Properties

Label 7644.2.e.o
Level $7644$
Weight $2$
Character orbit 7644.e
Analytic conductor $61.038$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,10,0,0,0,0,0,10,0,0,0,1,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 37x^{8} + 408x^{6} + 1219x^{4} + 1072x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_1 q^{5} + q^{9} - \beta_{9} q^{11} - \beta_{6} q^{13} + \beta_1 q^{15} - \beta_{4} q^{17} + ( - \beta_{8} + \beta_1) q^{19} + (\beta_{6} - \beta_{5} + \beta_{4} - 1) q^{23} + (\beta_{6} - \beta_{5} + \beta_{2} - 2) q^{25}+ \cdots - \beta_{9} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 10 q^{9} + q^{13} - 4 q^{17} - 8 q^{23} - 24 q^{25} + 10 q^{27} - 2 q^{29} + q^{39} - 6 q^{43} - 4 q^{51} + 24 q^{53} - 12 q^{55} + 12 q^{65} - 8 q^{69} - 24 q^{75} + 6 q^{79} + 10 q^{81}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 37x^{8} + 408x^{6} + 1219x^{4} + 1072x^{2} + 144 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{8} - 141\nu^{6} - 1308\nu^{4} - 5015\nu^{2} + 1884 ) / 1272 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -5\nu^{8} - 141\nu^{6} - 884\nu^{4} + 1345\nu^{2} + 2308 ) / 424 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 11\nu^{8} + 395\nu^{6} + 3980\nu^{4} + 7641\nu^{2} + 1452 ) / 424 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 17 \nu^{9} - 10 \nu^{8} - 649 \nu^{7} - 282 \nu^{6} - 7500 \nu^{5} - 2616 \nu^{4} - 25955 \nu^{3} + \cdots - 14040 ) / 5088 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 17 \nu^{9} + 10 \nu^{8} - 649 \nu^{7} + 282 \nu^{6} - 7500 \nu^{5} + 2616 \nu^{4} - 25955 \nu^{3} + \cdots + 14040 ) / 5088 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{9} + 67\nu^{7} + 555\nu^{5} - 220\nu^{3} - 2015\nu ) / 318 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -25\nu^{9} - 917\nu^{7} - 9720\nu^{5} - 23803\nu^{3} - 11144\nu ) / 1272 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 55\nu^{9} + 1975\nu^{7} + 20748\nu^{5} + 53893\nu^{3} + 31852\nu ) / 2544 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} - \beta_{5} + \beta_{2} - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} + \beta_{7} - 2\beta_{6} - 2\beta_{5} - 15\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -15\beta_{6} + 15\beta_{5} + \beta_{3} - 18\beta_{2} + 104 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{9} - 16\beta_{8} - 21\beta_{7} + 37\beta_{6} + 37\beta_{5} + 246\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 235\beta_{6} - 235\beta_{5} + 5\beta_{4} - 13\beta_{3} + 307\beta_{2} - 1698 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -105\beta_{9} + 210\beta_{8} + 351\beta_{7} - 627\beta_{6} - 627\beta_{5} - 4057\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -3706\beta_{6} + 3706\beta_{5} - 141\beta_{4} + 105\beta_{3} - 5206\beta_{2} + 28075 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 2685\beta_{9} - 2485\beta_{8} - 5662\beta_{7} + 10517\beta_{6} + 10517\beta_{5} + 67002\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4705.1
4.12696i
3.99442i
1.61158i
1.11923i
0.403576i
0.403576i
1.11923i
1.61158i
3.99442i
4.12696i
0 1.00000 0 4.12696i 0 0 0 1.00000 0
4705.2 0 1.00000 0 3.99442i 0 0 0 1.00000 0
4705.3 0 1.00000 0 1.61158i 0 0 0 1.00000 0
