Properties

Label 7644.2.e.o.4705.10
Level $7644$
Weight $2$
Character 7644.4705
Analytic conductor $61.038$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7644,2,Mod(4705,7644)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7644, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7644.4705"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,10,0,0,0,0,0,10,0,0,0,1,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.0376473051\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 37x^{8} + 408x^{6} + 1219x^{4} + 1072x^{2} + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 4705.10
Root \(4.12696i\) of defining polynomial
Character \(\chi\) \(=\) 7644.4705
Dual form 7644.2.e.o.4705.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +4.12696i q^{5} +1.00000 q^{9} -4.83063i q^{11} +(-1.36787 - 3.33601i) q^{13} +4.12696i q^{15} +0.193191 q^{17} -0.814515i q^{19} +1.54255 q^{23} -12.0318 q^{25} +1.00000 q^{27} +0.154256 q^{29} +4.84786i q^{31} -4.83063i q^{33} +0.110845i q^{37} +(-1.36787 - 3.33601i) q^{39} -1.85860i q^{41} -1.19319 q^{43} +4.12696i q^{45} -9.78934i q^{47} +0.193191 q^{51} -12.2712 q^{53} +19.9359 q^{55} -0.814515i q^{57} -13.9163i q^{59} +5.27829 q^{61} +(13.7676 - 5.64515i) q^{65} -11.7243i q^{67} +1.54255 q^{69} -4.22059i q^{71} -3.21883i q^{73} -12.0318 q^{75} -11.7286 q^{79} +1.00000 q^{81} -2.65589i q^{83} +0.797294i q^{85} +0.154256 q^{87} +4.95870i q^{89} +4.84786i q^{93} +3.36147 q^{95} +3.13454i q^{97} -4.83063i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 10 q^{9} + q^{13} - 4 q^{17} - 8 q^{23} - 24 q^{25} + 10 q^{27} - 2 q^{29} + q^{39} - 6 q^{43} - 4 q^{51} + 24 q^{53} - 12 q^{55} + 12 q^{65} - 8 q^{69} - 24 q^{75} + 6 q^{79} + 10 q^{81}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7644\mathbb{Z}\right)^\times\).

\(n\) \(2549\) \(3433\) \(3823\) \(5293\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 4.12696i 1.84563i 0.385238 + 0.922817i \(0.374119\pi\)
−0.385238 + 0.922817i \(0.625881\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.83063i 1.45649i −0.685316 0.728246i \(-0.740336\pi\)
0.685316 0.728246i \(-0.259664\pi\)
\(12\) 0 0
\(13\) −1.36787 3.33601i −0.379379 0.925241i
\(14\) 0 0
\(15\) 4.12696i 1.06558i
\(16\) 0 0
\(17\) 0.193191 0.0468558 0.0234279 0.999726i \(-0.492542\pi\)
0.0234279 + 0.999726i \(0.492542\pi\)
\(18\) 0 0
\(19\) 0.814515i 0.186863i −0.995626 0.0934313i \(-0.970216\pi\)
0.995626 0.0934313i \(-0.0297835\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.54255 0.321643 0.160822 0.986983i \(-0.448586\pi\)
0.160822 + 0.986983i \(0.448586\pi\)
\(24\) 0 0
\(25\) −12.0318 −2.40637
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.154256 0.0286447 0.0143223 0.999897i \(-0.495441\pi\)
0.0143223 + 0.999897i \(0.495441\pi\)
\(30\) 0 0
\(31\) 4.84786i 0.870701i 0.900261 + 0.435350i \(0.143375\pi\)
−0.900261 + 0.435350i \(0.856625\pi\)
\(32\) 0 0
\(33\) 4.83063i 0.840906i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.110845i 0.0182228i 0.999958 + 0.00911138i \(0.00290028\pi\)
−0.999958 + 0.00911138i \(0.997100\pi\)
\(38\) 0 0
\(39\) −1.36787 3.33601i −0.219034 0.534188i
\(40\) 0 0
\(41\) 1.85860i 0.290264i −0.989412 0.145132i \(-0.953639\pi\)
0.989412 0.145132i \(-0.0463607\pi\)
\(42\) 0 0
\(43\) −1.19319 −0.181960 −0.0909800 0.995853i \(-0.529000\pi\)
−0.0909800 + 0.995853i \(0.529000\pi\)
\(44\) 0 0
\(45\) 4.12696i 0.615212i
\(46\) 0 0
\(47\) 9.78934i 1.42792i −0.700186 0.713961i \(-0.746900\pi\)
0.700186 0.713961i \(-0.253100\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.193191 0.0270522
\(52\) 0 0
\(53\) −12.2712 −1.68558 −0.842789 0.538244i \(-0.819088\pi\)
−0.842789 + 0.538244i \(0.819088\pi\)
\(54\) 0 0
\(55\) 19.9359 2.68815
\(56\) 0 0
\(57\) 0.814515i 0.107885i
\(58\) 0 0
\(59\) 13.9163i 1.81175i −0.423547 0.905874i \(-0.639215\pi\)
0.423547 0.905874i \(-0.360785\pi\)
\(60\) 0 0
\(61\) 5.27829 0.675815 0.337908 0.941179i \(-0.390281\pi\)
0.337908 + 0.941179i \(0.390281\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 13.7676 5.64515i 1.70766 0.700195i
\(66\) 0 0
\(67\) 11.7243i 1.43236i −0.697918 0.716178i \(-0.745890\pi\)
0.697918 0.716178i \(-0.254110\pi\)
\(68\) 0 0
\(69\) 1.54255 0.185701
\(70\) 0 0
\(71\) 4.22059i 0.500892i −0.968131 0.250446i \(-0.919423\pi\)
