Properties

Label 3276.2.gv.g.2053.1
Level $3276$
Weight $2$
Character 3276.2053
Analytic conductor $26.159$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3276,2,Mod(1117,3276)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3276.1117"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3276, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.gv (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0,0,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 4 x^{18} - 108 x^{16} - 975 x^{14} + 2955 x^{12} + 75510 x^{10} + 144795 x^{8} + \cdots + 282475249 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1092)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2053.1
Root \(-2.61286 + 0.415868i\) of defining polynomial
Character \(\chi\) \(=\) 3276.2053
Dual form 3276.2.gv.g.1117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.57406 - 2.06348i) q^{5} +(-0.946280 + 2.47074i) q^{7} +(-4.18345 + 2.41532i) q^{11} +(-1.36787 + 3.33601i) q^{13} +(0.0965957 + 0.167309i) q^{17} +(-0.705391 - 0.407257i) q^{19} +(0.771274 - 1.33589i) q^{23} +(6.01592 + 10.4199i) q^{25} -0.154256 q^{29} +(-4.19837 + 2.42393i) q^{31} +(8.48038 - 6.87793i) q^{35} +(0.0959943 + 0.0554223i) q^{37} -1.85860i q^{41} -1.19319 q^{43} +(8.47781 + 4.89467i) q^{47} +(-5.20911 - 4.67602i) q^{49} +(-6.13559 - 10.6272i) q^{53} +19.9359 q^{55} +(-12.0519 + 6.95815i) q^{59} +(-2.63914 + 4.57113i) q^{61} +(11.7726 - 9.10050i) q^{65} +(10.1536 - 5.86217i) q^{67} -4.22059i q^{71} +(2.78758 - 1.60941i) q^{73} +(-2.00891 - 12.6218i) q^{77} +(5.86432 - 10.1573i) q^{79} -2.65589i q^{83} -0.797294i q^{85} +(-4.29436 - 2.47935i) q^{89} +(-6.94801 - 6.53644i) q^{91} +(1.68074 + 2.91112i) q^{95} -3.13454i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{13} - 4 q^{17} - 8 q^{23} + 24 q^{25} + 4 q^{29} + 38 q^{35} - 12 q^{43} + 4 q^{49} + 24 q^{53} - 24 q^{55} + 12 q^{65} - 26 q^{77} - 6 q^{79} - 7 q^{91} - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.57406 2.06348i −1.59837 0.922817i −0.991802 0.127783i \(-0.959214\pi\)
−0.606564 0.795034i \(-0.707453\pi\)
\(6\) 0 0
\(7\) −0.946280 + 2.47074i −0.357660 + 0.933852i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.18345 + 2.41532i −1.26136 + 0.728246i −0.973337 0.229378i \(-0.926331\pi\)
−0.288021 + 0.957624i \(0.592997\pi\)
\(12\) 0 0
\(13\) −1.36787 + 3.33601i −0.379379 + 0.925241i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.0965957 + 0.167309i 0.0234279 + 0.0405783i 0.877502 0.479574i \(-0.159209\pi\)
−0.854074 + 0.520152i \(0.825875\pi\)
\(18\) 0 0
\(19\) −0.705391 0.407257i −0.161828 0.0934313i 0.416899 0.908953i \(-0.363117\pi\)
−0.578727 + 0.815522i \(0.696450\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.771274 1.33589i 0.160822 0.278551i −0.774342 0.632767i \(-0.781919\pi\)
0.935164 + 0.354216i \(0.115252\pi\)
\(24\) 0 0
\(25\) 6.01592 + 10.4199i 1.20318 + 2.08398i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.154256 −0.0286447 −0.0143223 0.999897i \(-0.504559\pi\)
−0.0143223 + 0.999897i \(0.504559\pi\)
\(30\) 0 0
\(31\) −4.19837 + 2.42393i −0.754049 + 0.435350i −0.827155 0.561974i \(-0.810042\pi\)
0.0731062 + 0.997324i \(0.476709\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.48038 6.87793i 1.43345 1.16258i
\(36\) 0 0
\(37\) 0.0959943 + 0.0554223i 0.0157814 + 0.00911138i 0.507870 0.861434i \(-0.330433\pi\)
−0.492089 + 0.870545i \(0.663766\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.85860i 0.290264i −0.989412 0.145132i \(-0.953639\pi\)
0.989412 0.145132i \(-0.0463607\pi\)
\(42\) 0 0
\(43\) −1.19319 −0.181960 −0.0909800 0.995853i \(-0.529000\pi\)
−0.0909800 + 0.995853i \(0.529000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.47781 + 4.89467i 1.23662 + 0.713961i 0.968401 0.249398i \(-0.0802329\pi\)
0.268215 + 0.963359i \(0.413566\pi\)
\(48\) 0 0
\(49\) −5.20911 4.67602i −0.744159 0.668003i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.13559 10.6272i −0.842789 1.45975i −0.887528 0.460754i \(-0.847579\pi\)
0.0447390 0.998999i \(-0.485754\pi\)
\(54\) 0 0
\(55\) 19.9359 2.68815
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.0519 + 6.95815i −1.56902 + 0.905874i −0.572736 + 0.819740i \(0.694118\pi\)
−0.996284 + 0.0861342i \(0.972549\pi\)
\(60\) 0 0
\(61\) −2.63914 + 4.57113i −0.337908 + 0.585273i −0.984039 0.177953i \(-0.943053\pi\)
0.646131 + 0.763226i \(0.276386\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 11.7726 9.10050i 1.46022 1.12878i
\(66\) 0 0
\(67\) 10.1536 5.86217i 1.24046 0.716178i 0.271269 0.962504i \(-0.412557\pi\)
0.969187 + 0.246326i \(0.0792233\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.22059i 0.500892i −0.968131 0.250446i \(-0.919423\pi\)
0.968131 0.250446i \(-0.0805772\pi\)
\(72\) 0 0
