Properties

Label 7581.2.a.w.1.3
Level $7581$
Weight $2$
Character 7581.1
Self dual yes
Analytic conductor $60.535$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7581,2,Mod(1,7581)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7581.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7581 = 3 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7581.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-3,5,7,4,-3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.5345897723\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.368464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 6x^{3} + 6x^{2} + 6x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.552543\) of defining polynomial
Character \(\chi\) \(=\) 7581.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.447457 q^{2} +1.00000 q^{3} -1.79978 q^{4} +3.78739 q^{5} -0.447457 q^{6} +1.00000 q^{7} +1.70024 q^{8} +1.00000 q^{9} -1.69470 q^{10} -3.77387 q^{11} -1.79978 q^{12} -4.83000 q^{13} -0.447457 q^{14} +3.78739 q^{15} +2.83878 q^{16} +5.09156 q^{17} -0.447457 q^{18} -6.81648 q^{20} +1.00000 q^{21} +1.68865 q^{22} +8.49448 q^{23} +1.70024 q^{24} +9.34434 q^{25} +2.16122 q^{26} +1.00000 q^{27} -1.79978 q^{28} +8.28187 q^{29} -1.69470 q^{30} +1.23044 q^{31} -4.67071 q^{32} -3.77387 q^{33} -2.27826 q^{34} +3.78739 q^{35} -1.79978 q^{36} -0.695831 q^{37} -4.83000 q^{39} +6.43948 q^{40} -7.98404 q^{41} -0.447457 q^{42} -3.25522 q^{43} +6.79214 q^{44} +3.78739 q^{45} -3.80092 q^{46} +1.98648 q^{47} +2.83878 q^{48} +1.00000 q^{49} -4.18120 q^{50} +5.09156 q^{51} +8.69296 q^{52} -3.40292 q^{53} -0.447457 q^{54} -14.2931 q^{55} +1.70024 q^{56} -3.70578 q^{58} +12.2683 q^{59} -6.81648 q^{60} -14.4537 q^{61} -0.550570 q^{62} +1.00000 q^{63} -3.58761 q^{64} -18.2931 q^{65} +1.68865 q^{66} +10.0852 q^{67} -9.16370 q^{68} +8.49448 q^{69} -1.69470 q^{70} -2.50800 q^{71} +1.70024 q^{72} -15.1473 q^{73} +0.311355 q^{74} +9.34434 q^{75} -3.77387 q^{77} +2.16122 q^{78} +0.906002 q^{79} +10.7516 q^{80} +1.00000 q^{81} +3.57252 q^{82} +4.01125 q^{83} -1.79978 q^{84} +19.2837 q^{85} +1.45657 q^{86} +8.28187 q^{87} -6.41648 q^{88} +12.9730 q^{89} -1.69470 q^{90} -4.83000 q^{91} -15.2882 q^{92} +1.23044 q^{93} -0.888863 q^{94} -4.67071 q^{96} +15.6600 q^{97} -0.447457 q^{98} -3.77387 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 3 q^{2} + 5 q^{3} + 7 q^{4} + 4 q^{5} - 3 q^{6} + 5 q^{7} - 9 q^{8} + 5 q^{9} + 6 q^{10} + 8 q^{11} + 7 q^{12} + 6 q^{13} - 3 q^{14} + 4 q^{15} + 19 q^{16} + 12 q^{17} - 3 q^{18} + 8 q^{20} + 5 q^{21}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.447457 −0.316400 −0.158200 0.987407i \(-0.550569\pi\)
−0.158200 + 0.987407i \(0.550569\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.79978 −0.899891
\(5\) 3.78739 1.69377 0.846887 0.531773i \(-0.178474\pi\)
0.846887 + 0.531773i \(0.178474\pi\)
\(6\) −0.447457 −0.182674
\(7\) 1.00000 0.377964
\(8\) 1.70024 0.601126
\(9\) 1.00000 0.333333
\(10\) −1.69470 −0.535910
\(11\) −3.77387 −1.13786 −0.568932 0.822384i \(-0.692643\pi\)
−0.568932 + 0.822384i \(0.692643\pi\)
\(12\) −1.79978 −0.519552
\(13\) −4.83000 −1.33960 −0.669801 0.742541i \(-0.733621\pi\)
−0.669801 + 0.742541i \(0.733621\pi\)
\(14\) −0.447457 −0.119588
\(15\) 3.78739 0.977901
\(16\) 2.83878 0.709695
\(17\) 5.09156 1.23489 0.617443 0.786616i \(-0.288169\pi\)
0.617443 + 0.786616i \(0.288169\pi\)
\(18\) −0.447457 −0.105467
\(19\) 0 0