0.968131 0.250446i \(-0.0805772\pi\)
\(72\) 0 0
\(73\) 3.21883i 0.376735i −0.982099 0.188368i \(-0.939680\pi\)
0.982099 0.188368i \(-0.0603196\pi\)
\(74\) 0 0
\(75\) −12.0318 −1.38932
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −11.7286 −1.31958 −0.659788 0.751452i \(-0.729354\pi\)
−0.659788 + 0.751452i \(0.729354\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.65589i 0.291522i −0.989320 0.145761i \(-0.953437\pi\)
0.989320 0.145761i \(-0.0465630\pi\)
\(84\) 0 0
\(85\) 0.797294i 0.0864787i
\(86\) 0 0
\(87\) 0.154256 0.0165380
\(88\) 0 0
\(89\) 4.95870i 0.525621i 0.964847 + 0.262811i \(0.0846494\pi\)
−0.964847 + 0.262811i \(0.915351\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.84786i 0.502699i
\(94\) 0 0
\(95\) 3.36147 0.344880
\(96\) 0 0
\(97\) 3.13454i 0.318265i 0.987257 + 0.159132i \(0.0508697\pi\)
−0.987257 + 0.159132i \(0.949130\pi\)
\(98\) 0 0
\(99\) 4.83063i 0.485497i
\(100\) 0 0
\(101\) −3.50361 −0.348622 −0.174311 0.984691i \(-0.555770\pi\)
−0.174311 + 0.984691i \(0.555770\pi\)
\(102\) 0 0
\(103\) 12.6114 1.24264 0.621320 0.783557i \(-0.286597\pi\)
0.621320 + 0.783557i \(0.286597\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.92893 −0.573171 −0.286586 0.958055i \(-0.592520\pi\)
−0.286586 + 0.958055i \(0.592520\pi\)
\(108\) 0 0
\(109\) 19.6285i 1.88007i −0.341078 0.940035i \(-0.610792\pi\)
0.341078 0.940035i \(-0.389208\pi\)
\(110\) 0 0
\(111\) 0.110845i 0.0105209i
\(112\) 0 0
\(113\) −16.2391 −1.52764 −0.763821 0.645428i \(-0.776679\pi\)
−0.763821 + 0.645428i \(0.776679\pi\)
\(114\) 0 0
\(115\) 6.36604i 0.593636i
\(116\) 0 0
\(117\) −1.36787 3.33601i −0.126460 0.308414i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −12.3350 −1.12137
\(122\) 0 0
\(123\) 1.85860i 0.167584i
\(124\) 0 0
\(125\) 29.0201i 2.59564i
\(126\) 0 0
\(127\) −1.61171 −0.143016 −0.0715080 0.997440i \(-0.522781\pi\)
−0.0715080 + 0.997440i \(0.522781\pi\)
\(128\) 0 0
\(129\) −1.19319 −0.105055
\(130\) 0 0
\(131\) −18.8897 −1.65040 −0.825200 0.564840i \(-0.808938\pi\)
−0.825200 + 0.564840i \(0.808938\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.12696i 0.355193i
\(136\) 0 0
\(137\) 0.797294i 0.0681174i −0.999420 0.0340587i \(-0.989157\pi\)
0.999420 0.0340587i \(-0.0108433\pi\)
\(138\) 0 0
\(139\) 17.8065 1.51033 0.755164 0.655536i \(-0.227557\pi\)
0.755164 + 0.655536i \(0.227557\pi\)
\(140\) 0 0
\(141\) 9.78934i 0.824411i
\(142\) 0 0
\(143\) −16.1150 + 6.60768i −1.34761 + 0.552562i
\(144\) 0 0
\(145\) 0.636610i 0.0528676i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.2517i 1.33139i 0.746222 + 0.665697i \(0.231866\pi\)
−0.746222 + 0.665697i \(0.768134\pi\)
\(150\) 0 0
\(151\) 12.9187i 1.05131i 0.850697 + 0.525656i \(0.176180\pi\)
−0.850697 + 0.525656i \(0.823820\pi\)
\(152\) 0 0
\(153\) 0.193191 0.0156186
\(154\) 0 0
\(155\) −20.0069 −1.60700
\(156\) 0 0
\(157\) 16.4201 1.31047 0.655234 0.755426i \(-0.272570\pi\)
0.655234 + 0.755426i \(0.272570\pi\)
\(158\) 0 0
\(159\) −12.2712 −0.973169
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.7284i 1.62358i −0.583951 0.811789i \(-0.698494\pi\)
0.583951 0.811789i \(-0.301506\pi\)
\(164\) 0 0
\(165\) 19.9359 1.55200
\(166\) 0 0
\(167\) 7.26484i 0.562170i −0.959683 0.281085i \(-0.909306\pi\)
0.959683 0.281085i \(-0.0906943\pi\)
\(168\) 0 0
\(169\) −9.25787 + 9.12644i −0.712143 + 0.702034i
\(170\) 0 0
\(171\) 0.814515i 0.0622875i
\(172\) 0 0
\(173\) 8.43445 0.641260 0.320630 0.947205i \(-0.396105\pi\)
0.320630 + 0.947205i \(0.396105\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.9163i 1.04601i
\(178\) 0 0
\(179\) 16.2269 1.21286 0.606429 0.795138i \(-0.292601\pi\)
0.606429 + 0.795138i \(0.292601\pi\)
\(180\) 0 0
\(181\) −21.0247 −1.56276 −0.781378 0.624058i \(-0.785483\pi\)
−0.781378 + 0.624058i \(0.785483\pi\)
\(182\) 0 0
\(183\) 5.27829 0.390182
\(184\) 0 0
\(185\) −0.457452 −0.0336325
\(186\) 0 0
\(187\) 0.933237i 0.0682451i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22.8686 1.65471 0.827356 0.561678i \(-0.189844\pi\)
0.827356 + 0.561678i \(0.189844\pi\)
\(192\) 0 0
\(193\) 21.2575i 1.53015i −0.643940 0.765076i \(-0.722702\pi\)
0.643940 0.765076i \(-0.277298\pi\)
\(194\) 0 0
\(195\) 13.7676 5.64515i 0.985917 0.404258i
\(196\) 0 0
\(197\) 18.0759i 1.28785i 0.765087 + 0.643927i \(0.222696\pi\)
−0.765087 + 0.643927i \(0.777304\pi\)