\(73\) 2.78758 1.60941i 0.326262 0.188368i −0.327918 0.944706i \(-0.606347\pi\)
0.654180 + 0.756339i \(0.273014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00891 12.6218i −0.228936 1.43839i
\(78\) 0 0
\(79\) 5.86432 10.1573i 0.659788 1.14279i −0.320883 0.947119i \(-0.603980\pi\)
0.980670 0.195667i \(-0.0626871\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.65589i 0.291522i −0.989320 0.145761i \(-0.953437\pi\)
0.989320 0.145761i \(-0.0465630\pi\)
\(84\) 0 0
\(85\) 0.797294i 0.0864787i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.29436 2.47935i −0.455201 0.262811i 0.254823 0.966988i \(-0.417983\pi\)
−0.710024 + 0.704177i \(0.751316\pi\)
\(90\) 0 0
\(91\) −6.94801 6.53644i −0.728350 0.685205i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.68074 + 2.91112i 0.172440 + 0.298675i
\(96\) 0 0
\(97\) 3.13454i 0.318265i −0.987257 0.159132i \(-0.949130\pi\)
0.987257 0.159132i \(-0.0508697\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.75181 3.03422i −0.174311 0.301916i 0.765611 0.643303i \(-0.222437\pi\)
−0.939923 + 0.341387i \(0.889103\pi\)
\(102\) 0 0
\(103\) −6.30571 + 10.9218i −0.621320 + 1.07616i 0.367921 + 0.929857i \(0.380070\pi\)
−0.989240 + 0.146300i \(0.953264\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.96447 + 5.13460i −0.286586 + 0.496381i −0.972992 0.230837i \(-0.925854\pi\)
0.686407 + 0.727218i \(0.259187\pi\)
\(108\) 0 0
\(109\) 16.9988 9.81425i 1.62819 0.940035i 0.643555 0.765399i \(-0.277459\pi\)
0.984633 0.174636i \(-0.0558748\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.2391 1.52764 0.763821 0.645428i \(-0.223321\pi\)
0.763821 + 0.645428i \(0.223321\pi\)
\(114\) 0 0
\(115\) −5.51315 + 3.18302i −0.514104 + 0.296818i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.504783 + 0.0803421i −0.0462734 + 0.00736495i
\(120\) 0 0
\(121\) 6.16752 10.6825i 0.560683 0.971132i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 29.0201i 2.59564i
\(126\) 0 0
\(127\) −1.61171 −0.143016 −0.0715080 0.997440i \(-0.522781\pi\)
−0.0715080 + 0.997440i \(0.522781\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.44485 + 16.3590i −0.825200 + 1.42929i 0.0765658 + 0.997065i \(0.475604\pi\)
−0.901766 + 0.432224i \(0.857729\pi\)
\(132\) 0 0
\(133\) 1.67372 1.35746i 0.145130 0.117706i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −0.690477 + 0.398647i −0.0589914 + 0.0340587i −0.529206 0.848494i \(-0.677510\pi\)
0.470214 + 0.882552i \(0.344177\pi\)
\(138\) 0 0
\(139\) 17.8065 1.51033 0.755164 0.655536i \(-0.227557\pi\)
0.755164 + 0.655536i \(0.227557\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.33509 17.2599i −0.195270 1.44334i
\(144\) 0 0
\(145\) 0.551320 + 0.318305i 0.0457847 + 0.0264338i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.0744 8.12586i −1.15302 0.665697i −0.203399 0.979096i \(-0.565199\pi\)
−0.949621 + 0.313399i \(0.898532\pi\)
\(150\) 0 0
\(151\) −11.1879 + 6.45937i −0.910462 + 0.525656i −0.880580 0.473898i \(-0.842847\pi\)
−0.0298825 + 0.999553i \(0.509513\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 20.0069 1.60700
\(156\) 0 0
\(157\) −8.21006 14.2202i −0.655234 1.13490i −0.981835 0.189737i \(-0.939236\pi\)
0.326600 0.945162i \(-0.394097\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.57079 + 3.16974i 0.202606 + 0.249810i
\(162\) 0 0
\(163\) −17.9514 10.3642i −1.40606 0.811789i −0.411054 0.911611i \(-0.634839\pi\)
−0.995005 + 0.0998224i \(0.968173\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.26484i 0.562170i −0.959683 0.281085i \(-0.909306\pi\)
0.959683 0.281085i \(-0.0906943\pi\)
\(168\) 0 0
\(169\) −9.25787 9.12644i −0.712143 0.702034i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.21723 7.30445i 0.320630 0.555347i −0.659988 0.751276i \(-0.729439\pi\)
0.980618 + 0.195929i \(0.0627721\pi\)
\(174\) 0 0
\(175\) −31.4375 + 5.00365i −2.37646 + 0.378241i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.11347 + 14.0529i 0.606429 + 1.05037i 0.991824 + 0.127614i \(0.0407320\pi\)
−0.385395 + 0.922752i \(0.625935\pi\)
\(180\) 0 0
\(181\) −21.0247 −1.56276 −0.781378 0.624058i \(-0.785483\pi\)
−0.781378 + 0.624058i \(0.785483\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.228726 0.396165i −0.0168163 0.0291266i
\(186\) 0 0
\(187\) −0.808207 0.466619i −0.0591020 0.0341225i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.4343 19.8048i 0.827356 1.43302i −0.0727493 0.997350i \(-0.523177\pi\)
0.900105 0.435672i \(-0.143489\pi\)
\(192\) 0 0
\(193\) 18.4096 10.6288i 1.32515 0.765076i 0.340605 0.940207i \(-0.389368\pi\)
0.984545 + 0.175131i \(0.0560349\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0759i 1.28785i 0.765087 + 0.643927i \(0.222696\pi\)
−0.765087 + 0.643927i \(0.777304\pi\)
\(198\) 0 0