\(20\) −6.81648 −1.52421
\(21\) 1.00000 0.218218
\(22\) 1.68865 0.360020
\(23\) 8.49448 1.77122 0.885611 0.464429i \(-0.153740\pi\)
0.885611 + 0.464429i \(0.153740\pi\)
\(24\) 1.70024 0.347060
\(25\) 9.34434 1.86887
\(26\) 2.16122 0.423850
\(27\) 1.00000 0.192450
\(28\) −1.79978 −0.340127
\(29\) 8.28187 1.53790 0.768952 0.639306i \(-0.220778\pi\)
0.768952 + 0.639306i \(0.220778\pi\)
\(30\) −1.69470 −0.309408
\(31\) 1.23044 0.220994 0.110497 0.993876i \(-0.464756\pi\)
0.110497 + 0.993876i \(0.464756\pi\)
\(32\) −4.67071 −0.825673
\(33\) −3.77387 −0.656946
\(34\) −2.27826 −0.390718
\(35\) 3.78739 0.640186
\(36\) −1.79978 −0.299964
\(37\) −0.695831 −0.114394 −0.0571969 0.998363i \(-0.518216\pi\)
−0.0571969 + 0.998363i \(0.518216\pi\)
\(38\) 0 0
\(39\) −4.83000 −0.773420
\(40\) 6.43948 1.01817
\(41\) −7.98404 −1.24690 −0.623449 0.781864i \(-0.714269\pi\)
−0.623449 + 0.781864i \(0.714269\pi\)
\(42\) −0.447457 −0.0690442
\(43\) −3.25522 −0.496416 −0.248208 0.968707i \(-0.579842\pi\)
−0.248208 + 0.968707i \(0.579842\pi\)
\(44\) 6.79214 1.02395
\(45\) 3.78739 0.564591
\(46\) −3.80092 −0.560415
\(47\) 1.98648 0.289757 0.144879 0.989449i \(-0.453721\pi\)
0.144879 + 0.989449i \(0.453721\pi\)
\(48\) 2.83878 0.409742
\(49\) 1.00000 0.142857
\(50\) −4.18120 −0.591310
\(51\) 5.09156 0.712961
\(52\) 8.69296 1.20550
\(53\) −3.40292 −0.467427 −0.233713 0.972306i \(-0.575088\pi\)
−0.233713 + 0.972306i \(0.575088\pi\)
\(54\) −0.447457 −0.0608912
\(55\) −14.2931 −1.92728
\(56\) 1.70024 0.227204
\(57\) 0 0
\(58\) −3.70578 −0.486593
\(59\) 12.2683 1.59720 0.798601 0.601860i \(-0.205574\pi\)
0.798601 + 0.601860i \(0.205574\pi\)
\(60\) −6.81648 −0.880004
\(61\) −14.4537 −1.85061 −0.925306 0.379222i \(-0.876192\pi\)
−0.925306 + 0.379222i \(0.876192\pi\)
\(62\) −0.550570 −0.0699224
\(63\) 1.00000 0.125988
\(64\) −3.58761 −0.448452
\(65\) −18.2931 −2.26898
\(66\) 1.68865 0.207858
\(67\) 10.0852 1.23211 0.616053 0.787705i \(-0.288731\pi\)
0.616053 + 0.787705i \(0.288731\pi\)
\(68\) −9.16370 −1.11126
\(69\) 8.49448 1.02262
\(70\) −1.69470 −0.202555
\(71\) −2.50800 −0.297645 −0.148823 0.988864i \(-0.547548\pi\)
−0.148823 + 0.988864i \(0.547548\pi\)
\(72\) 1.70024 0.200375
\(73\) −15.1473 −1.77286 −0.886429 0.462865i \(-0.846822\pi\)
−0.886429 + 0.462865i \(0.846822\pi\)
\(74\) 0.311355 0.0361942
\(75\) 9.34434 1.07899
\(76\) 0 0
\(77\) −3.77387 −0.430072
\(78\) 2.16122 0.244710
\(79\) 0.906002 0.101933 0.0509666 0.998700i \(-0.483770\pi\)
0.0509666 + 0.998700i \(0.483770\pi\)
\(80\) 10.7516 1.20206
\(81\) 1.00000 0.111111
\(82\) 3.57252 0.394519
\(83\) 4.01125 0.440292 0.220146 0.975467i \(-0.429347\pi\)
0.220146 + 0.975467i \(0.429347\pi\)
\(84\) −1.79978 −0.196372
\(85\) 19.2837 2.09162
\(86\) 1.45657 0.157066
\(87\) 8.28187 0.887910
\(88\) −6.41648 −0.684000
\(89\) 12.9730 1.37513 0.687567 0.726120i \(-0.258679\pi\)
0.687567 + 0.726120i \(0.258679\pi\)
\(90\) −1.69470 −0.178637
\(91\) −4.83000 −0.506322
\(92\) −15.2882 −1.59391
\(93\) 1.23044 0.127591
\(94\) −0.888863 −0.0916793
\(95\) 0 0
\(96\) −4.67071 −0.476703
\(97\) 15.6600 1.59003 0.795017 0.606588i \(-0.207462\pi\)
0.795017 + 0.606588i \(0.207462\pi\)
\(98\) −0.447457 −0.0452000
\(99\) −3.77387 −0.379288
\(100\) −16.8178 −1.68178
\(101\) 18.4562 1.83646 0.918229 0.396050i \(-0.129619\pi\)
0.918229 + 0.396050i \(0.129619\pi\)
\(102\) −2.27826 −0.225581
\(103\) −7.54774 −0.743701 −0.371850 0.928293i \(-0.621277\pi\)
