 0.955348i \(-0.595481\pi\)
−0.295483 + 0.955348i \(0.595481\pi\)
\(648\) 0 0
\(649\) −17.2086 −0.675497
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −14.6668 −0.573954 −0.286977 0.957937i \(-0.592650\pi\)
−0.286977 + 0.957937i \(0.592650\pi\)
\(654\) 0 0
\(655\) 31.4437i 1.22861i
\(656\) 0 0
\(657\) 13.5696i 0.529402i
\(658\) 0 0
\(659\) 43.1415 1.68056 0.840278 0.542156i \(-0.182392\pi\)
0.840278 + 0.542156i \(0.182392\pi\)
\(660\) 0 0
\(661\) 36.8487i 1.43325i 0.697460 + 0.716623i \(0.254313\pi\)
−0.697460 + 0.716623i \(0.745687\pi\)
\(662\) 0 0
\(663\) −10.0643 + 2.06231i −0.390866 + 0.0800934i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 33.1453 1.28339
\(668\) 0 0
\(669\) 6.16821i 0.238477i
\(670\) 0 0
\(671\) 67.2289i 2.59534i
\(672\) 0 0
\(673\) 19.2669 0.742684 0.371342 0.928496i \(-0.378898\pi\)
0.371342 + 0.928496i \(0.378898\pi\)
\(674\) 0 0
\(675\) −10.9554 −0.421674
\(676\) 0 0
\(677\) −48.9078 −1.87968 −0.939840 0.341615i \(-0.889026\pi\)
−0.939840 + 0.341615i \(0.889026\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.75897i 0.373964i
\(682\) 0 0
\(683\) 47.4912i 1.81720i 0.417667 + 0.908600i \(0.362848\pi\)
−0.417667 + 0.908600i \(0.637152\pi\)
\(684\) 0 0
\(685\) −45.4624 −1.73703
\(686\) 0 0
\(687\) 14.2405i 0.543308i
\(688\) 0 0
\(689\) 31.1901 6.39126i 1.18825 0.243488i
\(690\) 0 0
\(691\) 11.2941i 0.429646i −0.976653 0.214823i \(-0.931083\pi\)
0.976653 0.214823i \(-0.0689175\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 41.5323i 1.57541i
\(696\) 0 0
\(697\) 30.3195i 1.14843i
\(698\) 0 0
\(699\) −9.36282 −0.354134
\(700\) 0 0
\(701\) −20.0906 −0.758812 −0.379406 0.925230i \(-0.623872\pi\)
−0.379406 + 0.925230i \(0.623872\pi\)
\(702\) 0 0
\(703\) −14.7184 −0.555115
\(704\) 0 0
\(705\) −27.4880 −1.03526
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 40.4649i 1.51969i −0.650103 0.759846i \(-0.725274\pi\)
0.650103 0.759846i \(-0.274726\pi\)
\(710\) 0 0
\(711\) 2.61536 0.0980836
\(712\) 0 0
\(713\) 14.2237i 0.532680i
\(714\) 0 0
\(715\) −84.0947 + 17.2321i −3.14496 + 0.644443i
\(716\) 0 0
\(717\) 7.28210i 0.271955i
\(718\) 0 0
\(719\) 11.1223 0.414791 0.207396 0.978257i \(-0.433501\pi\)
0.207396 + 0.978257i \(0.433501\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.67502i 0.136676i
\(724\) 0 0
\(725\) 69.6304 2.58601
\(726\) 0 0
\(727\) 30.3823 1.12682 0.563409 0.826178i \(-0.309489\pi\)
0.563409 + 0.826178i \(0.309489\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −5.26940 −0.194896
\(732\) 0 0
\(733\) 44.3375i 1.63764i 0.574048 + 0.818821i \(0.305372\pi\)
−0.574048 + 0.818821i \(0.694628\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.36608 −0.197662
\(738\) 0 0
\(739\) 10.6498i 0.391759i −0.980628 0.195880i \(-0.937244\pi\)
0.980628 0.195880i \(-0.0627562\pi\)
\(740\) 0 0
\(741\) 5.89779 + 28.7819i 0.216661 + 1.05733i
\(742\) 0 0