\(199\) −3.53199 6.11758i −0.250376 0.433664i 0.713253 0.700906i \(-0.247221\pi\)
−0.963629 + 0.267243i \(0.913888\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.145970 0.381127i 0.0102451 0.0267499i
\(204\) 0 0
\(205\) −3.83518 + 6.64273i −0.267861 + 0.463948i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.93462 0.272164
\(210\) 0 0
\(211\) 19.3472 1.33191 0.665956 0.745991i \(-0.268024\pi\)
0.665956 + 0.745991i \(0.268024\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.26453 + 2.46213i 0.290839 + 0.167916i
\(216\) 0 0
\(217\) −2.01607 12.6668i −0.136860 0.859877i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.690273 + 0.0933874i −0.0464328 + 0.00628191i
\(222\) 0 0
\(223\) 14.4868i 0.970105i −0.874485 0.485052i \(-0.838801\pi\)
0.874485 0.485052i \(-0.161199\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9288 9.19651i 1.05723 0.610394i 0.132567 0.991174i \(-0.457678\pi\)
0.924666 + 0.380780i \(0.124345\pi\)
\(228\) 0 0
\(229\) −19.5505 11.2875i −1.29193 0.745898i −0.312937 0.949774i \(-0.601313\pi\)
−0.978997 + 0.203876i \(0.934646\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.3216 + 17.8776i −0.676192 + 1.17120i 0.299927 + 0.953962i \(0.403038\pi\)
−0.976119 + 0.217237i \(0.930296\pi\)
\(234\) 0 0
\(235\) −20.2001 34.9876i −1.31771 2.28234i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.81923i 0.182361i −0.995834 0.0911805i \(-0.970936\pi\)
0.995834 0.0911805i \(-0.0290640\pi\)
\(240\) 0 0
\(241\) 19.2811 11.1319i 1.24200 0.717070i 0.272501 0.962156i \(-0.412149\pi\)
0.969502 + 0.245085i \(0.0788159\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.96877 + 27.4613i 0.572993 + 1.75444i
\(246\) 0 0
\(247\) 2.32350 1.79611i 0.147840 0.114284i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 23.5673 1.48755 0.743777 0.668428i \(-0.233032\pi\)
0.743777 + 0.668428i \(0.233032\pi\)
\(252\) 0 0
\(253\) 7.45149i 0.468471i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.65411 8.06115i 0.290315 0.502841i −0.683569 0.729886i \(-0.739573\pi\)
0.973884 + 0.227045i \(0.0729065\pi\)
\(258\) 0 0
\(259\) −0.227772 + 0.184732i −0.0141530 + 0.0114787i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 8.70911 + 15.0846i 0.537027 + 0.930158i 0.999062 + 0.0432962i \(0.0137859\pi\)
−0.462036 + 0.886861i \(0.652881\pi\)
\(264\) 0 0
\(265\) 50.6428i 3.11096i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.29695 + 3.97843i 0.140047 + 0.242569i 0.927514 0.373788i \(-0.121941\pi\)
−0.787467 + 0.616357i \(0.788608\pi\)
\(270\) 0 0
\(271\) 7.58853 + 4.38124i 0.460970 + 0.266141i 0.712452 0.701721i \(-0.247585\pi\)
−0.251482 + 0.967862i \(0.580918\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −50.3346 29.0607i −3.03529 1.75243i
\(276\) 0 0
\(277\) 6.36337 + 11.0217i 0.382338 + 0.662228i 0.991396 0.130897i \(-0.0417858\pi\)
−0.609058 + 0.793125i \(0.708452\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.4986i 1.34215i 0.741388 + 0.671076i \(0.234168\pi\)
−0.741388 + 0.671076i \(0.765832\pi\)
\(282\) 0 0
\(283\) −1.08414 1.87779i −0.0644455 0.111623i 0.832002 0.554772i \(-0.187195\pi\)
−0.896448 + 0.443149i \(0.853861\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.59211 + 1.75875i 0.271064 + 0.103816i
\(288\) 0 0
\(289\) 8.48134 14.6901i 0.498902 0.864124i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 26.7146i 1.56068i −0.625353 0.780342i \(-0.715045\pi\)
0.625353 0.780342i \(-0.284955\pi\)
\(294\) 0 0
\(295\) 57.4321 3.34382
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.40152 + 4.40029i 0.196715 + 0.254475i
\(300\) 0 0
\(301\) 1.12909 2.94807i 0.0650798 0.169924i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 18.8649 10.8917i 1.08020 0.623654i
\(306\) 0 0
\(307\) 14.5710i 0.831613i 0.909453 + 0.415806i \(0.136501\pi\)
−0.909453 + 0.415806i \(0.863499\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.1967 + 21.1252i 0.691609 + 1.19790i 0.971311 + 0.237815i \(0.0764311\pi\)
−0.279702 + 0.960087i \(0.590236\pi\)
\(312\) 0 0
\(313\) −14.9067 + 25.8192i −0.842578 + 1.45939i 0.0451307 + 0.998981i \(0.485630\pi\)
−0.887708 + 0.460406i \(0.847704\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.49278 + 1.43921i 0.140008 + 0.0808339i 0.568368 0.822774i \(-0.307575\pi\)
−0.428360 + 0.903608i \(0.640908\pi\)
\(318\) 0 0
\(319\) 0.645324 0.372578i 0.0361312 0.0208603i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.157357i 0.00875559i
\(324\) 0 0
\(325\) −42.9898 + 5.81610i −2.38464 + 0.322619i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −20.1158 + 16.3147i −1.10902 + 0.899461i
\(330\) 0 0
\(331\) 23.9549 + 13.8304i 1.31668 + 0.760186i 0.983193 0.182568i \(-0.0584410\pi\)
0.333488 + 0.942754i \(0.391774\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −48.3859 −2.64361
\(336\) 0 0