−0.371850 + 0.928293i \(0.621277\pi\)
\(104\) −8.21217 −0.805269
\(105\) 3.78739 0.369612
\(106\) 1.52266 0.147894
\(107\) −1.72695 −0.166950 −0.0834751 0.996510i \(-0.526602\pi\)
−0.0834751 + 0.996510i \(0.526602\pi\)
\(108\) −1.79978 −0.173184
\(109\) −6.39329 −0.612367 −0.306183 0.951973i \(-0.599052\pi\)
−0.306183 + 0.951973i \(0.599052\pi\)
\(110\) 6.39556 0.609793
\(111\) −0.695831 −0.0660453
\(112\) 2.83878 0.268239
\(113\) 4.28187 0.402805 0.201402 0.979509i \(-0.435450\pi\)
0.201402 + 0.979509i \(0.435450\pi\)
\(114\) 0 0
\(115\) 32.1719 3.00005
\(116\) −14.9056 −1.38395
\(117\) −4.83000 −0.446534
\(118\) −5.48956 −0.505355
\(119\) 5.09156 0.466743
\(120\) 6.43948 0.587841
\(121\) 3.24209 0.294735
\(122\) 6.46743 0.585534
\(123\) −7.98404 −0.719897
\(124\) −2.21453 −0.198870
\(125\) 16.4537 1.47167
\(126\) −0.447457 −0.0398627
\(127\) −15.8431 −1.40585 −0.702925 0.711264i \(-0.748123\pi\)
−0.702925 + 0.711264i \(0.748123\pi\)
\(128\) 10.9467 0.967563
\(129\) −3.25522 −0.286606
\(130\) 8.18539 0.717906
\(131\) 10.7675 0.940764 0.470382 0.882463i \(-0.344116\pi\)
0.470382 + 0.882463i \(0.344116\pi\)
\(132\) 6.79214 0.591180
\(133\) 0 0
\(134\) −4.51271 −0.389839
\(135\) 3.78739 0.325967
\(136\) 8.65688 0.742321
\(137\) −2.42034 −0.206784 −0.103392 0.994641i \(-0.532970\pi\)
−0.103392 + 0.994641i \(0.532970\pi\)
\(138\) −3.80092 −0.323555
\(139\) −1.94817 −0.165242 −0.0826210 0.996581i \(-0.526329\pi\)
−0.0826210 + 0.996581i \(0.526329\pi\)
\(140\) −6.81648 −0.576098
\(141\) 1.98648 0.167292
\(142\) 1.12222 0.0941749
\(143\) 18.2278 1.52429
\(144\) 2.83878 0.236565
\(145\) 31.3667 2.60486
\(146\) 6.77777 0.560932
\(147\) 1.00000 0.0824786
\(148\) 1.25234 0.102942
\(149\) 1.30644 0.107028 0.0535138 0.998567i \(-0.482958\pi\)
0.0535138 + 0.998567i \(0.482958\pi\)
\(150\) −4.18120 −0.341393
\(151\) −4.48079 −0.364641 −0.182321 0.983239i \(-0.558361\pi\)
−0.182321 + 0.983239i \(0.558361\pi\)
\(152\) 0 0
\(153\) 5.09156 0.411628
\(154\) 1.68865 0.136075
\(155\) 4.66016 0.374313
\(156\) 8.69296 0.695993
\(157\) 11.5725 0.923587 0.461794 0.886987i \(-0.347206\pi\)
0.461794 + 0.886987i \(0.347206\pi\)
\(158\) −0.405397 −0.0322517
\(159\) −3.40292 −0.269869
\(160\) −17.6898 −1.39850
\(161\) 8.49448 0.669459
\(162\) −0.447457 −0.0351556
\(163\) −11.1254 −0.871409 −0.435704 0.900090i \(-0.643501\pi\)
−0.435704 + 0.900090i \(0.643501\pi\)
\(164\) 14.3695 1.12207
\(165\) −14.2931 −1.11272
\(166\) −1.79487 −0.139309
\(167\) −2.08522 −0.161359 −0.0806797 0.996740i \(-0.525709\pi\)
−0.0806797 + 0.996740i \(0.525709\pi\)
\(168\) 1.70024 0.131176
\(169\) 10.3289 0.794534
\(170\) −8.62865 −0.661787
\(171\) 0 0
\(172\) 5.85868 0.446721
\(173\) 7.26343 0.552228 0.276114 0.961125i \(-0.410953\pi\)
0.276114 + 0.961125i \(0.410953\pi\)
\(174\) −3.70578 −0.280935
\(175\) 9.34434 0.706366
\(176\) −10.7132 −0.807536
\(177\) 12.2683 0.922145
\(178\) −5.80486 −0.435093
\(179\) 9.84784 0.736062 0.368031 0.929814i \(-0.380032\pi\)
0.368031 + 0.929814i \(0.380032\pi\)
\(180\) −6.81648 −0.508071
\(181\) 5.60183 0.416381 0.208190 0.978088i \(-0.433243\pi\)
0.208190 + 0.978088i \(0.433243\pi\)
\(182\) 2.16122 0.160200
\(183\) −14.4537 −1.06845
\(184\) 14.4427 1.06473
\(185\) −2.63539 −0.193757
\(186\) −0.550570 −0.0403697
\(187\) −19.2149 −1.40513
\(188\) −3.57522 −0.260750
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 8.74519 0.632780 0.316390 0.948629i \(-0.397529\pi\)