\(198\) 0 0
\(199\) 7.06397 0.500752 0.250376 0.968149i \(-0.419446\pi\)
0.250376 + 0.968149i \(0.419446\pi\)
\(200\) 0 0
\(201\) 11.7243i 0.826971i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 7.67036 0.535721
\(206\) 0 0
\(207\) 1.54255 0.107214
\(208\) 0 0
\(209\) −3.93462 −0.272164
\(210\) 0 0
\(211\) 19.3472 1.33191 0.665956 0.745991i \(-0.268024\pi\)
0.665956 + 0.745991i \(0.268024\pi\)
\(212\) 0 0
\(213\) 4.22059i 0.289190i
\(214\) 0 0
\(215\) 4.92426i 0.335832i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 3.21883i 0.217508i
\(220\) 0 0
\(221\) −0.264261 0.644488i −0.0177761 0.0433529i
\(222\) 0 0
\(223\) 14.4868i 0.970105i 0.874485 + 0.485052i \(0.161199\pi\)
−0.874485 + 0.485052i \(0.838801\pi\)
\(224\) 0 0
\(225\) −12.0318 −0.802123
\(226\) 0 0
\(227\) 18.3930i 1.22079i 0.792098 + 0.610394i \(0.208989\pi\)
−0.792098 + 0.610394i \(0.791011\pi\)
\(228\) 0 0
\(229\) 22.5750i 1.49180i −0.666060 0.745898i \(-0.732021\pi\)
0.666060 0.745898i \(-0.267979\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.6432 −1.35238 −0.676192 0.736725i \(-0.736371\pi\)
−0.676192 + 0.736725i \(0.736371\pi\)
\(234\) 0 0
\(235\) 40.4002 2.63542
\(236\) 0 0
\(237\) −11.7286 −0.761857
\(238\) 0 0
\(239\) 2.81923i 0.182361i −0.995834 0.0911805i \(-0.970936\pi\)
0.995834 0.0911805i \(-0.0290640\pi\)
\(240\) 0 0
\(241\) 22.2639i 1.43414i −0.697001 0.717070i \(-0.745483\pi\)
0.697001 0.717070i \(-0.254517\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.71723 + 1.11415i −0.172893 + 0.0708917i
\(248\) 0 0
\(249\) 2.65589i 0.168310i
\(250\) 0 0
\(251\) −23.5673 −1.48755 −0.743777 0.668428i \(-0.766968\pi\)
−0.743777 + 0.668428i \(0.766968\pi\)
\(252\) 0 0
\(253\) 7.45149i 0.468471i
\(254\) 0 0
\(255\) 0.797294i 0.0499285i
\(256\) 0 0
\(257\) 9.30822 0.580631 0.290315 0.956931i \(-0.406240\pi\)
0.290315 + 0.956931i \(0.406240\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0.154256 0.00954822
\(262\) 0 0
\(263\) 17.4182 1.07405 0.537027 0.843565i \(-0.319547\pi\)
0.537027 + 0.843565i \(0.319547\pi\)
\(264\) 0 0
\(265\) 50.6428i 3.11096i
\(266\) 0 0
\(267\) 4.95870i 0.303468i
\(268\) 0 0
\(269\) 4.59390 0.280095 0.140047 0.990145i \(-0.455274\pi\)
0.140047 + 0.990145i \(0.455274\pi\)
\(270\) 0 0
\(271\) 8.76247i 0.532282i 0.963934 + 0.266141i \(0.0857487\pi\)
−0.963934 + 0.266141i \(0.914251\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 58.1214i 3.50485i
\(276\) 0 0
\(277\) −12.7267 −0.764675 −0.382338 0.924023i \(-0.624881\pi\)
−0.382338 + 0.924023i \(0.624881\pi\)
\(278\) 0 0
\(279\) 4.84786i 0.290234i
\(280\) 0 0
\(281\) 22.4986i 1.34215i 0.741388 + 0.671076i \(0.234168\pi\)
−0.741388 + 0.671076i \(0.765832\pi\)
\(282\) 0 0
\(283\) 2.16828 0.128891 0.0644455 0.997921i \(-0.479472\pi\)
0.0644455 + 0.997921i \(0.479472\pi\)
\(284\) 0 0
\(285\) 3.36147 0.199117
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9627 −0.997805
\(290\) 0 0
\(291\) 3.13454i 0.183750i
\(292\) 0 0
\(293\) 26.7146i 1.56068i −0.625353 0.780342i \(-0.715045\pi\)
0.625353 0.780342i \(-0.284955\pi\)
\(294\) 0 0
\(295\) 57.4321 3.34382
\(296\) 0 0
\(297\) 4.83063i 0.280302i
\(298\) 0 0
\(299\) −2.11000 5.14595i −0.122025 0.297598i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −3.50361 −0.201277
\(304\) 0 0
\(305\) 21.7833i 1.24731i
\(306\) 0 0
\(307\) 14.5710i 0.831613i −0.909453 0.415806i \(-0.863499\pi\)
0.909453 0.415806i \(-0.136501\pi\)
\(308\) 0 0
\(309\) 12.6114 0.717438
\(310\) 0 0
\(311\) 24.3933 1.38322 0.691609 0.722272i \(-0.256902\pi\)
0.691609 + 0.722272i \(0.256902\pi\)
\(312\) 0 0
\(313\) 29.8134 1.68516 0.842578 0.538575i \(-0.181037\pi\)
0.842578 + 0.538575i \(0.181037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.87841i 0.161668i −0.996728 0.0808339i \(-0.974242\pi\)
0.996728 0.0808339i \(-0.0257583\pi\)
\(318\) 0 0
\(319\) 0.745156i 0.0417207i
\(320\) 0 0
\(321\) −5.92893 −0.330921
\(322\) 0 0
\(323\) 0.157357i 0.00875559i
\(324\) 0 0
\(325\) 16.4580 + 40.1383i 0.912925 + 2.22647i
\(326\) 0 0
\(327\) 19.6285i 1.08546i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 27.6607i 1.52037i 0.649705 + 0.760186i \(0.274892\pi\)
−0.649705 + 0.760186i \(0.725108\pi\)
\(332\) 0 0
\(333\) 0.110845i 0.00607425i
\(334\) 0 0
\(335\) 48.3859 2.64361
\(336\) 0 0