\(337\) 12.7657 0.695390 0.347695 0.937608i \(-0.386964\pi\)
0.347695 + 0.937608i \(0.386964\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.7091 20.2808i 0.634084 1.09827i
\(342\) 0 0
\(343\) 16.4825 8.44553i 0.889972 0.456016i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5.90946 10.2355i −0.317237 0.549470i 0.662674 0.748908i \(-0.269422\pi\)
−0.979910 + 0.199438i \(0.936088\pi\)
\(348\) 0 0
\(349\) 3.23665i 0.173254i 0.996241 + 0.0866268i \(0.0276088\pi\)
−0.996241 + 0.0866268i \(0.972391\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.5940 + 14.7767i −1.36223 + 0.786485i −0.989921 0.141623i \(-0.954768\pi\)
−0.372312 + 0.928108i \(0.621435\pi\)
\(354\) 0 0
\(355\) −8.70911 + 15.0846i −0.462232 + 0.800609i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 22.7413 + 13.1297i 1.20024 + 0.692960i 0.960609 0.277904i \(-0.0896397\pi\)
0.239633 + 0.970864i \(0.422973\pi\)
\(360\) 0 0
\(361\) −9.16828 15.8799i −0.482541 0.835786i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.2840 −0.695315
\(366\) 0 0
\(367\) 2.77223 + 4.80164i 0.144709 + 0.250644i 0.929264 0.369415i \(-0.120442\pi\)
−0.784555 + 0.620059i \(0.787109\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 32.0629 5.10319i 1.66462 0.264945i
\(372\) 0 0
\(373\) 0.150644 0.260922i 0.00780003 0.0135100i −0.862099 0.506740i \(-0.830850\pi\)
0.869899 + 0.493230i \(0.164184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.211002 0.514600i 0.0108672 0.0265032i
\(378\) 0 0
\(379\) 13.2573i 0.680983i −0.940248 0.340491i \(-0.889407\pi\)
0.940248 0.340491i \(-0.110593\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −20.8564 12.0414i −1.06571 0.615288i −0.138704 0.990334i \(-0.544294\pi\)
−0.927006 + 0.375046i \(0.877627\pi\)
\(384\) 0 0
\(385\) −18.8649 + 49.2563i −0.961444 + 2.51033i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.33769 + 12.7093i 0.372036 + 0.644385i 0.989879 0.141917i \(-0.0453265\pi\)
−0.617843 + 0.786302i \(0.711993\pi\)
\(390\) 0 0
\(391\) 0.298007 0.0150709
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −41.9188 + 24.2018i −2.10916 + 1.21773i
\(396\) 0 0
\(397\) −3.98265 2.29938i −0.199883 0.115403i 0.396718 0.917941i \(-0.370149\pi\)
−0.596601 + 0.802538i \(0.703483\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.4198 + 10.0573i 0.869905 + 0.502240i 0.867317 0.497757i \(-0.165843\pi\)
0.00258811 + 0.999997i \(0.499176\pi\)
\(402\) 0 0
\(403\) −2.34342 17.3214i −0.116734 0.862840i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.535450 −0.0265413
\(408\) 0 0
\(409\) −13.6675 + 7.89091i −0.675812 + 0.390180i −0.798275 0.602293i \(-0.794254\pi\)
0.122463 + 0.992473i \(0.460921\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.78734 36.3614i −0.284776 1.78923i
\(414\) 0 0
\(415\) −5.48038 + 9.49230i −0.269021 + 0.465959i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.3544 0.994376 0.497188 0.867643i \(-0.334366\pi\)
0.497188 + 0.867643i \(0.334366\pi\)
\(420\) 0 0
\(421\) 24.9704i 1.21698i −0.793560 0.608492i \(-0.791775\pi\)
0.793560 0.608492i \(-0.208225\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.16222 + 2.01303i −0.0563761 + 0.0976463i
\(426\) 0 0
\(427\) −8.79671 10.8462i −0.425703 0.524885i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.1157 + 9.88175i −0.824434 + 0.475987i −0.851943 0.523634i \(-0.824576\pi\)
0.0275092 + 0.999622i \(0.491242\pi\)
\(432\) 0 0
\(433\) 26.1982 1.25901 0.629503 0.776998i \(-0.283259\pi\)
0.629503 + 0.776998i \(0.283259\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.08810 + 0.628214i −0.0520508 + 0.0300516i
\(438\) 0 0
\(439\) −8.97133 + 15.5388i −0.428178 + 0.741626i −0.996711 0.0810339i \(-0.974178\pi\)
0.568533 + 0.822660i \(0.307511\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.53199 13.0458i 0.357855 0.619824i −0.629747 0.776800i \(-0.716841\pi\)
0.987602 + 0.156977i \(0.0501747\pi\)
\(444\) 0 0
\(445\) 10.2322 + 17.7227i 0.485052 + 0.840135i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.1148i 0.666116i 0.942906 + 0.333058i \(0.108081\pi\)
−0.942906 + 0.333058i \(0.891919\pi\)
\(450\) 0 0
\(451\) 4.48910 + 7.77535i 0.211384 + 0.366127i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 11.3448 + 37.6987i 0.531850 + 1.76734i
\(456\) 0 0
\(457\) 25.0890 + 14.4852i 1.17361 + 0.677587i 0.954529 0.298119i \(-0.0963591\pi\)
0.219086 + 0.975706i \(0.429692\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.98197i 0.464907i 0.972608 + 0.232453i \(0.0746753\pi\)
−0.972608 + 0.232453i \(0.925325\pi\)
\(462\) 0 0
\(463\) 24.2951i 1.12909i −0.825402 0.564545i \(-0.809052\pi\)
0.825402 0.564545i \(-0.190948\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.13819 + 7.16755i −0.191493 + 0.331675i −0.945745 0.324910i \(-0.894666\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(468\) 0 0