0.316390 + 0.948629i \(0.397529\pi\)
\(192\) −3.58761 −0.258914
\(193\) 26.7221 1.92350 0.961749 0.273932i \(-0.0883244\pi\)
0.961749 + 0.273932i \(0.0883244\pi\)
\(194\) −7.00719 −0.503087
\(195\) −18.2931 −1.31000
\(196\) −1.79978 −0.128556
\(197\) 15.3597 1.09434 0.547168 0.837023i \(-0.315706\pi\)
0.547168 + 0.837023i \(0.315706\pi\)
\(198\) 1.68865 0.120007
\(199\) −3.97295 −0.281635 −0.140818 0.990036i \(-0.544973\pi\)
−0.140818 + 0.990036i \(0.544973\pi\)
\(200\) 15.8876 1.12343
\(201\) 10.0852 0.711357
\(202\) −8.25835 −0.581056
\(203\) 8.28187 0.581273
\(204\) −9.16370 −0.641587
\(205\) −30.2387 −2.11196
\(206\) 3.37729 0.235307
\(207\) 8.49448 0.590407
\(208\) −13.7113 −0.950709
\(209\) 0 0
\(210\) −1.69470 −0.116945
\(211\) 9.48956 0.653288 0.326644 0.945147i \(-0.394082\pi\)
0.326644 + 0.945147i \(0.394082\pi\)
\(212\) 6.12451 0.420633
\(213\) −2.50800 −0.171845
\(214\) 0.772735 0.0528231
\(215\) −12.3288 −0.840817
\(216\) 1.70024 0.115687
\(217\) 1.23044 0.0835278
\(218\) 2.86073 0.193753
\(219\) −15.1473 −1.02356
\(220\) 25.7245 1.73435
\(221\) −24.5923 −1.65426
\(222\) 0.311355 0.0208968
\(223\) −7.61106 −0.509674 −0.254837 0.966984i \(-0.582022\pi\)
−0.254837 + 0.966984i \(0.582022\pi\)
\(224\) −4.67071 −0.312075
\(225\) 9.34434 0.622956
\(226\) −1.91595 −0.127447
\(227\) 5.36461 0.356062 0.178031 0.984025i \(-0.443027\pi\)
0.178031 + 0.984025i \(0.443027\pi\)
\(228\) 0 0
\(229\) −11.1139 −0.734427 −0.367214 0.930137i \(-0.619688\pi\)
−0.367214 + 0.930137i \(0.619688\pi\)
\(230\) −14.3956 −0.949215
\(231\) −3.77387 −0.248302
\(232\) 14.0812 0.924474
\(233\) 10.9664 0.718436 0.359218 0.933254i \(-0.383043\pi\)
0.359218 + 0.933254i \(0.383043\pi\)
\(234\) 2.16122 0.141283
\(235\) 7.52357 0.490783
\(236\) −22.0804 −1.43731
\(237\) 0.906002 0.0588511
\(238\) −2.27826 −0.147677
\(239\) −0.101184 −0.00654503 −0.00327252 0.999995i \(-0.501042\pi\)
−0.00327252 + 0.999995i \(0.501042\pi\)
\(240\) 10.7516 0.694011
\(241\) −3.78983 −0.244124 −0.122062 0.992522i \(-0.538951\pi\)
−0.122062 + 0.992522i \(0.538951\pi\)
\(242\) −1.45070 −0.0932543
\(243\) 1.00000 0.0641500
\(244\) 26.0136 1.66535
\(245\) 3.78739 0.241968
\(246\) 3.57252 0.227775
\(247\) 0 0
\(248\) 2.09205 0.132845
\(249\) 4.01125 0.254203
\(250\) −7.36235 −0.465636
\(251\) 7.42769 0.468832 0.234416 0.972136i \(-0.424682\pi\)
0.234416 + 0.972136i \(0.424682\pi\)
\(252\) −1.79978 −0.113376
\(253\) −32.0571 −2.01541
\(254\) 7.08913 0.444811
\(255\) 19.2837 1.20759
\(256\) 2.27703 0.142315
\(257\) −7.13848 −0.445286 −0.222643 0.974900i \(-0.571468\pi\)
−0.222643 + 0.974900i \(0.571468\pi\)
\(258\) 1.45657 0.0906822
\(259\) −0.695831 −0.0432368
\(260\) 32.9236 2.04184
\(261\) 8.28187 0.512635
\(262\) −4.81801 −0.297658
\(263\) 5.55883 0.342772 0.171386 0.985204i \(-0.445175\pi\)
0.171386 + 0.985204i \(0.445175\pi\)
\(264\) −6.41648 −0.394907
\(265\) −12.8882 −0.791715
\(266\) 0 0
\(267\) 12.9730 0.793935
\(268\) −18.1512 −1.10876
\(269\) 16.2299 0.989553 0.494777 0.869020i \(-0.335250\pi\)
0.494777 + 0.869020i \(0.335250\pi\)
\(270\) −1.69470 −0.103136
\(271\) −24.3735 −1.48058 −0.740292 0.672286i \(-0.765313\pi\)
−0.740292 + 0.672286i \(0.765313\pi\)
\(272\) 14.4538 0.876392
\(273\) −4.83000 −0.292325
\(274\) 1.08300 0.0654264
\(275\) −35.2643 −2.12652
\(276\) −15.2882 −0.920242
\(277\) −6.80523 −0.408886 −0.204443 0.978878i \(-0.565538\pi\)
−0.204443 + 0.978878i \(0.565538\pi\)
