Properties

Label 76.3
Level 76
Weight 3
Dimension 192
Nonzero newspaces 6
Newform subspaces 10
Sturm bound 1080
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 76 = 2^{2} \cdot 19 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 10 \)
Sturm bound: \(1080\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(76))\).

Total New Old
Modular forms 405 224 181
Cusp forms 315 192 123
Eisenstein series 90 32 58

Trace form

\( 192 q - 9 q^{2} - 9 q^{4} - 18 q^{5} - 9 q^{6} - 9 q^{8} - 18 q^{9} - 9 q^{10} - 9 q^{12} + 42 q^{13} - 9 q^{14} + 54 q^{15} - 9 q^{16} - 9 q^{17} - 18 q^{18} - 21 q^{19} - 18 q^{20} - 81 q^{21} - 9 q^{22}+ \cdots - 1242 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(76))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
76.3.b \(\chi_{76}(39, \cdot)\) 76.3.b.a 4 1
76.3.b.b 14
76.3.c \(\chi_{76}(37, \cdot)\) 76.3.c.a 2 1
76.3.c.b 2
76.3.g \(\chi_{76}(7, \cdot)\) 76.3.g.a 4 2
76.3.g.b 4
76.3.g.c 28
76.3.h \(\chi_{76}(65, \cdot)\) 76.3.h.a 8 2
76.3.j \(\chi_{76}(13, \cdot)\) 76.3.j.a 18 6
76.3.l \(\chi_{76}(23, \cdot)\) 76.3.l.a 108 6

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(76))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(76)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(38))\)\(^{\oplus 2}\)