\(469\) 4.87577 + 30.6341i 0.225142 + 1.41455i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.99166 2.88194i 0.229517 0.132512i
\(474\) 0 0
\(475\) 9.80011i 0.449660i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.2370 14.5706i 1.15311 0.665747i 0.203465 0.979082i \(-0.434780\pi\)
0.949643 + 0.313335i \(0.101446\pi\)
\(480\) 0 0
\(481\) −0.316197 + 0.244427i −0.0144173 + 0.0111449i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.46808 + 11.2030i −0.293700 + 0.508704i
\(486\) 0 0
\(487\) 10.6887 6.17113i 0.484352 0.279641i −0.237877 0.971295i \(-0.576451\pi\)
0.722228 + 0.691655i \(0.243118\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.8406 0.985650 0.492825 0.870128i \(-0.335964\pi\)
0.492825 + 0.870128i \(0.335964\pi\)
\(492\) 0 0
\(493\) −0.0149005 0.0258084i −0.000671084 0.00116235i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4280 + 3.99386i 0.467759 + 0.179149i
\(498\) 0 0
\(499\) −15.4742 8.93404i −0.692721 0.399943i 0.111909 0.993718i \(-0.464303\pi\)
−0.804631 + 0.593776i \(0.797637\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.63823 0.162221 0.0811103 0.996705i \(-0.474153\pi\)
0.0811103 + 0.996705i \(0.474153\pi\)
\(504\) 0 0
\(505\) 14.4593i 0.643430i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.3453 8.85962i −0.680169 0.392696i 0.119750 0.992804i \(-0.461791\pi\)
−0.799919 + 0.600108i \(0.795124\pi\)
\(510\) 0 0
\(511\) 1.33861 + 8.41035i 0.0592164 + 0.372052i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 45.0739 26.0234i 1.98619 1.14673i
\(516\) 0 0
\(517\) −47.2887 −2.07975
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.81911 8.34695i −0.211129 0.365687i 0.740939 0.671572i \(-0.234381\pi\)
−0.952068 + 0.305886i \(0.901047\pi\)
\(522\) 0 0
\(523\) −14.6072 + 25.3005i −0.638729 + 1.10631i 0.346983 + 0.937872i \(0.387206\pi\)
−0.985712 + 0.168440i \(0.946127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.811088 0.468282i −0.0353316 0.0203987i
\(528\) 0 0
\(529\) 10.3103 + 17.8579i 0.448273 + 0.776431i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.20029 + 2.54232i 0.268564 + 0.110120i
\(534\) 0 0
\(535\) 21.1903 12.2342i 0.916138 0.528932i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 33.0861 + 6.98026i 1.42512 + 0.300661i
\(540\) 0 0
\(541\) −10.8456 6.26173i −0.466290 0.269213i 0.248395 0.968659i \(-0.420097\pi\)
−0.714685 + 0.699446i \(0.753430\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −81.0062 −3.46992
\(546\) 0 0
\(547\) −25.0456 −1.07087 −0.535436 0.844576i \(-0.679853\pi\)
−0.535436 + 0.844576i \(0.679853\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.108811 + 0.0628220i 0.00463550 + 0.00267631i
\(552\) 0 0
\(553\) 19.5468 + 24.1009i 0.831213 + 1.02487i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −20.7745 + 11.9942i −0.880244 + 0.508209i −0.870739 0.491746i \(-0.836359\pi\)
−0.00950510 + 0.999955i \(0.503026\pi\)
\(558\) 0 0
\(559\) 1.63213 3.98049i 0.0690318 0.168357i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.98944 8.64196i −0.210280 0.364215i 0.741522 0.670928i \(-0.234104\pi\)
−0.951802 + 0.306713i \(0.900771\pi\)
\(564\) 0 0
\(565\) −58.0393 33.5090i −2.44173 1.40973i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.82368 + 10.0869i −0.244141 + 0.422865i −0.961890 0.273437i \(-0.911839\pi\)
0.717748 + 0.696303i \(0.245173\pi\)
\(570\) 0 0
\(571\) −5.89435 10.2093i −0.246671 0.427247i 0.715929 0.698173i \(-0.246003\pi\)
−0.962600 + 0.270926i \(0.912670\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.5597 0.773992
\(576\) 0 0
\(577\) 26.4357 15.2627i 1.10053 0.635392i 0.164171 0.986432i \(-0.447505\pi\)
0.936361 + 0.351039i \(0.114172\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.56202 + 2.51322i 0.272238 + 0.104266i
\(582\) 0 0
\(583\) 51.3359 + 29.6388i 2.12612 + 1.22751i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.85549i 0.406780i −0.979098 0.203390i \(-0.934804\pi\)
0.979098 0.203390i \(-0.0651959\pi\)
\(588\) 0 0
\(589\) 3.94865 0.162701
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4.96865 2.86865i −0.204038 0.117802i 0.394499 0.918896i \(-0.370918\pi\)
−0.598538 + 0.801095i \(0.704251\pi\)
\(594\) 0 0
\(595\) 1.96991 + 0.754463i 0.0807583 + 0.0309300i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −17.4962 30.3042i −0.714873 1.23820i −0.963008 0.269472i \(-0.913151\pi\)
0.248135 0.968726i \(-0.420182\pi\)
\(600\) 0 0
\(601\) −12.9037 −0.526354 −0.263177 0.964748i \(-0.584770\pi\)
−0.263177 + 0.964748i \(0.584770\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −44.0861 + 25.4531i −1.79235 + 1.03482i
\(606\) 0 0
\(607\) 9.54334 16.5295i 0.387352 0.670914i −0.604740 0.796423i \(-0.706723\pi\)