\(743\) 18.6409i 0.683870i 0.939724 + 0.341935i \(0.111082\pi\)
−0.939724 + 0.341935i \(0.888918\pi\)
\(744\) 0 0
\(745\) −23.5644 −0.863333
\(746\) 0 0
\(747\) 0.740592i 0.0270968i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −37.3763 −1.36388 −0.681939 0.731409i \(-0.738863\pi\)
−0.681939 + 0.731409i \(0.738863\pi\)
\(752\) 0 0
\(753\) −11.1894 −0.407764
\(754\) 0 0
\(755\) 1.05802 0.0385054
\(756\) 0 0
\(757\) −13.7918 −0.501273 −0.250636 0.968081i \(-0.580640\pi\)
−0.250636 + 0.968081i \(0.580640\pi\)
\(758\) 0 0
\(759\) 31.0833i 1.12825i
\(760\) 0 0
\(761\) 31.0687i 1.12624i −0.826376 0.563119i \(-0.809601\pi\)
0.826376 0.563119i \(-0.190399\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.3815i 0.411498i
\(766\) 0 0
\(767\) 2.08969 + 10.1979i 0.0754542 + 0.368225i
\(768\) 0 0
\(769\) 1.35266i 0.0487783i 0.999703 + 0.0243892i \(0.00776408\pi\)
−0.999703 + 0.0243892i \(0.992236\pi\)
\(770\) 0 0
\(771\) −14.1634 −0.510081
\(772\) 0 0
\(773\) 8.90752i 0.320381i 0.987086 + 0.160191i \(0.0512109\pi\)
−0.987086 + 0.160191i \(0.948789\pi\)
\(774\) 0 0
\(775\) 29.8805i 1.07334i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 86.7077 3.10662
\(780\) 0 0
\(781\) 15.3049 0.547651
\(782\) 0 0
\(783\) −6.35580 −0.227138
\(784\) 0 0
\(785\) 60.3008i 2.15223i
\(786\) 0 0
\(787\) 21.8338i 0.778289i −0.921177 0.389145i \(-0.872771\pi\)
0.921177 0.389145i \(-0.127229\pi\)
\(788\) 0 0
\(789\) 10.2567 0.365150
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −39.8402 + 8.16378i −1.41477 + 0.289904i
\(794\) 0 0
\(795\) 35.2721i 1.25097i
\(796\) 0 0
\(797\) −0.593993 −0.0210403 −0.0105202 0.999945i \(-0.503349\pi\)
−0.0105202 + 0.999945i \(0.503349\pi\)
\(798\) 0 0
\(799\) 19.6080i 0.693680i
\(800\) 0 0
\(801\) 0.921202i 0.0325491i
\(802\) 0 0
\(803\) 80.8802 2.85420
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −20.4398 −0.719517
\(808\) 0 0
\(809\) −22.4013 −0.787588 −0.393794 0.919199i \(-0.628838\pi\)
−0.393794 + 0.919199i \(0.628838\pi\)
\(810\) 0 0
\(811\) 2.68043i 0.0941226i 0.998892 + 0.0470613i \(0.0149856\pi\)
−0.998892 + 0.0470613i \(0.985014\pi\)
\(812\) 0 0
\(813\) 22.4381i 0.786938i
\(814\) 0 0
\(815\) 74.0784 2.59485
\(816\) 0 0
\(817\) 15.0694i 0.527213i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 14.4154i 0.503101i −0.967844 0.251550i \(-0.919060\pi\)
0.967844 0.251550i \(-0.0809404\pi\)
\(822\) 0 0
\(823\) −36.5000 −1.27231 −0.636154 0.771562i \(-0.719476\pi\)
−0.636154 + 0.771562i \(0.719476\pi\)
\(824\) 0 0
\(825\) 65.2985i 2.27340i
\(826\) 0 0
\(827\) 35.5929i 1.23769i −0.785514 0.618844i \(-0.787601\pi\)
0.785514 0.618844i \(-0.212399\pi\)
\(828\) 0 0
\(829\) −25.8566 −0.898038 −0.449019 0.893522i \(-0.648226\pi\)
−0.449019 + 0.893522i \(0.648226\pi\)
\(830\) 0 0
\(831\) 7.45486 0.258606
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −41.1965 −1.42566
\(836\) 0 0
\(837\) 2.72746i 0.0942750i
\(838\) 0 0