\(278\) 0.871725 0.0522826
\(279\) 1.23044 0.0736646
\(280\) 6.43948 0.384832
\(281\) 10.5525 0.629509 0.314754 0.949173i \(-0.398078\pi\)
0.314754 + 0.949173i \(0.398078\pi\)
\(282\) −0.888863 −0.0529310
\(283\) −17.4625 −1.03804 −0.519019 0.854762i \(-0.673703\pi\)
−0.519019 + 0.854762i \(0.673703\pi\)
\(284\) 4.51386 0.267848
\(285\) 0 0
\(286\) −8.15617 −0.482284
\(287\) −7.98404 −0.471283
\(288\) −4.67071 −0.275224
\(289\) 8.92400 0.524941
\(290\) −14.0353 −0.824179
\(291\) 15.6600 0.918006
\(292\) 27.2618 1.59538
\(293\) −2.09631 −0.122468 −0.0612339 0.998123i \(-0.519504\pi\)
−0.0612339 + 0.998123i \(0.519504\pi\)
\(294\) −0.447457 −0.0260962
\(295\) 46.4651 2.70530
\(296\) −1.18308 −0.0687651
\(297\) −3.77387 −0.218982
\(298\) −0.584575 −0.0338635
\(299\) −41.0284 −2.37273
\(300\) −16.8178 −0.970975
\(301\) −3.25522 −0.187628
\(302\) 2.00496 0.115373
\(303\) 18.4562 1.06028
\(304\) 0 0
\(305\) −54.7420 −3.13452
\(306\) −2.27826 −0.130239
\(307\) 26.3173 1.50201 0.751004 0.660298i \(-0.229570\pi\)
0.751004 + 0.660298i \(0.229570\pi\)
\(308\) 6.79214 0.387018
\(309\) −7.54774 −0.429376
\(310\) −2.08522 −0.118433
\(311\) 16.9236 0.959650 0.479825 0.877364i \(-0.340700\pi\)
0.479825 + 0.877364i \(0.340700\pi\)
\(312\) −8.21217 −0.464922
\(313\) 17.0137 0.961673 0.480837 0.876810i \(-0.340333\pi\)
0.480837 + 0.876810i \(0.340333\pi\)
\(314\) −5.17821 −0.292223
\(315\) 3.78739 0.213395
\(316\) −1.63061 −0.0917287
\(317\) 0.734133 0.0412330 0.0206165 0.999787i \(-0.493437\pi\)
0.0206165 + 0.999787i \(0.493437\pi\)
\(318\) 1.52266 0.0853865
\(319\) −31.2547 −1.74993
\(320\) −13.5877 −0.759576
\(321\) −1.72695 −0.0963888
\(322\) −3.80092 −0.211817
\(323\) 0 0
\(324\) −1.79978 −0.0999879
\(325\) −45.1332 −2.50354
\(326\) 4.97814 0.275714
\(327\) −6.39329 −0.353550
\(328\) −13.5748 −0.749542
\(329\) 1.98648 0.109518
\(330\) 6.39556 0.352064
\(331\) −13.7700 −0.756868 −0.378434 0.925628i \(-0.623537\pi\)
−0.378434 + 0.925628i \(0.623537\pi\)
\(332\) −7.21938 −0.396215
\(333\) −0.695831 −0.0381313
\(334\) 0.933049 0.0510542
\(335\) 38.1967 2.08691
\(336\) 2.83878 0.154868
\(337\) −24.3217 −1.32488 −0.662442 0.749113i \(-0.730480\pi\)
−0.662442 + 0.749113i \(0.730480\pi\)
\(338\) −4.62176 −0.251391
\(339\) 4.28187 0.232559
\(340\) −34.7065 −1.88223
\(341\) −4.64352 −0.251461
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −5.53465 −0.298409
\(345\) 32.1719 1.73208
\(346\) −3.25008 −0.174725
\(347\) 3.89882 0.209299 0.104650 0.994509i \(-0.466628\pi\)
0.104650 + 0.994509i \(0.466628\pi\)
\(348\) −14.9056 −0.799022
\(349\) −14.6887 −0.786268 −0.393134 0.919481i \(-0.628609\pi\)
−0.393134 + 0.919481i \(0.628609\pi\)
\(350\) −4.18120 −0.223494
\(351\) −4.83000 −0.257807
\(352\) 17.6267 0.939504
\(353\) −21.5453 −1.14674 −0.573370 0.819296i \(-0.694364\pi\)
−0.573370 + 0.819296i \(0.694364\pi\)
\(354\) −5.48956 −0.291767
\(355\) −9.49879 −0.504143
\(356\) −23.3486 −1.23747
\(357\) 5.09156 0.269474
\(358\) −4.40649 −0.232890
\(359\) 3.82343 0.201793 0.100896 0.994897i \(-0.467829\pi\)
0.100896 + 0.994897i \(0.467829\pi\)
\(360\) 6.43948 0.339390
\(361\) 0 0
\(362\) −2.50658 −0.131743
\(363\) 3.24209 0.170166
\(364\) 8.69296 0.455635
\(365\) −57.3688 −3.00282
\(366\) 6.46743 0.338058
\(367\) 10.8542 0.566583 0.283292 0.959034i \(-0.408574\pi\)
0.283292 + 0.959034i \(0.408574\pi\)
\(368\) 24.1139 1.25703
\(369\) −7.98404 −0.415633
\(370\) 1.17922 0.0613048