\(337\) 12.7657 0.695390 0.347695 0.937608i \(-0.386964\pi\)
0.347695 + 0.937608i \(0.386964\pi\)
\(338\) 0 0
\(339\) −16.2391 −0.881984
\(340\) 0 0
\(341\) 23.4182 1.26817
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.36604i 0.342736i
\(346\) 0 0
\(347\) −11.8189 −0.634473 −0.317237 0.948346i \(-0.602755\pi\)
−0.317237 + 0.948346i \(0.602755\pi\)
\(348\) 0 0
\(349\) 3.23665i 0.173254i −0.996241 0.0866268i \(-0.972391\pi\)
0.996241 0.0866268i \(-0.0276088\pi\)
\(350\) 0 0
\(351\) −1.36787 3.33601i −0.0730115 0.178063i
\(352\) 0 0
\(353\) 29.5534i 1.57297i −0.617609 0.786485i \(-0.711899\pi\)
0.617609 0.786485i \(-0.288101\pi\)
\(354\) 0 0
\(355\) 17.4182 0.924463
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.2594i 1.38592i −0.720976 0.692960i \(-0.756306\pi\)
0.720976 0.692960i \(-0.243694\pi\)
\(360\) 0 0
\(361\) 18.3366 0.965082
\(362\) 0 0
\(363\) −12.3350 −0.647421
\(364\) 0 0
\(365\) 13.2840 0.695315
\(366\) 0 0
\(367\) −5.54446 −0.289418 −0.144709 0.989474i \(-0.546225\pi\)
−0.144709 + 0.989474i \(0.546225\pi\)
\(368\) 0 0
\(369\) 1.85860i 0.0967547i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.301287 −0.0156001 −0.00780003 0.999970i \(-0.502483\pi\)
−0.00780003 + 0.999970i \(0.502483\pi\)
\(374\) 0 0
\(375\) 29.0201i 1.49859i
\(376\) 0 0
\(377\) −0.211002 0.514600i −0.0108672 0.0265032i
\(378\) 0 0
\(379\) 13.2573i 0.680983i 0.940248 + 0.340491i \(0.110593\pi\)
−0.940248 + 0.340491i \(0.889407\pi\)
\(380\) 0 0
\(381\) −1.61171 −0.0825703
\(382\) 0 0
\(383\) 24.0829i 1.23058i 0.788302 + 0.615288i \(0.210960\pi\)
−0.788302 + 0.615288i \(0.789040\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.19319 −0.0606533
\(388\) 0 0
\(389\) 14.6754 0.744071 0.372036 0.928218i \(-0.378660\pi\)
0.372036 + 0.928218i \(0.378660\pi\)
\(390\) 0 0
\(391\) 0.298007 0.0150709
\(392\) 0 0
\(393\) −18.8897 −0.952859
\(394\) 0 0
\(395\) 48.4037i 2.43545i
\(396\) 0 0
\(397\) 4.59877i 0.230806i −0.993319 0.115403i \(-0.963184\pi\)
0.993319 0.115403i \(-0.0368159\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.1147i 1.00448i −0.864728 0.502240i \(-0.832510\pi\)
0.864728 0.502240i \(-0.167490\pi\)
\(402\) 0 0
\(403\) 16.1725 6.63123i 0.805608 0.330325i
\(404\) 0 0
\(405\) 4.12696i 0.205071i
\(406\) 0 0
\(407\) 0.535450 0.0265413
\(408\) 0 0
\(409\) 15.7818i 0.780361i 0.920738 + 0.390180i \(0.127587\pi\)
−0.920738 + 0.390180i \(0.872413\pi\)
\(410\) 0 0
\(411\) 0.797294i 0.0393276i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 10.9608 0.538043
\(416\) 0 0
\(417\) 17.8065 0.871989
\(418\) 0 0
\(419\) −20.3544 −0.994376 −0.497188 0.867643i \(-0.665634\pi\)
−0.497188 + 0.867643i \(0.665634\pi\)
\(420\) 0 0
\(421\) 24.9704i 1.21698i 0.793560 + 0.608492i \(0.208225\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(422\) 0 0
\(423\) 9.78934i 0.475974i
\(424\) 0 0
\(425\) −2.32445 −0.112752
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −16.1150 + 6.60768i −0.778041 + 0.319022i
\(430\) 0 0
\(431\) 19.7635i 0.951974i −0.879452 0.475987i \(-0.842091\pi\)
0.879452 0.475987i \(-0.157909\pi\)
\(432\) 0 0
\(433\) 26.1982 1.25901 0.629503 0.776998i \(-0.283259\pi\)
0.629503 + 0.776998i \(0.283259\pi\)
\(434\) 0 0
\(435\) 0.636610i 0.0305231i
\(436\) 0 0
\(437\) 1.25643i 0.0601031i
\(438\) 0 0
\(439\) 17.9427 0.856356 0.428178 0.903694i \(-0.359156\pi\)
0.428178 + 0.903694i \(0.359156\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 15.0640 0.715711 0.357855 0.933777i \(-0.383508\pi\)
0.357855 + 0.933777i \(0.383508\pi\)
\(444\) 0 0
\(445\) −20.4644 −0.970105
\(446\) 0 0
\(447\) 16.2517i 0.768680i
\(448\) 0 0
\(449\) 14.1148i 0.666116i 0.942906 + 0.333058i \(0.108081\pi\)
−0.942906 + 0.333058i \(0.891919\pi\)
\(450\) 0 0
\(451\) −8.97820 −0.422767
\(452\) 0 0
\(453\) 12.9187i 0.606975i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.9703i 1.35517i 0.735443 + 0.677587i \(0.236974\pi\)
−0.735443 + 0.677587i \(0.763026\pi\)
\(458\) 0 0
\(459\) 0.193191 0.00901740
\(460\) 0 0
\(461\) 9.98197i 0.464907i 0.972608 + 0.232453i \(0.0746753\pi\)
−0.972608 + 0.232453i \(0.925325\pi\)
\(462\) 0 0
\(463\) 24.2951i 1.12909i 0.825402 + 0.564545i \(0.190948\pi\)
−0.825402 + 0.564545i \(0.809052\pi\)
\(464\) 0 0
\(465\) −20.0069 −0.927799
\(466\) 0 0
\(467\) −8.27638 −0.382985 −0.191493 0.981494i \(-0.561333\pi\)