0.992092 + 0.125509i \(0.0400564\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.9252 + 21.5868i −1.12973 + 0.873307i
\(612\) 0 0
\(613\) −4.85487 + 2.80296i −0.196086 + 0.113210i −0.594829 0.803853i \(-0.702780\pi\)
0.398742 + 0.917063i \(0.369447\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 28.9162i 1.16412i −0.813146 0.582060i \(-0.802247\pi\)
0.813146 0.582060i \(-0.197753\pi\)
\(618\) 0 0
\(619\) 12.8975 7.44636i 0.518393 0.299295i −0.217884 0.975975i \(-0.569915\pi\)
0.736277 + 0.676680i \(0.236582\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.1895 8.26409i 0.408233 0.331094i
\(624\) 0 0
\(625\) −29.8030 + 51.6202i −1.19212 + 2.06481i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.0214142i 0.000853842i
\(630\) 0 0
\(631\) 12.2217i 0.486539i 0.969959 + 0.243269i \(0.0782199\pi\)
−0.969959 + 0.243269i \(0.921780\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.76034 + 3.32573i 0.228592 + 0.131978i
\(636\) 0 0
\(637\) 22.7246 10.9814i 0.900382 0.435100i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −11.7231 20.3051i −0.463036 0.802002i 0.536074 0.844171i \(-0.319907\pi\)
−0.999111 + 0.0421687i \(0.986573\pi\)
\(642\) 0 0
\(643\) 19.7831i 0.780171i −0.920779 0.390085i \(-0.872445\pi\)
0.920779 0.390085i \(-0.127555\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.0779 22.6516i −0.514147 0.890528i −0.999865 0.0164129i \(-0.994775\pi\)
0.485719 0.874115i \(-0.338558\pi\)
\(648\) 0 0
\(649\) 33.6123 58.2182i 1.31940 2.28526i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.27113 2.20165i 0.0497430 0.0861574i −0.840082 0.542460i \(-0.817493\pi\)
0.889825 + 0.456302i \(0.150826\pi\)
\(654\) 0 0
\(655\) 67.5128 38.9786i 2.63795 1.52302i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.6064 −0.646893 −0.323447 0.946246i \(-0.604842\pi\)
−0.323447 + 0.946246i \(0.604842\pi\)
\(660\) 0 0
\(661\) 15.3340 8.85309i 0.596424 0.344345i −0.171210 0.985235i \(-0.554768\pi\)
0.767633 + 0.640889i \(0.221434\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.78307 + 1.39793i −0.340593 + 0.0542094i
\(666\) 0 0
\(667\) −0.118974 + 0.206069i −0.00460668 + 0.00797901i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.4975i 0.984319i
\(672\) 0 0
\(673\) −36.7173 −1.41535 −0.707675 0.706538i \(-0.750256\pi\)
−0.707675 + 0.706538i \(0.750256\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.2385 + 40.2503i −0.893128 + 1.54694i −0.0570239 + 0.998373i \(0.518161\pi\)
−0.836104 + 0.548571i \(0.815172\pi\)
\(678\) 0 0
\(679\) 7.74464 + 2.96616i 0.297212 + 0.113831i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.1111 12.7658i 0.846057 0.488471i −0.0132613 0.999912i \(-0.504221\pi\)
0.859319 + 0.511441i \(0.170888\pi\)
\(684\) 0 0
\(685\) 3.29040 0.125720
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 43.8450 5.93181i 1.67036 0.225984i
\(690\) 0 0
\(691\) 10.2064 + 5.89267i 0.388270 + 0.224168i 0.681410 0.731902i \(-0.261367\pi\)
−0.293140 + 0.956069i \(0.594700\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −63.6415 36.7434i −2.41406 1.39376i
\(696\) 0 0
\(697\) 0.310959 0.179532i 0.0117784 0.00680028i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −35.6275 −1.34563 −0.672816 0.739810i \(-0.734915\pi\)
−0.672816 + 0.739810i \(0.734915\pi\)
\(702\) 0 0
\(703\) −0.0451423 0.0781888i −0.00170257 0.00294895i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.15446 1.45704i 0.344289 0.0547976i
\(708\) 0 0
\(709\) −25.4099 14.6704i −0.954289 0.550959i −0.0598786 0.998206i \(-0.519071\pi\)
−0.894411 + 0.447246i \(0.852405\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.47805i 0.280055i
\(714\) 0 0
\(715\) −27.2697 + 66.5061i −1.01983 + 2.48719i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.3686 + 33.5474i −0.722327 + 1.25111i 0.237738 + 0.971329i \(0.423594\pi\)
−0.960065 + 0.279777i \(0.909739\pi\)
\(720\) 0 0
\(721\) −21.0180 25.9148i −0.782750 0.965119i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.927993 1.60733i −0.0344648 0.0596948i
\(726\) 0 0
\(727\) 13.3601 0.495498 0.247749 0.968824i \(-0.420309\pi\)
0.247749 + 0.968824i \(0.420309\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.115257 0.199631i −0.00426294 0.00738363i
\(732\) 0 0
\(733\) 9.51541 + 5.49372i 0.351460 + 0.202915i 0.665328 0.746551i \(-0.268292\pi\)
−0.313868 + 0.949467i \(0.601625\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −28.3180 + 49.0482i −1.04311 + 1.80671i
\(738\) 0 0
\(739\) −0.706969 + 0.408169i −0.0260063 + 0.0150147i −0.512947 0.858420i \(-0.671446\pi\)
0.486940 + 0.873435i \(0.338113\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.1384i 0.408628i 0.978905 + 0.204314i \(0.0654964\pi\)
−0.978905 + 0.204314i \(0.934504\pi\)
\(744\) 0 0