\(371\) −3.40292 −0.176671
\(372\) −2.21453 −0.114818
\(373\) −27.0779 −1.40204 −0.701021 0.713141i \(-0.747272\pi\)
−0.701021 + 0.713141i \(0.747272\pi\)
\(374\) 8.59784 0.444584
\(375\) 16.4537 0.849668
\(376\) 3.37749 0.174181
\(377\) −40.0015 −2.06018
\(378\) −0.447457 −0.0230147
\(379\) 37.4378 1.92305 0.961526 0.274714i \(-0.0885832\pi\)
0.961526 + 0.274714i \(0.0885832\pi\)
\(380\) 0 0
\(381\) −15.8431 −0.811668
\(382\) −3.91310 −0.200212
\(383\) 9.49443 0.485143 0.242571 0.970134i \(-0.422009\pi\)
0.242571 + 0.970134i \(0.422009\pi\)
\(384\) 10.9467 0.558623
\(385\) −14.2931 −0.728445
\(386\) −11.9570 −0.608595
\(387\) −3.25522 −0.165472
\(388\) −28.1846 −1.43086
\(389\) −11.1139 −0.563497 −0.281749 0.959488i \(-0.590914\pi\)
−0.281749 + 0.959488i \(0.590914\pi\)
\(390\) 8.18539 0.414483
\(391\) 43.2502 2.18725
\(392\) 1.70024 0.0858751
\(393\) 10.7675 0.543150
\(394\) −6.87283 −0.346248
\(395\) 3.43138 0.172652
\(396\) 6.79214 0.341318
\(397\) 19.3278 0.970036 0.485018 0.874504i \(-0.338813\pi\)
0.485018 + 0.874504i \(0.338813\pi\)
\(398\) 1.77773 0.0891094
\(399\) 0 0
\(400\) 26.5265 1.32633
\(401\) −10.9728 −0.547957 −0.273978 0.961736i \(-0.588340\pi\)
−0.273978 + 0.961736i \(0.588340\pi\)
\(402\) −4.51271 −0.225073
\(403\) −5.94304 −0.296044
\(404\) −33.2171 −1.65261
\(405\) 3.78739 0.188197
\(406\) −3.70578 −0.183915
\(407\) 2.62598 0.130165
\(408\) 8.65688 0.428579
\(409\) −3.12165 −0.154356 −0.0771779 0.997017i \(-0.524591\pi\)
−0.0771779 + 0.997017i \(0.524591\pi\)
\(410\) 13.5305 0.668225
\(411\) −2.42034 −0.119387
\(412\) 13.5843 0.669250
\(413\) 12.2683 0.603686
\(414\) −3.80092 −0.186805
\(415\) 15.1922 0.745756
\(416\) 22.5596 1.10607
\(417\) −1.94817 −0.0954025
\(418\) 0 0
\(419\) 15.7219 0.768064 0.384032 0.923320i \(-0.374535\pi\)
0.384032 + 0.923320i \(0.374535\pi\)
\(420\) −6.81648 −0.332610
\(421\) −33.3575 −1.62574 −0.812872 0.582443i \(-0.802097\pi\)
−0.812872 + 0.582443i \(0.802097\pi\)
\(422\) −4.24617 −0.206700
\(423\) 1.98648 0.0965858
\(424\) −5.78578 −0.280982
\(425\) 47.5773 2.30784
\(426\) 1.12222 0.0543719
\(427\) −14.4537 −0.699466
\(428\) 3.10813 0.150237
\(429\) 18.2278 0.880047
\(430\) 5.51661 0.266034
\(431\) 20.5677 0.990709 0.495355 0.868691i \(-0.335038\pi\)
0.495355 + 0.868691i \(0.335038\pi\)
\(432\) 2.83878 0.136581
\(433\) 34.8108 1.67290 0.836450 0.548043i \(-0.184627\pi\)
0.836450 + 0.548043i \(0.184627\pi\)
\(434\) −0.550570 −0.0264282
\(435\) 31.3667 1.50392
\(436\) 11.5065 0.551063
\(437\) 0 0
\(438\) 6.77777 0.323854
\(439\) 0.509832 0.0243329 0.0121665 0.999926i \(-0.496127\pi\)
0.0121665 + 0.999926i \(0.496127\pi\)
\(440\) −24.3017 −1.15854
\(441\) 1.00000 0.0476190
\(442\) 11.0040 0.523406
\(443\) 2.65997 0.126379 0.0631894 0.998002i \(-0.479873\pi\)
0.0631894 + 0.998002i \(0.479873\pi\)
\(444\) 1.25234 0.0594336
\(445\) 49.1338 2.32917
\(446\) 3.40562 0.161261
\(447\) 1.30644 0.0617924
\(448\) −3.58761 −0.169499
\(449\) −0.762659 −0.0359921 −0.0179960 0.999838i \(-0.505729\pi\)
−0.0179960 + 0.999838i \(0.505729\pi\)
\(450\) −4.18120 −0.197103
\(451\) 30.1307 1.41880
\(452\) −7.70643 −0.362480
\(453\) −4.48079 −0.210526
\(454\) −2.40044 −0.112658
\(455\) −18.2931 −0.857595
\(456\) 0 0
\(457\) −16.8810 −0.789662 −0.394831 0.918754i \(-0.629197\pi\)
−0.394831 + 0.918754i \(0.629197\pi\)
\(458\) 4.97300 0.232373
\(459\) 5.09156 0.237654
\(460\) −57.9025 −2.69972
