L(s) = 1 | + 3-s + 3.99i·5-s + 9-s + 5.96i·11-s + (3.53 − 0.723i)13-s + 3.99i·15-s − 2.84·17-s + 8.14i·19-s − 5.21·23-s − 10.9·25-s + 27-s − 6.35·29-s − 2.72i·31-s + 5.96i·33-s + 1.80i·37-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 1.78i·5-s + 0.333·9-s + 1.79i·11-s + (0.979 − 0.200i)13-s + 1.03i·15-s − 0.691·17-s + 1.86i·19-s − 1.08·23-s − 2.19·25-s + 0.192·27-s − 1.18·29-s − 0.489i·31-s + 1.03i·33-s + 0.296i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7644 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.979 + 0.200i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7644 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.979 + 0.200i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.732656416\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.732656416\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + (-3.53 + 0.723i)T \) |
good | 5 | \( 1 - 3.99iT - 5T^{2} \) |
| 11 | \( 1 - 5.96iT - 11T^{2} \) |
| 17 | \( 1 + 2.84T + 17T^{2} \) |
| 19 | \( 1 - 8.14iT - 19T^{2} \) |
| 23 | \( 1 + 5.21T + 23T^{2} \) |
| 29 | \( 1 + 6.35T + 29T^{2} \) |
| 31 | \( 1 + 2.72iT - 31T^{2} \) |
| 37 | \( 1 - 1.80iT - 37T^{2} \) |
| 41 | \( 1 + 10.6iT - 41T^{2} \) |
| 43 | \( 1 - 1.84T + 43T^{2} \) |
| 47 | \( 1 - 6.88iT - 47T^{2} \) |
| 53 | \( 1 - 8.83T + 53T^{2} \) |
| 59 | \( 1 - 2.88iT - 59T^{2} \) |
| 61 | \( 1 + 11.2T + 61T^{2} \) |
| 67 | \( 1 - 0.900iT - 67T^{2} \) |
| 71 | \( 1 + 2.56iT - 71T^{2} \) |
| 73 | \( 1 + 13.5iT - 73T^{2} \) |
| 79 | \( 1 - 2.61T + 79T^{2} \) |
| 83 | \( 1 - 0.740iT - 83T^{2} \) |
| 89 | \( 1 + 0.921iT - 89T^{2} \) |
| 97 | \( 1 + 5.09iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.921677123678627104833046772127, −7.55481628600529322550243501576, −7.01519724450789640097904378721, −6.18161252399010746239191344252, −5.77456929948337232541310887823, −4.36429372596168361690922664329, −3.84220227740370932242113748422, −3.21777157341194907809390479746, −2.05437133565137635844475990567, −1.92068487911993956843590453065,
0.37361568386646107184105382672, 1.13777073913877521264566573014, 2.11620387265160854158329001630, 3.19673840235667087599283157071, 3.97345206195317985363477641741, 4.57761193757576764692737552318, 5.41057119981333453007226689696, 5.97696821719902353451291716665, 6.77786168562110302122747731509, 7.82366225356477833037422124600