−0.191493 + 0.981494i \(0.561333\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 16.4201 0.756600
\(472\) 0 0
\(473\) 5.76387i 0.265023i
\(474\) 0 0
\(475\) 9.80011i 0.449660i
\(476\) 0 0
\(477\) −12.2712 −0.561859
\(478\) 0 0
\(479\) 29.1412i 1.33149i 0.746178 + 0.665747i \(0.231887\pi\)
−0.746178 + 0.665747i \(0.768113\pi\)
\(480\) 0 0
\(481\) 0.369778 0.151621i 0.0168604 0.00691333i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.9362 −0.587401
\(486\) 0 0
\(487\) 12.3423i 0.559281i −0.960105 0.279641i \(-0.909785\pi\)
0.960105 0.279641i \(-0.0902153\pi\)
\(488\) 0 0
\(489\) 20.7284i 0.937373i
\(490\) 0 0
\(491\) −21.8406 −0.985650 −0.492825 0.870128i \(-0.664036\pi\)
−0.492825 + 0.870128i \(0.664036\pi\)
\(492\) 0 0
\(493\) 0.0298010 0.00134217
\(494\) 0 0
\(495\) 19.9359 0.896050
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 17.8681i 0.799885i −0.916540 0.399943i \(-0.869030\pi\)
0.916540 0.399943i \(-0.130970\pi\)
\(500\) 0 0
\(501\) 7.26484i 0.324569i
\(502\) 0 0
\(503\) −3.63823 −0.162221 −0.0811103 0.996705i \(-0.525847\pi\)
−0.0811103 + 0.996705i \(0.525847\pi\)
\(504\) 0 0
\(505\) 14.4593i 0.643430i
\(506\) 0 0
\(507\) −9.25787 + 9.12644i −0.411156 + 0.405319i
\(508\) 0 0
\(509\) 17.7192i 0.785391i 0.919668 + 0.392696i \(0.128457\pi\)
−0.919668 + 0.392696i \(0.871543\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0.814515i 0.0359617i
\(514\) 0 0
\(515\) 52.0469i 2.29346i
\(516\) 0 0
\(517\) −47.2887 −2.07975
\(518\) 0 0
\(519\) 8.43445 0.370231
\(520\) 0 0
\(521\) −9.63823 −0.422258 −0.211129 0.977458i \(-0.567714\pi\)
−0.211129 + 0.977458i \(0.567714\pi\)
\(522\) 0 0
\(523\) 29.2144 1.27746 0.638729 0.769432i \(-0.279460\pi\)
0.638729 + 0.769432i \(0.279460\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.936564i 0.0407974i
\(528\) 0 0
\(529\) −20.6205 −0.896545
\(530\) 0 0
\(531\) 13.9163i 0.603916i
\(532\) 0 0
\(533\) −6.20029 + 2.54232i −0.268564 + 0.110120i
\(534\) 0 0
\(535\) 24.4685i 1.05786i
\(536\) 0 0
\(537\) 16.2269 0.700244
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.5235i 0.538425i −0.963081 0.269213i \(-0.913237\pi\)
0.963081 0.269213i \(-0.0867634\pi\)
\(542\) 0 0
\(543\) −21.0247 −0.902258
\(544\) 0 0
\(545\) 81.0062 3.46992
\(546\) 0 0
\(547\) −25.0456 −1.07087 −0.535436 0.844576i \(-0.679853\pi\)
−0.535436 + 0.844576i \(0.679853\pi\)
\(548\) 0 0
\(549\) 5.27829 0.225272
\(550\) 0 0
\(551\) 0.125644i 0.00535261i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.457452 −0.0194178
\(556\) 0 0
\(557\) 23.9883i 1.01642i −0.861234 0.508209i \(-0.830308\pi\)
0.861234 0.508209i \(-0.169692\pi\)
\(558\) 0 0
\(559\) 1.63213 + 3.98049i 0.0690318 + 0.168357i
\(560\) 0 0
\(561\) 0.933237i 0.0394013i
\(562\) 0 0
\(563\) −9.97888 −0.420559 −0.210280 0.977641i \(-0.567437\pi\)
−0.210280 + 0.977641i \(0.567437\pi\)
\(564\) 0 0
\(565\) 67.0180i 2.81947i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.6474 −0.488283 −0.244141 0.969740i \(-0.578506\pi\)
−0.244141 + 0.969740i \(0.578506\pi\)
\(570\) 0 0
\(571\) 11.7887 0.493342 0.246671 0.969099i \(-0.420663\pi\)
0.246671 + 0.969099i \(0.420663\pi\)
\(572\) 0 0
\(573\) 22.8686 0.955348
\(574\) 0 0
\(575\) −18.5597 −0.773992
\(576\) 0 0
\(577\) 30.5253i 1.27078i −0.772189 0.635392i \(-0.780838\pi\)
0.772189 0.635392i \(-0.219162\pi\)
\(578\) 0 0
\(579\) 21.2575i 0.883433i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 59.2776i 2.45503i
\(584\) 0 0
\(585\) 13.7676 5.64515i 0.569219 0.233398i
\(586\) 0 0
\(587\) 9.85549i 0.406780i −0.979098 0.203390i \(-0.934804\pi\)
0.979098 0.203390i \(-0.0651959\pi\)
\(588\) 0 0
\(589\) 3.94865 0.162701
\(590\) 0 0
\(591\) 18.0759i 0.743542i
\(592\) 0 0
\(593\) 5.73731i 0.235603i 0.993037 + 0.117802i \(0.0375847\pi\)
−0.993037 + 0.117802i \(0.962415\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.06397 0.289109
\(598\) 0 0
\(599\) −34.9923 −1.42975 −0.714873 0.699254i \(-0.753516\pi\)
−0.714873 + 0.699254i \(0.753516\pi\)
\(600\) 0 0
\(601\) −12.9037 −0.526354 −0.263177 0.964748i \(-0.584770\pi\)
−0.263177 + 0.964748i \(0.584770\pi\)
\(602\) 0 0
\(603\) 11.7243i 0.477452i
\(604\) 0 0
\(605\) 50.9062i 2.06963i
\(606\) 0 0
\(607\) −19.0867 −0.774704 −0.387352 0.921932i \(-0.626610\pi\)
