Properties

Label 76.3.c.a
Level $76$
Weight $3$
Character orbit 76.c
Analytic conductor $2.071$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [76,3,Mod(37,76)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(76, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("76.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 76.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.07085000914\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-29}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 29 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-29}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - 4 q^{5} - q^{7} - 20 q^{9} + 14 q^{11} + 3 \beta q^{13} - 4 \beta q^{15} + 23 q^{17} + (3 \beta + 10) q^{19} - \beta q^{21} - q^{23} - 9 q^{25} - 11 \beta q^{27} - 9 \beta q^{29} - 6 \beta q^{31} + \cdots - 280 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{5} - 2 q^{7} - 40 q^{9} + 28 q^{11} + 46 q^{17} + 20 q^{19} - 2 q^{23} - 18 q^{25} + 8 q^{35} - 174 q^{39} + 136 q^{43} + 160 q^{45} + 52 q^{47} - 96 q^{49} - 112 q^{55} - 174 q^{57} - 80 q^{61}+ \cdots - 560 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/76\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(39\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
5.38516i
5.38516i
0 5.38516i 0 −4.00000 0 −1.00000 0 −20.0000 0
37.2 0 5.38516i 0 −4.00000 0 −1.00000 0 −20.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 76.3.c.a 2
3.b odd 2 1 684.3.h.c 2
4.b odd 2 1 304.3.e.b 2
5.b even 2 1 1900.3.e.b 2
5.c odd 4 2 1900.3.g.b 4
8.b even 2 1 1216.3.e.k 2
8.d odd 2 1 1216.3.e.l 2
12.b even 2 1 2736.3.o.i 2
19.b odd 2 1 inner 76.3.c.a 2
57.d even 2 1 684.3.h.c 2
76.d even 2 1 304.3.e.b 2
95.d odd 2 1 1900.3.e.b 2
95.g even 4 2 1900.3.g.b 4
152.b even 2 1 1216.3.e.l 2
152.g odd 2 1 1216.3.e.k 2
228.b odd 2 1 2736.3.o.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
76.3.c.a 2 1.a even 1 1 trivial
76.3.c.a 2 19.b odd 2 1 inner
304.3.e.b 2 4.b odd 2 1
304.3.e.b 2 76.d even 2 1
684.3.h.c 2 3.b odd 2 1
684.3.h.c 2 57.d even 2 1
1216.3.e.k 2 8.b even 2 1
1216.3.e.k 2 152.g odd 2 1
1216.3.e.l 2 8.d odd 2 1
1216.3.e.l 2 152.b even 2 1
1900.3.e.b 2 5.b even 2 1
1900.3.e.b 2 95.d odd 2 1
1900.3.g.b 4 5.c odd 4 2
1900.3.g.b 4 95.g even 4 2
2736.3.o.i 2 12.b even 2 1
2736.3.o.i 2 228.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 29 \) acting on \(S_{3}^{\mathrm{new}}(76, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 29 \) Copy content Toggle raw display
$5$ \( (T + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T - 14)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 261 \) Copy content Toggle raw display
$17$ \( (T - 23)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 20T + 361 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 2349 \) Copy content Toggle raw display
$31$ \( T^{2} + 1044 \) Copy content Toggle raw display
$37$ \( T^{2} + 1044 \) Copy content Toggle raw display
$41$ \( T^{2} + 1044 \) Copy content Toggle raw display
$43$ \( (T - 68)^{2} \) Copy content Toggle raw display
$47$ \( (T - 26)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 6525 \) Copy content Toggle raw display
$59$ \( T^{2} + 261 \) Copy content Toggle raw display
$61$ \( (T + 40)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 261 \) Copy content Toggle raw display
$71$ \( T^{2} + 1044 \) Copy content Toggle raw display
$73$ \( (T + 7)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 9396 \) Copy content Toggle raw display
$83$ \( (T - 32)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16704 \) Copy content Toggle raw display
$97$ \( T^{2} + 9396 \) Copy content Toggle raw display
show more
show less