Properties

Label 4-76e2-1.1-c2e2-0-0
Degree $4$
Conductor $5776$
Sign $1$
Analytic cond. $4.28841$
Root an. cond. $1.43904$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 2·7-s − 11·9-s + 28·11-s + 46·17-s + 20·19-s − 2·23-s − 2·25-s + 16·35-s + 136·43-s + 88·45-s + 52·47-s − 95·49-s − 224·55-s − 80·61-s + 22·63-s − 14·73-s − 56·77-s + 40·81-s + 64·83-s − 368·85-s − 160·95-s − 308·99-s + 28·101-s + 16·115-s − 92·119-s + 346·121-s + ⋯
L(s)  = 1  − 8/5·5-s − 2/7·7-s − 1.22·9-s + 2.54·11-s + 2.70·17-s + 1.05·19-s − 0.0869·23-s − 0.0799·25-s + 0.457·35-s + 3.16·43-s + 1.95·45-s + 1.10·47-s − 1.93·49-s − 4.07·55-s − 1.31·61-s + 0.349·63-s − 0.191·73-s − 0.727·77-s + 0.493·81-s + 0.771·83-s − 4.32·85-s − 1.68·95-s − 3.11·99-s + 0.277·101-s + 0.139·115-s − 0.773·119-s + 2.85·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(4.28841\)
Root analytic conductor: \(1.43904\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 5776,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.133116023\)
\(L(\frac12)\) \(\approx\) \(1.133116023\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
19$C_2$ \( 1 - 20 T + p^{2} T^{2} \)
good3$C_2^2$ \( 1 + 11 T^{2} + p^{4} T^{4} \)
5$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
7$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
11$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 77 T^{2} + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 23 T + p^{2} T^{2} )^{2} \)
23$C_2$ \( ( 1 + T + p^{2} T^{2} )^{2} \)
29$C_2^2$ \( 1 + 23 p T^{2} + p^{4} T^{4} \)
31$C_2^2$ \( 1 - 878 T^{2} + p^{4} T^{4} \)
37$C_2^2$ \( 1 - 1694 T^{2} + p^{4} T^{4} \)
41$C_2^2$ \( 1 - 2318 T^{2} + p^{4} T^{4} \)
43$C_2$ \( ( 1 - 68 T + p^{2} T^{2} )^{2} \)
47$C_2$ \( ( 1 - 26 T + p^{2} T^{2} )^{2} \)
53$C_2^2$ \( 1 + 907 T^{2} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 6701 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 40 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 8717 T^{2} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 9038 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 + 7 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 3086 T^{2} + p^{4} T^{4} \)
83$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 862 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 - 9422 T^{2} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.73792726753158658111641539903, −14.06909735597060663396202096686, −13.83112550727806238278890888257, −12.46954979555055655138545642500, −12.19540344222557387263325395837, −11.86287284820905195503533809962, −11.46964466416911543284905783279, −10.95054298012902263930878320015, −9.928181602485814240881104085420, −9.353801653649304380165595301930, −8.981873131895439639487253273588, −7.966893195597801610108853043856, −7.76494116857753110274493080363, −7.06561349234113979811058530109, −6.01662473603633316259496512174, −5.69753480996872523322426781716, −4.35706435694904317520744705856, −3.62646101573266471213030002533, −3.23531562519120511534305102665, −1.02410756581701884745227159159, 1.02410756581701884745227159159, 3.23531562519120511534305102665, 3.62646101573266471213030002533, 4.35706435694904317520744705856, 5.69753480996872523322426781716, 6.01662473603633316259496512174, 7.06561349234113979811058530109, 7.76494116857753110274493080363, 7.966893195597801610108853043856, 8.981873131895439639487253273588, 9.353801653649304380165595301930, 9.928181602485814240881104085420, 10.95054298012902263930878320015, 11.46964466416911543284905783279, 11.86287284820905195503533809962, 12.19540344222557387263325395837, 12.46954979555055655138545642500, 13.83112550727806238278890888257, 14.06909735597060663396202096686, 14.73792726753158658111641539903

Graph of the $Z$-function along the critical line