−0.387352 + 0.921932i \(0.626610\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −32.6573 + 13.3905i −1.32117 + 0.541723i
\(612\) 0 0
\(613\) 5.60592i 0.226421i 0.993571 + 0.113210i \(0.0361134\pi\)
−0.993571 + 0.113210i \(0.963887\pi\)
\(614\) 0 0
\(615\) 7.67036 0.309299
\(616\) 0 0
\(617\) 28.9162i 1.16412i −0.813146 0.582060i \(-0.802247\pi\)
0.813146 0.582060i \(-0.197753\pi\)
\(618\) 0 0
\(619\) 14.8927i 0.598589i −0.954161 0.299295i \(-0.903249\pi\)
0.954161 0.299295i \(-0.0967513\pi\)
\(620\) 0 0
\(621\) 1.54255 0.0619003
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 59.6059 2.38424
\(626\) 0 0
\(627\) −3.93462 −0.157134
\(628\) 0 0
\(629\) 0.0214142i 0.000853842i
\(630\) 0 0
\(631\) 12.2217i 0.486539i −0.969959 0.243269i \(-0.921780\pi\)
0.969959 0.243269i \(-0.0782199\pi\)
\(632\) 0 0
\(633\) 19.3472 0.768980
\(634\) 0 0
\(635\) 6.65146i 0.263955i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.22059i 0.166964i
\(640\) 0 0
\(641\) −23.4463 −0.926072 −0.463036 0.886339i \(-0.653240\pi\)
−0.463036 + 0.886339i \(0.653240\pi\)
\(642\) 0 0
\(643\) 19.7831i 0.780171i 0.920779 + 0.390085i \(0.127555\pi\)
−0.920779 + 0.390085i \(0.872445\pi\)
\(644\) 0 0
\(645\) 4.92426i 0.193893i
\(646\) 0 0
\(647\) −26.1559 −1.02829 −0.514147 0.857702i \(-0.671891\pi\)
−0.514147 + 0.857702i \(0.671891\pi\)
\(648\) 0 0
\(649\) −67.2246 −2.63879
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.54225 0.0994860 0.0497430 0.998762i \(-0.484160\pi\)
0.0497430 + 0.998762i \(0.484160\pi\)
\(654\) 0 0
\(655\) 77.9571i 3.04604i
\(656\) 0 0
\(657\) 3.21883i 0.125578i
\(658\) 0 0
\(659\) 16.6064 0.646893 0.323447 0.946246i \(-0.395158\pi\)
0.323447 + 0.946246i \(0.395158\pi\)
\(660\) 0 0
\(661\) 17.7062i 0.688691i −0.938843 0.344345i \(-0.888101\pi\)
0.938843 0.344345i \(-0.111899\pi\)
\(662\) 0 0
\(663\) −0.264261 0.644488i −0.0102630 0.0250298i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.237948 0.00921337
\(668\) 0 0
\(669\) 14.4868i 0.560090i
\(670\) 0 0
\(671\) 25.4975i 0.984319i
\(672\) 0 0
\(673\) −36.7173 −1.41535 −0.707675 0.706538i \(-0.750256\pi\)
−0.707675 + 0.706538i \(0.750256\pi\)
\(674\) 0 0
\(675\) −12.0318 −0.463106
\(676\) 0 0
\(677\) −46.4770 −1.78626 −0.893128 0.449802i \(-0.851494\pi\)
−0.893128 + 0.449802i \(0.851494\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 18.3930i 0.704822i
\(682\) 0 0
\(683\) 25.5317i 0.976943i 0.872580 + 0.488471i \(0.162445\pi\)
−0.872580 + 0.488471i \(0.837555\pi\)
\(684\) 0 0
\(685\) 3.29040 0.125720
\(686\) 0 0
\(687\) 22.5750i 0.861289i
\(688\) 0 0
\(689\) 16.7854 + 40.9368i 0.639472 + 1.55957i
\(690\) 0 0
\(691\) 11.7853i 0.448335i 0.974551 + 0.224168i \(0.0719664\pi\)
−0.974551 + 0.224168i \(0.928034\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 73.4868i 2.78751i
\(696\) 0 0
\(697\) 0.359065i 0.0136006i
\(698\) 0 0
\(699\) −20.6432 −0.780799
\(700\) 0 0
\(701\) 35.6275 1.34563 0.672816 0.739810i \(-0.265085\pi\)
0.672816 + 0.739810i \(0.265085\pi\)
\(702\) 0 0
\(703\) 0.0902846 0.00340515
\(704\) 0 0
\(705\) 40.4002 1.52156
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 29.3408i 1.10192i −0.834532 0.550959i \(-0.814262\pi\)
0.834532 0.550959i \(-0.185738\pi\)
\(710\) 0 0
\(711\) −11.7286 −0.439858
\(712\) 0 0
\(713\) 7.47805i 0.280055i
\(714\) 0 0
\(715\) −27.2697 66.5061i −1.01983 2.48719i
\(716\) 0 0
\(717\) 2.81923i 0.105286i
\(718\) 0 0
\(719\) −38.7372 −1.44465 −0.722327 0.691552i \(-0.756927\pi\)
−0.722327 + 0.691552i \(0.756927\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 22.2639i 0.828002i
\(724\) 0 0
\(725\) −1.85599 −0.0689296
\(726\) 0 0
\(727\) 13.3601 0.495498 0.247749 0.968824i \(-0.420309\pi\)
0.247749 + 0.968824i \(0.420309\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −0.230514 −0.00852588
\(732\) 0 0
\(733\) 10.9874i 0.405831i 0.979196 + 0.202915i \(0.0650416\pi\)
−0.979196 + 0.202915i \(0.934958\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −56.6360 −2.08621
\(738\) 0 0
\(739\) 0.816338i 0.0300295i 0.999887 + 0.0150147i \(0.00477952\pi\)
−0.999887 + 0.0150147i \(0.995220\pi\)
\(740\) 0 0
\(741\) −2.71723 + 1.11415i −0.0998198 + 0.0409293i
\(742\) 0 0
\(743\) 11.1384i 0.408628i 0.978905 + 0.204314i \(0.0654964\pi\)
−0.978905 + 0.204314i \(0.934504\pi\)
\(744\) 0 0
\(745\) −67.0703 −2.45727
\(746\) 0 0