\(745\) 33.5352 + 58.0846i 1.22863 + 2.12805i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.88106 12.1832i −0.361046 0.445164i
\(750\) 0 0
\(751\) −2.32003 + 4.01841i −0.0846591 + 0.146634i −0.905246 0.424888i \(-0.860313\pi\)
0.820587 + 0.571522i \(0.193647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 53.3151 1.94034
\(756\) 0 0
\(757\) −18.7608 −0.681872 −0.340936 0.940087i \(-0.610744\pi\)
−0.340936 + 0.940087i \(0.610744\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.6334 6.71655i −0.421710 0.243475i 0.274098 0.961702i \(-0.411621\pi\)
−0.695809 + 0.718227i \(0.744954\pi\)
\(762\) 0 0
\(763\) 8.16287 + 51.2866i 0.295516 + 1.85670i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.72704 49.7229i −0.242899 1.79539i
\(768\) 0 0
\(769\) 41.4834i 1.49593i −0.663738 0.747965i \(-0.731031\pi\)
0.663738 0.747965i \(-0.268969\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.16020 0.669841i 0.0417294 0.0240925i −0.478990 0.877820i \(-0.658997\pi\)
0.520720 + 0.853728i \(0.325664\pi\)
\(774\) 0 0
\(775\) −50.5141 29.1643i −1.81452 1.04761i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.756927 + 1.31104i −0.0271197 + 0.0469728i
\(780\) 0 0
\(781\) 10.1941 + 17.6566i 0.364772 + 0.631804i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 67.7653i 2.41865i
\(786\) 0 0
\(787\) −20.6947 + 11.9481i −0.737687 + 0.425904i −0.821228 0.570600i \(-0.806711\pi\)
0.0835406 + 0.996504i \(0.473377\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −15.3667 + 40.1225i −0.546376 + 1.42659i
\(792\) 0 0
\(793\) −11.6393 15.0569i −0.413324 0.534687i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −48.8615 −1.73076 −0.865382 0.501113i \(-0.832924\pi\)
−0.865382 + 0.501113i \(0.832924\pi\)
\(798\) 0 0
\(799\) 1.89122i 0.0669064i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.77449 + 13.4658i −0.274356 + 0.475198i
\(804\) 0 0
\(805\) −2.64743 16.6336i −0.0933097 0.586257i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.80564 6.59157i −0.133799 0.231747i 0.791339 0.611378i \(-0.209384\pi\)
−0.925138 + 0.379631i \(0.876051\pi\)
\(810\) 0 0
\(811\) 45.4292i 1.59523i 0.603165 + 0.797617i \(0.293906\pi\)
−0.603165 + 0.797617i \(0.706094\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 42.7728 + 74.0846i 1.49827 + 2.59507i
\(816\) 0 0
\(817\) 0.841666 + 0.485936i 0.0294462 + 0.0170008i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.84693 1.64368i −0.0993585 0.0573647i 0.449497 0.893282i \(-0.351603\pi\)
−0.548856 + 0.835917i \(0.684936\pi\)
\(822\) 0 0
\(823\) −15.5599 26.9505i −0.542383 0.939435i −0.998767 0.0496519i \(-0.984189\pi\)
0.456383 0.889783i \(-0.349145\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.6551i 0.892116i 0.895004 + 0.446058i \(0.147173\pi\)
−0.895004 + 0.446058i \(0.852827\pi\)
\(828\) 0 0
\(829\) −20.5815 35.6481i −0.714824 1.23811i −0.963027 0.269403i \(-0.913174\pi\)
0.248204 0.968708i \(-0.420160\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.279161 1.32321i 0.00967236 0.0458466i
\(834\) 0 0
\(835\) −14.9909 + 25.9649i −0.518780 + 0.898554i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.9529i 0.826946i −0.910516 0.413473i \(-0.864316\pi\)
0.910516 0.413473i \(-0.135684\pi\)
\(840\) 0 0
\(841\) −28.9762 −0.999179
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14.2559 + 51.7219i 0.490417 + 1.77929i
\(846\) 0 0
\(847\) 20.5574 + 25.3469i 0.706359 + 0.870930i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.148076 0.0854916i 0.00507597 0.00293061i
\(852\) 0 0
\(853\) 22.4638i 0.769145i 0.923095 + 0.384572i \(0.125651\pi\)
−0.923095 + 0.384572i \(0.874349\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.0366373 + 0.0634577i 0.00125151 + 0.00216767i 0.866650 0.498916i \(-0.166268\pi\)
−0.865399 + 0.501083i \(0.832935\pi\)
\(858\) 0 0
\(859\) 16.7303 28.9777i 0.570830 0.988707i −0.425651 0.904888i \(-0.639955\pi\)
0.996481 0.0838196i \(-0.0267120\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.7166 + 12.5381i 0.739240 + 0.426800i 0.821793 0.569786i \(-0.192974\pi\)
−0.0825529 + 0.996587i \(0.526307\pi\)
\(864\) 0 0
\(865\) −30.1452 + 17.4043i −1.02497 + 0.591765i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 56.6568i 1.92195i
\(870\) 0 0
\(871\) 5.66746 + 41.8911i 0.192035 + 1.41942i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 71.7012 + 27.4612i 2.42394 + 0.928357i
\(876\) 0 0
\(877\) 14.5232 + 8.38499i 0.490414 + 0.283141i 0.724746 0.689016i \(-0.241957\pi\)
−0.234332 + 0.972157i \(0.575290\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0174 0.607023 0.303511 0.952828i \(-0.401841\pi\)
0.303511 + 0.952828i \(0.401841\pi\)
\(882\) 0 0
\(883\) −22.5443 −0.758676 −0.379338 0.925258i \(-0.623848\pi\)