4705.4 0 1.00000 0 1.11923i 0 0 0 1.00000 0
4705.5 0 1.00000 0 0.403576i 0 0 0 1.00000 0
4705.6 0 1.00000 0 0.403576i 0 0 0 1.00000 0
4705.7 0 1.00000 0 1.11923i 0 0 0 1.00000 0
4705.8 0 1.00000 0 1.61158i 0 0 0 1.00000 0
4705.9 0 1.00000 0 3.99442i 0 0 0 1.00000 0
4705.10 0 1.00000 0 4.12696i 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4705.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7644.2.e.o 10
7.b odd 2 1 7644.2.e.n 10
7.c even 3 2 1092.2.cu.c 20
13.b even 2 1 inner 7644.2.e.o 10
21.h odd 6 2 3276.2.gv.g 20
91.b odd 2 1 7644.2.e.n 10
91.r even 6 2 1092.2.cu.c 20
273.w odd 6 2 3276.2.gv.g 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.cu.c 20 7.c even 3 2
1092.2.cu.c 20 91.r even 6 2
3276.2.gv.g 20 21.h odd 6 2
3276.2.gv.g 20 273.w odd 6 2
7644.2.e.n 10 7.b odd 2 1
7644.2.e.n 10 91.b odd 2 1
7644.2.e.o 10 1.a even 1 1 trivial
7644.2.e.o 10 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(7644, [\chi])\):

\( T_{5}^{10} + 37T_{5}^{8} + 408T_{5}^{6} + 1219T_{5}^{4} + 1072T_{5}^{2} + 144 \) Copy content Toggle raw display
\( T_{11}^{10} + 82T_{11}^{8} + 2319T_{11}^{6} + 26721T_{11}^{4} + 106335T_{11}^{2} + 2916 \) Copy content Toggle raw display
\( T_{17}^{5} + 2T_{17}^{4} - 33T_{17}^{3} - 103T_{17}^{2} - 41T_{17} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} \) Copy content Toggle raw display
$3$ \( (T - 1)^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + 37 T^{8} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( T^{10} \) Copy content Toggle raw display
$11$ \( T^{10} + 82 T^{8} + \cdots + 2916 \) Copy content Toggle raw display
$13$ \( T^{10} - T^{9} + \cdots + 371293 \) Copy content Toggle raw display
$17$ \( (T^{5} + 2 T^{4} - 33 T^{3} + \cdots + 12)^{2} \) Copy content Toggle raw display
$19$ \( T^{10} + 89 T^{8} + \cdots + 9801 \) Copy content Toggle raw display
$23$ \( (T^{5} + 4 T^{4} + \cdots - 384)^{2} \) Copy content Toggle raw display
$29$ \( (T^{5} + T^{4} - 135 T^{3} + \cdots - 600)^{2} \) Copy content Toggle raw display
$31$ \( T^{10} + 111 T^{8} + \cdots + 419904 \) Copy content Toggle raw display
$37$ \( T^{10} + 98 T^{8} + \cdots + 4 \) Copy content Toggle raw display
$41$ \( T^{10} + 312 T^{8} + \cdots + 944784 \) Copy content Toggle raw display
$43$ \( (T^{5} + 3 T^{4} - 31 T^{3} + \cdots + 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{10} + 185 T^{8} + \cdots + 831744 \) Copy content Toggle raw display
$53$ \( (T^{5} - 12 T^{4} + \cdots - 88884)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} + 262 T^{8} + \cdots + 36864 \) Copy content Toggle raw display
$61$ \( (T^{5} - 141 T^{3} + \cdots - 1458)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + 401 T^{8} + \cdots + 23030401 \) Copy content Toggle raw display
$71$ \( T^{10} + 202 T^{8} + \cdots + 3437316 \) Copy content Toggle raw display
$73$ \( T^{10} + \cdots + 1324523236 \) Copy content Toggle raw display
$79$ \( (T^{5} - 3 T^{4} + \cdots - 13392)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + 220 T^{8} + \cdots + 20736 \) Copy content Toggle raw display
$89$ \( T^{10} + 89 T^{8} + \cdots + 20736 \) Copy content Toggle raw display
$97$ \( T^{10} + 407 T^{8} + \cdots + 876096 \) Copy content Toggle raw display
show more
show less