\(747\) 2.65589i 0.0971740i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.64006 0.169318 0.0846591 0.996410i \(-0.473020\pi\)
0.0846591 + 0.996410i \(0.473020\pi\)
\(752\) 0 0
\(753\) −23.5673 −0.858840
\(754\) 0 0
\(755\) −53.3151 −1.94034
\(756\) 0 0
\(757\) −18.7608 −0.681872 −0.340936 0.940087i \(-0.610744\pi\)
−0.340936 + 0.940087i \(0.610744\pi\)
\(758\) 0 0
\(759\) 7.45149i 0.270472i
\(760\) 0 0
\(761\) 13.4331i 0.486949i 0.969907 + 0.243475i \(0.0782873\pi\)
−0.969907 + 0.243475i \(0.921713\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.797294i 0.0288262i
\(766\) 0 0
\(767\) −46.4249 + 19.0357i −1.67630 + 0.687339i
\(768\) 0 0
\(769\) 41.4834i 1.49593i 0.663738 + 0.747965i \(0.268969\pi\)
−0.663738 + 0.747965i \(0.731031\pi\)
\(770\) 0 0
\(771\) 9.30822 0.335227
\(772\) 0 0
\(773\) 1.33968i 0.0481850i 0.999710 + 0.0240925i \(0.00766962\pi\)
−0.999710 + 0.0240925i \(0.992330\pi\)
\(774\) 0 0
\(775\) 58.3286i 2.09523i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.51385 −0.0542395
\(780\) 0 0
\(781\) −20.3881 −0.729544
\(782\) 0 0
\(783\) 0.154256 0.00551267
\(784\) 0 0
\(785\) 67.7653i 2.41865i
\(786\) 0 0
\(787\) 23.8962i 0.851808i 0.904768 + 0.425904i \(0.140044\pi\)
−0.904768 + 0.425904i \(0.859956\pi\)
\(788\) 0 0
\(789\) 17.4182 0.620105
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.22001 17.6084i −0.256390 0.625292i
\(794\) 0 0
\(795\) 50.6428i 1.79611i
\(796\) 0 0
\(797\) 48.8615 1.73076 0.865382 0.501113i \(-0.167076\pi\)
0.865382 + 0.501113i \(0.167076\pi\)
\(798\) 0 0
\(799\) 1.89122i 0.0669064i
\(800\) 0 0
\(801\) 4.95870i 0.175207i
\(802\) 0 0
\(803\) −15.5490 −0.548711
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 4.59390 0.161713
\(808\) 0 0
\(809\) −7.61128 −0.267598 −0.133799 0.991008i \(-0.542718\pi\)
−0.133799 + 0.991008i \(0.542718\pi\)
\(810\) 0 0
\(811\) 45.4292i 1.59523i −0.603165 0.797617i \(-0.706094\pi\)
0.603165 0.797617i \(-0.293906\pi\)
\(812\) 0 0
\(813\) 8.76247i 0.307313i
\(814\) 0 0
\(815\) 85.5456 2.99653
\(816\) 0 0
\(817\) 0.971872i 0.0340015i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.28735i 0.114729i 0.998353 + 0.0573647i \(0.0182698\pi\)
−0.998353 + 0.0573647i \(0.981730\pi\)
\(822\) 0 0
\(823\) 31.1197 1.08477 0.542383 0.840131i \(-0.317522\pi\)
0.542383 + 0.840131i \(0.317522\pi\)
\(824\) 0 0
\(825\) 58.1214i 2.02353i
\(826\) 0 0
\(827\) 25.6551i 0.892116i 0.895004 + 0.446058i \(0.147173\pi\)
−0.895004 + 0.446058i \(0.852827\pi\)
\(828\) 0 0
\(829\) 41.1629 1.42965 0.714824 0.699305i \(-0.246507\pi\)
0.714824 + 0.699305i \(0.246507\pi\)
\(830\) 0 0
\(831\) −12.7267 −0.441485
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 29.9817 1.03756
\(836\) 0 0
\(837\) 4.84786i 0.167566i
\(838\) 0 0
\(839\) 23.9529i 0.826946i −0.910516 0.413473i \(-0.864316\pi\)
0.910516 0.413473i \(-0.135684\pi\)
\(840\) 0 0
\(841\) −28.9762 −0.999179
\(842\) 0 0
\(843\) 22.4986i 0.774892i
\(844\) 0 0
\(845\) −37.6645 38.2069i −1.29570 1.31436i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.16828 0.0744153
\(850\) 0 0
\(851\) 0.170983i 0.00586123i
\(852\) 0 0
\(853\) 22.4638i 0.769145i −0.923095 0.384572i \(-0.874349\pi\)
0.923095 0.384572i \(-0.125651\pi\)
\(854\) 0 0
\(855\) 3.36147 0.114960
\(856\) 0 0
\(857\) 0.0732746 0.00250301 0.00125151 0.999999i \(-0.499602\pi\)
0.00125151 + 0.999999i \(0.499602\pi\)
\(858\) 0 0
\(859\) −33.4606 −1.14166 −0.570830 0.821068i \(-0.693379\pi\)
−0.570830 + 0.821068i \(0.693379\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.0761i 0.853601i −0.904346 0.426800i \(-0.859641\pi\)
0.904346 0.426800i \(-0.140359\pi\)
\(864\) 0 0
\(865\) 34.8087i 1.18353i
\(866\) 0 0
\(867\) −16.9627 −0.576083
\(868\) 0 0
\(869\) 56.6568i 1.92195i
\(870\) 0 0
\(871\) −39.1124 + 16.0374i −1.32527 + 0.543405i
\(872\) 0 0
\(873\) 3.13454i 0.106088i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.7700i 0.566282i 0.959078 + 0.283141i \(0.0913764\pi\)
−0.959078 + 0.283141i \(0.908624\pi\)
\(878\) 0 0
\(879\) 26.7146i 0.901061i
\(880\) 0 0
\(881\) −18.0174 −0.607023 −0.303511 0.952828i \(-0.598159\pi\)
−0.303511 + 0.952828i \(0.598159\pi\)
\(882\) 0 0
\(883\) −22.5443 −0.758676 −0.379338 0.925258i \(-0.623848\pi\)
−0.379338 + 0.925258i \(0.623848\pi\)
\(884\) 0 0
\(885\) 57.4321 1.93056
\(886\) 0 0