\(461\) −5.86051 −0.272951 −0.136476 0.990643i \(-0.543578\pi\)
−0.136476 + 0.990643i \(0.543578\pi\)
\(462\) 1.68865 0.0785629
\(463\) 19.1991 0.892259 0.446130 0.894968i \(-0.352802\pi\)
0.446130 + 0.894968i \(0.352802\pi\)
\(464\) 23.5104 1.09144
\(465\) 4.66016 0.216110
\(466\) −4.90702 −0.227313
\(467\) 22.7897 1.05458 0.527291 0.849685i \(-0.323208\pi\)
0.527291 + 0.849685i \(0.323208\pi\)
\(468\) 8.69296 0.401832
\(469\) 10.0852 0.465692
\(470\) −3.36647 −0.155284
\(471\) 11.5725 0.533233
\(472\) 20.8591 0.960120
\(473\) 12.2848 0.564854
\(474\) −0.405397 −0.0186205
\(475\) 0 0
\(476\) −9.16370 −0.420018
\(477\) −3.40292 −0.155809
\(478\) 0.0452754 0.00207085
\(479\) 26.9706 1.23232 0.616158 0.787622i \(-0.288688\pi\)
0.616158 + 0.787622i \(0.288688\pi\)
\(480\) −17.6898 −0.807426
\(481\) 3.36087 0.153242
\(482\) 1.69579 0.0772410
\(483\) 8.49448 0.386512
\(484\) −5.83506 −0.265230
\(485\) 59.3106 2.69316
\(486\) −0.447457 −0.0202971
\(487\) 23.1450 1.04880 0.524401 0.851472i \(-0.324289\pi\)
0.524401 + 0.851472i \(0.324289\pi\)
\(488\) −24.5748 −1.11245
\(489\) −11.1254 −0.503108
\(490\) −1.69470 −0.0765586
\(491\) −27.8415 −1.25647 −0.628236 0.778023i \(-0.716223\pi\)
−0.628236 + 0.778023i \(0.716223\pi\)
\(492\) 14.3695 0.647829
\(493\) 42.1677 1.89914
\(494\) 0 0
\(495\) −14.2931 −0.642428
\(496\) 3.49295 0.156838
\(497\) −2.50800 −0.112499
\(498\) −1.79487 −0.0804298
\(499\) −9.53019 −0.426630 −0.213315 0.976983i \(-0.568426\pi\)
−0.213315 + 0.976983i \(0.568426\pi\)
\(500\) −29.6131 −1.32434
\(501\) −2.08522 −0.0931609
\(502\) −3.32358 −0.148338
\(503\) 18.2166 0.812236 0.406118 0.913821i \(-0.366882\pi\)
0.406118 + 0.913821i \(0.366882\pi\)
\(504\) 1.70024 0.0757347
\(505\) 69.9008 3.11054
\(506\) 14.3442 0.637676
\(507\) 10.3289 0.458725
\(508\) 28.5142 1.26511
\(509\) −5.16178 −0.228792 −0.114396 0.993435i \(-0.536493\pi\)
−0.114396 + 0.993435i \(0.536493\pi\)
\(510\) −8.62865 −0.382083
\(511\) −15.1473 −0.670077
\(512\) −22.9123 −1.01259
\(513\) 0 0
\(514\) 3.19417 0.140889
\(515\) −28.5863 −1.25966
\(516\) 5.85868 0.257914
\(517\) −7.49670 −0.329705
\(518\) 0.311355 0.0136801
\(519\) 7.26343 0.318829
\(520\) −31.1027 −1.36394
\(521\) 1.76900 0.0775012 0.0387506 0.999249i \(-0.487662\pi\)
0.0387506 + 0.999249i \(0.487662\pi\)
\(522\) −3.70578 −0.162198
\(523\) −21.7671 −0.951810 −0.475905 0.879497i \(-0.657879\pi\)
−0.475905 + 0.879497i \(0.657879\pi\)
\(524\) −19.3792 −0.846585
\(525\) 9.34434 0.407821
\(526\) −2.48734 −0.108453
\(527\) 6.26487 0.272902
\(528\) −10.7132 −0.466231
\(529\) 49.1562 2.13722
\(530\) 5.76691 0.250499
\(531\) 12.2683 0.532401
\(532\) 0 0
\(533\) 38.5630 1.67035
\(534\) −5.80486 −0.251201
\(535\) −6.54063 −0.282776
\(536\) 17.1473 0.740651
\(537\) 9.84784 0.424966
\(538\) −7.26218 −0.313095
\(539\) −3.77387 −0.162552
\(540\) −6.81648 −0.293335
\(541\) 13.2253 0.568600 0.284300 0.958735i \(-0.408239\pi\)
0.284300 + 0.958735i \(0.408239\pi\)
\(542\) 10.9061 0.468457
\(543\) 5.60183 0.240398
\(544\) −23.7812 −1.01961
\(545\) −24.2139 −1.03721
\(546\) 2.16122 0.0924917
\(547\) −3.56390 −0.152381 −0.0761906 0.997093i \(-0.524276\pi\)
−0.0761906 + 0.997093i \(0.524276\pi\)
\(548\) 4.35609 0.186083
\(549\) −14.4537 −0.616871
\(550\) 15.7793 0.672831
\(551\) 0 0
\(552\) 14.4427 0.614720
\(553\) 0.906002 0.0385271
\(554\) 3.04505 0.129372
\(555\) −2.63539 −0.111866
\(556\) 3.50629 0.148700
\(557\) 13.3471 0.565533 0.282767 0.959189i \(-0.408748\pi\)