\(839\) 38.5611i 1.33128i 0.746274 + 0.665639i \(0.231841\pi\)
−0.746274 + 0.665639i \(0.768159\pi\)
\(840\) 0 0
\(841\) 11.3962 0.392972
\(842\) 0 0
\(843\) 18.9000i 0.650952i
\(844\) 0 0
\(845\) 20.4237 + 47.7424i 0.702595 + 1.64239i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −30.6994 −1.05360
\(850\) 0 0
\(851\) 9.41961i 0.322900i
\(852\) 0 0
\(853\) 28.4825i 0.975222i 0.873061 + 0.487611i \(0.162132\pi\)
−0.873061 + 0.487611i \(0.837868\pi\)
\(854\) 0 0
\(855\) −32.5487 −1.11314
\(856\) 0 0
\(857\) 29.2049 0.997622 0.498811 0.866711i \(-0.333770\pi\)
0.498811 + 0.866711i \(0.333770\pi\)
\(858\) 0 0
\(859\) 42.3223 1.44402 0.722009 0.691884i \(-0.243219\pi\)
0.722009 + 0.691884i \(0.243219\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 10.6071i 0.361071i −0.983568 0.180535i \(-0.942217\pi\)
0.983568 0.180535i \(-0.0577831\pi\)
\(864\) 0 0
\(865\) 35.1333i 1.19457i
\(866\) 0 0
\(867\) −8.88127 −0.301624
\(868\) 0 0
\(869\) 15.5885i 0.528805i
\(870\) 0 0
\(871\) 0.651617 + 3.17997i 0.0220792 + 0.107749i
\(872\) 0 0
\(873\) 5.09624i 0.172481i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.70342i 0.125056i −0.998043 0.0625279i \(-0.980084\pi\)
0.998043 0.0625279i \(-0.0199162\pi\)
\(878\) 0 0
\(879\) 11.0693i 0.373359i
\(880\) 0 0
\(881\) 40.4655 1.36332 0.681658 0.731671i \(-0.261259\pi\)
0.681658 + 0.731671i \(0.261259\pi\)
\(882\) 0 0
\(883\) 13.8212 0.465119 0.232560 0.972582i \(-0.425290\pi\)
0.232560 + 0.972582i \(0.425290\pi\)
\(884\) 0 0
\(885\) −11.5326 −0.387663
\(886\) 0 0
\(887\) 42.8501 1.43876 0.719382 0.694614i \(-0.244425\pi\)
0.719382 + 0.694614i \(0.244425\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 5.96039i 0.199680i
\(892\) 0 0
\(893\) −56.0749 −1.87648
\(894\) 0 0
\(895\) 71.6822i 2.39607i
\(896\) 0 0
\(897\) −18.4201 + 3.77452i −0.615030 + 0.126028i
\(898\) 0 0
\(899\) 17.3352i 0.578162i
\(900\) 0 0
\(901\) −25.1606 −0.838222
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 61.5316i 2.04538i
\(906\) 0 0
\(907\) 19.5100 0.647819 0.323910 0.946088i \(-0.395003\pi\)
0.323910 + 0.946088i \(0.395003\pi\)
\(908\) 0 0
\(909\) 6.72144 0.222936
\(910\) 0 0
\(911\) −17.9461 −0.594581 −0.297290 0.954787i \(-0.596083\pi\)
−0.297290 + 0.954787i \(0.596083\pi\)
\(912\) 0 0
\(913\) −4.41421 −0.146089
\(914\) 0 0
\(915\) 45.0543i 1.48945i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 45.7928 1.51057 0.755283 0.655399i \(-0.227499\pi\)
0.755283 + 0.655399i \(0.227499\pi\)
\(920\) 0 0
\(921\) 12.4977i 0.411812i
\(922\) 0 0
\(923\) −1.85851 9.06975i −0.0611736 0.298534i
\(924\) 0 0
\(925\) 19.7884i 0.650637i
\(926\) 0 0
\(927\) 2.40740 0.0790694
\(928\) 0 0
\(929\) 28.4352i 0.932930i −0.884540 0.466465i \(-0.845527\pi\)
0.884540 0.466465i \(-0.154473\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.5933 −0.412287
\(934\) 0 0
\(935\) 67.8379 2.21854
\(936\) 0 0