−0.379338 + 0.925258i \(0.623848\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.51245 11.2799i 0.218667 0.378742i −0.735734 0.677271i \(-0.763163\pi\)
0.954401 + 0.298529i \(0.0964959\pi\)
\(888\) 0 0
\(889\) 1.52513 3.98211i 0.0511511 0.133556i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −3.98678 6.90530i −0.133412 0.231077i
\(894\) 0 0
\(895\) 66.9680i 2.23849i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.647624 0.373906i 0.0215995 0.0124705i
\(900\) 0 0
\(901\) 1.18534 2.05308i 0.0394895 0.0683979i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 75.1436 + 43.3842i 2.49786 + 1.44214i
\(906\) 0 0
\(907\) 12.8678 + 22.2877i 0.427268 + 0.740050i 0.996629 0.0820378i \(-0.0261428\pi\)
−0.569361 + 0.822087i \(0.692809\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −30.1342 −0.998392 −0.499196 0.866489i \(-0.666371\pi\)
−0.499196 + 0.866489i \(0.666371\pi\)
\(912\) 0 0
\(913\) 6.41482 + 11.1108i 0.212300 + 0.367714i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31.4813 38.8159i −1.03960 1.28181i
\(918\) 0 0
\(919\) 28.8942 50.0462i 0.953131 1.65087i 0.214543 0.976715i \(-0.431174\pi\)
0.738588 0.674157i \(-0.235493\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.0799 + 5.77322i 0.463446 + 0.190028i
\(924\) 0 0
\(925\) 1.33367i 0.0438506i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −3.44066 1.98647i −0.112884 0.0651739i 0.442495 0.896771i \(-0.354094\pi\)
−0.555379 + 0.831597i \(0.687427\pi\)
\(930\) 0 0
\(931\) 1.77011 + 5.41987i 0.0580131 + 0.177629i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.92572 + 3.33544i 0.0629777 + 0.109081i
\(936\) 0 0
\(937\) −14.0852 −0.460144 −0.230072 0.973174i \(-0.573896\pi\)
−0.230072 + 0.973174i \(0.573896\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.38168 0.797711i 0.0450414 0.0260046i −0.477310 0.878735i \(-0.658388\pi\)
0.522352 + 0.852730i \(0.325055\pi\)
\(942\) 0 0
\(943\) −2.48287 1.43349i −0.0808535 0.0466808i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.86720 1.07803i −0.0606759 0.0350312i 0.469355 0.883009i \(-0.344486\pi\)
−0.530031 + 0.847978i \(0.677820\pi\)
\(948\) 0 0
\(949\) 1.55596 + 11.5009i 0.0505085 + 0.373334i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 34.4024 1.11440 0.557202 0.830377i \(-0.311875\pi\)
0.557202 + 0.830377i \(0.311875\pi\)
\(954\) 0 0
\(955\) −81.7336 + 47.1889i −2.64484 + 1.52700i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.331569 2.08322i −0.0107069 0.0672707i
\(960\) 0 0
\(961\) −3.74915 + 6.49371i −0.120940 + 0.209475i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −87.7291 −2.82410
\(966\) 0 0
\(967\) 41.1646i 1.32376i 0.749609 + 0.661881i \(0.230242\pi\)
−0.749609 + 0.661881i \(0.769758\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.66677 9.81514i 0.181855 0.314983i −0.760657 0.649154i \(-0.775123\pi\)
0.942512 + 0.334171i \(0.108456\pi\)
\(972\) 0 0
\(973\) −16.8499 + 43.9953i −0.540184 + 1.41042i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 10.8932 6.28922i 0.348506 0.201210i −0.315521 0.948919i \(-0.602179\pi\)
0.664027 + 0.747709i \(0.268846\pi\)
\(978\) 0 0
\(979\) 23.9537 0.765563
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.93090 + 3.42421i −0.189166 + 0.109215i −0.591592 0.806237i \(-0.701500\pi\)
0.402426 + 0.915453i \(0.368167\pi\)
\(984\) 0 0
\(985\) 37.2993 64.6042i 1.18845 2.05846i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.920277 + 1.59397i −0.0292631 + 0.0506852i
\(990\) 0 0
\(991\) −9.03445 15.6481i −0.286989 0.497079i 0.686101 0.727506i \(-0.259321\pi\)
−0.973090 + 0.230427i \(0.925988\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 29.1528i 0.924205i
\(996\) 0 0
\(997\) −21.0105 36.3912i −0.665409 1.15252i −0.979174 0.203021i \(-0.934924\pi\)
0.313766 0.949500i \(-0.398409\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.gv.g.2053.1 20
3.2 odd 2 1092.2.cu.c.961.10 yes 20
7.4 even 3 inner 3276.2.gv.g.1117.10 20
13.12 even 2 inner 3276.2.gv.g.2053.10 20
21.2 odd 6 7644.2.e.o.4705.1 10
21.5 even 6 7644.2.e.n.4705.10 10
21.11 odd 6 1092.2.cu.c.25.1 20
39.38 odd 2 1092.2.cu.c.961.1 yes 20
91.25 even 6 inner 3276.2.gv.g.1117.1 20
273.116 odd 6 1092.2.cu.c.25.10 yes 20
273.194 even 6 7644.2.e.n.4705.1 10
273.233 odd 6 7644.2.e.o.4705.10 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.cu.c.25.1 20 21.11 odd 6
1092.2.cu.c.25.10 yes 20 273.116 odd 6
1092.2.cu.c.961.1 yes 20 39.38 odd 2
1092.2.cu.c.961.10 yes 20 3.2 odd 2
3276.2.gv.g.1117.1 20 91.25 even 6 inner
3276.2.gv.g.1117.10 20 7.4 even 3 inner
3276.2.gv.g.2053.1 20 1.1 even 1 trivial
3276.2.gv.g.2053.10 20 13.12 even 2 inner
7644.2.e.n.4705.1 10 273.194 even 6
7644.2.e.n.4705.10 10 21.5 even 6
7644.2.e.o.4705.1 10 21.2 odd 6
7644.2.e.o.4705.10 10 273.233 odd 6