\(887\) 13.0249 0.437334 0.218667 0.975800i \(-0.429829\pi\)
0.218667 + 0.975800i \(0.429829\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.83063i 0.161832i
\(892\) 0 0
\(893\) −7.97356 −0.266825
\(894\) 0 0
\(895\) 66.9680i 2.23849i
\(896\) 0 0
\(897\) −2.11000 5.14595i −0.0704510 0.171818i
\(898\) 0 0
\(899\) 0.747812i 0.0249409i
\(900\) 0 0
\(901\) −2.37069 −0.0789791
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 86.7684i 2.88428i
\(906\) 0 0
\(907\) −25.7356 −0.854536 −0.427268 0.904125i \(-0.640524\pi\)
−0.427268 + 0.904125i \(0.640524\pi\)
\(908\) 0 0
\(909\) −3.50361 −0.116207
\(910\) 0 0
\(911\) 30.1342 0.998392 0.499196 0.866489i \(-0.333629\pi\)
0.499196 + 0.866489i \(0.333629\pi\)
\(912\) 0 0
\(913\) −12.8296 −0.424599
\(914\) 0 0
\(915\) 21.7833i 0.720134i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −57.7884 −1.90626 −0.953131 0.302558i \(-0.902160\pi\)
−0.953131 + 0.302558i \(0.902160\pi\)
\(920\) 0 0
\(921\) 14.5710i 0.480132i
\(922\) 0 0
\(923\) −14.0799 + 5.77322i −0.463446 + 0.190028i
\(924\) 0 0
\(925\) 1.33367i 0.0438506i
\(926\) 0 0
\(927\) 12.6114 0.414213
\(928\) 0 0
\(929\) 3.97293i 0.130348i 0.997874 + 0.0651739i \(0.0207602\pi\)
−0.997874 + 0.0651739i \(0.979240\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 24.3933 0.798601
\(934\) 0 0
\(935\) 3.85144 0.125955
\(936\) 0 0
\(937\) −14.0852 −0.460144 −0.230072 0.973174i \(-0.573896\pi\)
−0.230072 + 0.973174i \(0.573896\pi\)
\(938\) 0 0
\(939\) 29.8134 0.972925
\(940\) 0 0
\(941\) 1.59542i 0.0520093i 0.999662 + 0.0260046i \(0.00827847\pi\)
−0.999662 + 0.0260046i \(0.991722\pi\)
\(942\) 0 0
\(943\) 2.86697i 0.0933615i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.15606i 0.0700625i 0.999386 + 0.0350312i \(0.0111531\pi\)
−0.999386 + 0.0350312i \(0.988847\pi\)
\(948\) 0 0
\(949\) −10.7380 + 4.40293i −0.348571 + 0.142925i
\(950\) 0 0
\(951\) 2.87841i 0.0933390i
\(952\) 0 0
\(953\) −34.4024 −1.11440 −0.557202 0.830377i \(-0.688125\pi\)
−0.557202 + 0.830377i \(0.688125\pi\)
\(954\) 0 0
\(955\) 94.3778i 3.05399i
\(956\) 0 0
\(957\) 0.745156i 0.0240875i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 7.49830 0.241881
\(962\) 0 0
\(963\) −5.92893 −0.191057
\(964\) 0 0
\(965\) 87.7291 2.82410
\(966\) 0 0
\(967\) 41.1646i 1.32376i −0.749609 0.661881i \(-0.769758\pi\)
0.749609 0.661881i \(-0.230242\pi\)
\(968\) 0 0
\(969\) 0.157357i 0.00505504i
\(970\) 0 0
\(971\) 11.3335 0.363711 0.181855 0.983325i \(-0.441790\pi\)
0.181855 + 0.983325i \(0.441790\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 16.4580 + 40.1383i 0.527077 + 1.28545i
\(976\) 0 0
\(977\) 12.5784i 0.402420i 0.979548 + 0.201210i \(0.0644874\pi\)
−0.979548 + 0.201210i \(0.935513\pi\)
\(978\) 0 0
\(979\) 23.9537 0.765563
\(980\) 0 0
\(981\) 19.6285i 0.626690i
\(982\) 0 0
\(983\) 6.84841i 0.218430i −0.994018 0.109215i \(-0.965166\pi\)
0.994018 0.109215i \(-0.0348338\pi\)
\(984\) 0 0
\(985\) −74.5985 −2.37691
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.84055 −0.0585262
\(990\) 0 0
\(991\) 18.0689 0.573977 0.286989 0.957934i \(-0.407346\pi\)
0.286989 + 0.957934i \(0.407346\pi\)
\(992\) 0 0
\(993\) 27.6607i 0.877787i
\(994\) 0 0
\(995\) 29.1528i 0.924205i
\(996\) 0 0
\(997\) 42.0210 1.33082 0.665409 0.746479i \(-0.268257\pi\)
0.665409 + 0.746479i \(0.268257\pi\)
\(998\) 0 0
\(999\) 0.110845i 0.00350697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7644.2.e.o.4705.10 10
7.2 even 3 1092.2.cu.c.25.10 yes 20
7.4 even 3 1092.2.cu.c.961.1 yes 20
7.6 odd 2 7644.2.e.n.4705.1 10
13.12 even 2 inner 7644.2.e.o.4705.1 10
21.2 odd 6 3276.2.gv.g.1117.1 20
21.11 odd 6 3276.2.gv.g.2053.10 20
91.25 even 6 1092.2.cu.c.961.10 yes 20
91.51 even 6 1092.2.cu.c.25.1 20
91.90 odd 2 7644.2.e.n.4705.10 10
273.116 odd 6 3276.2.gv.g.2053.1 20
273.233 odd 6 3276.2.gv.g.1117.10 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.cu.c.25.1 20 91.51 even 6
1092.2.cu.c.25.10 yes 20 7.2 even 3
1092.2.cu.c.961.1 yes 20 7.4 even 3
1092.2.cu.c.961.10 yes 20 91.25 even 6
3276.2.gv.g.1117.1 20 21.2 odd 6
3276.2.gv.g.1117.10 20 273.233 odd 6
3276.2.gv.g.2053.1 20 273.116 odd 6
3276.2.gv.g.2053.10 20 21.11 odd 6
7644.2.e.n.4705.1 10 7.6 odd 2
7644.2.e.n.4705.10 10 91.90 odd 2
7644.2.e.o.4705.1 10 13.12 even 2 inner
7644.2.e.o.4705.10 10 1.1 even 1 trivial