\(937\) 24.4239 0.797893 0.398946 0.916974i \(-0.369376\pi\)
0.398946 + 0.916974i \(0.369376\pi\)
\(938\) 0 0
\(939\) −8.49708 −0.277292
\(940\) 0 0
\(941\) 40.8095i 1.33035i −0.746687 0.665175i \(-0.768357\pi\)
0.746687 0.665175i \(-0.231643\pi\)
\(942\) 0 0
\(943\) 55.4919i 1.80707i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.9653i 1.13622i 0.822953 + 0.568109i \(0.192325\pi\)
−0.822953 + 0.568109i \(0.807675\pi\)
\(948\) 0 0
\(949\) −9.82149 47.9301i −0.318819 1.55588i
\(950\) 0 0
\(951\) 15.1746i 0.492070i
\(952\) 0 0
\(953\) 17.1967 0.557056 0.278528 0.960428i \(-0.410154\pi\)
0.278528 + 0.960428i \(0.410154\pi\)
\(954\) 0 0
\(955\) 71.5827i 2.31636i
\(956\) 0 0
\(957\) 37.8830i 1.22458i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 23.5609 0.760030
\(962\) 0 0
\(963\) 6.91365 0.222789
\(964\) 0 0
\(965\) −71.3414 −2.29656
\(966\) 0 0
\(967\) 17.8251i 0.573215i 0.958048 + 0.286608i \(0.0925276\pi\)
−0.958048 + 0.286608i \(0.907472\pi\)
\(968\) 0 0
\(969\) 23.2180i 0.745869i
\(970\) 0 0
\(971\) 3.14455 0.100914 0.0504568 0.998726i \(-0.483932\pi\)
0.0504568 + 0.998726i \(0.483932\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −38.6963 + 7.92936i −1.23927 + 0.253943i
\(976\) 0 0
\(977\) 14.2959i 0.457368i −0.973501 0.228684i \(-0.926558\pi\)
0.973501 0.228684i \(-0.0734422\pi\)
\(978\) 0 0
\(979\) 5.49072 0.175484
\(980\) 0 0
\(981\) 1.56315i 0.0499076i
\(982\) 0 0
\(983\) 25.3972i 0.810045i −0.914307 0.405022i \(-0.867264\pi\)
0.914307 0.405022i \(-0.132736\pi\)
\(984\) 0 0
\(985\) −40.2413 −1.28219
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −9.64426 −0.306670
\(990\) 0 0
\(991\) −25.3412 −0.804991 −0.402496 0.915422i \(-0.631857\pi\)
−0.402496 + 0.915422i \(0.631857\pi\)
\(992\) 0 0
\(993\) 2.81317i 0.0892733i
\(994\) 0 0
\(995\) 61.3648i 1.94539i
\(996\) 0 0
\(997\) −15.2383 −0.482600 −0.241300 0.970451i \(-0.577574\pi\)
−0.241300 + 0.970451i \(0.577574\pi\)
\(998\) 0 0
\(999\) 1.80626i 0.0571476i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.o.4705.9 10
7.2 even 3 1092.2.cu.c.25.9 yes 20
7.4 even 3 1092.2.cu.c.961.2 yes 20
7.6 odd 2 7644.2.e.n.4705.2 10
13.12 even 2 inner 7644.2.e.o.4705.2 10
21.2 odd 6 3276.2.gv.g.1117.2 20
21.11 odd 6 3276.2.gv.g.2053.9 20
91.25 even 6 1092.2.cu.c.961.9 yes 20
91.51 even 6 1092.2.cu.c.25.2 20
91.90 odd 2 7644.2.e.n.4705.9 10
273.116 odd 6 3276.2.gv.g.2053.2 20
273.233 odd 6 3276.2.gv.g.1117.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.cu.c.25.2 20 91.51 even 6
1092.2.cu.c.25.9 yes 20 7.2 even 3
1092.2.cu.c.961.2 yes 20 7.4 even 3
1092.2.cu.c.961.9 yes 20 91.25 even 6
3276.2.gv.g.1117.2 20 21.2 odd 6
3276.2.gv.g.1117.9 20 273.233 odd 6
3276.2.gv.g.2053.2 20 273.116 odd 6
3276.2.gv.g.2053.9 20 21.11 odd 6
7644.2.e.n.4705.2 10 7.6 odd 2
7644.2.e.n.4705.9 10 91.90 odd 2
7644.2.e.o.4705.2 10 13.12 even 2 inner
7644.2.e.o.4705.9 10 1.1 even 1 trivial