0.282767 + 0.959189i \(0.408748\pi\)
\(558\) −0.550570 −0.0233075
\(559\) 15.7227 0.665000
\(560\) 10.7516 0.454337
\(561\) −19.2149 −0.811253
\(562\) −4.72179 −0.199177
\(563\) −9.98157 −0.420673 −0.210337 0.977629i \(-0.567456\pi\)
−0.210337 + 0.977629i \(0.567456\pi\)
\(564\) −3.57522 −0.150544
\(565\) 16.2171 0.682260
\(566\) 7.81373 0.328436
\(567\) 1.00000 0.0419961
\(568\) −4.26421 −0.178922
\(569\) −41.3583 −1.73383 −0.866916 0.498455i \(-0.833901\pi\)
−0.866916 + 0.498455i \(0.833901\pi\)
\(570\) 0 0
\(571\) 4.51906 0.189117 0.0945584 0.995519i \(-0.469856\pi\)
0.0945584 + 0.995519i \(0.469856\pi\)
\(572\) −32.8061 −1.37169
\(573\) 8.74519 0.365336
\(574\) 3.57252 0.149114
\(575\) 79.3753 3.31018
\(576\) −3.58761 −0.149484
\(577\) −27.0388 −1.12564 −0.562820 0.826580i \(-0.690283\pi\)
−0.562820 + 0.826580i \(0.690283\pi\)
\(578\) −3.99311 −0.166091
\(579\) 26.7221 1.11053
\(580\) −56.4532 −2.34409
\(581\) 4.01125 0.166415
\(582\) −7.00719 −0.290457
\(583\) 12.8422 0.531868
\(584\) −25.7541 −1.06571
\(585\) −18.2931 −0.756328
\(586\) 0.938010 0.0387488
\(587\) −22.9706 −0.948097 −0.474048 0.880499i \(-0.657208\pi\)
−0.474048 + 0.880499i \(0.657208\pi\)
\(588\) −1.79978 −0.0742218
\(589\) 0 0
\(590\) −20.7911 −0.855957
\(591\) 15.3597 0.631815
\(592\) −1.97531 −0.0811848
\(593\) 25.1922 1.03452 0.517259 0.855829i \(-0.326952\pi\)
0.517259 + 0.855829i \(0.326952\pi\)
\(594\) 1.68865 0.0692860
\(595\) 19.2837 0.790556
\(596\) −2.35130 −0.0963131
\(597\) −3.97295 −0.162602
\(598\) 18.3584 0.750733
\(599\) −23.7491 −0.970364 −0.485182 0.874413i \(-0.661247\pi\)
−0.485182 + 0.874413i \(0.661247\pi\)
\(600\) 15.8876 0.648610
\(601\) −16.5994 −0.677104 −0.338552 0.940948i \(-0.609937\pi\)
−0.338552 + 0.940948i \(0.609937\pi\)
\(602\) 1.45657 0.0593654
\(603\) 10.0852 0.410702
\(604\) 8.06444 0.328137
\(605\) 12.2791 0.499215
\(606\) −8.25835 −0.335473
\(607\) 3.12740 0.126937 0.0634686 0.997984i \(-0.479784\pi\)
0.0634686 + 0.997984i \(0.479784\pi\)
\(608\) 0 0
\(609\) 8.28187 0.335598
\(610\) 24.4947 0.991762
\(611\) −9.59469 −0.388160
\(612\) −9.16370 −0.370421
\(613\) −12.0219 −0.485560 −0.242780 0.970081i \(-0.578059\pi\)
−0.242780 + 0.970081i \(0.578059\pi\)
\(614\) −11.7759 −0.475235
\(615\) −30.2387 −1.21934
\(616\) −6.41648 −0.258528
\(617\) −16.0263 −0.645193 −0.322596 0.946537i \(-0.604556\pi\)
−0.322596 + 0.946537i \(0.604556\pi\)
\(618\) 3.37729 0.135855
\(619\) −8.50696 −0.341923 −0.170962 0.985278i \(-0.554687\pi\)
−0.170962 + 0.985278i \(0.554687\pi\)
\(620\) −8.38728 −0.336841
\(621\) 8.49448 0.340872
\(622\) −7.57259 −0.303633
\(623\) 12.9730 0.519752
\(624\) −13.7113 −0.548892
\(625\) 15.5951 0.623802
\(626\) −7.61292 −0.304273
\(627\) 0 0
\(628\) −20.8280 −0.831128
\(629\) −3.54287 −0.141263
\(630\) −1.69470 −0.0675183
\(631\) 42.8162 1.70449 0.852243 0.523146i \(-0.175242\pi\)
0.852243 + 0.523146i \(0.175242\pi\)
\(632\) 1.54042 0.0612746
\(633\) 9.48956 0.377176
\(634\) −0.328493 −0.0130461
\(635\) −60.0042 −2.38119
\(636\) 6.12451 0.242853
\(637\) −4.83000 −0.191372
\(638\) 13.9851 0.553677
\(639\) −2.50800 −0.0992150
\(640\) 41.4596 1.63883
\(641\) 15.4409 0.609877 0.304939 0.952372i \(-0.401364\pi\)
0.304939 + 0.952372i \(0.401364\pi\)
\(642\) 0.772735 0.0304974
\(643\) −26.2283 −1.03434 −0.517171 0.855882i \(-0.673015\pi\)
−0.517171 + 0.855882i \(0.673015\pi\)
\(644\) −15.2882 −0.602440
\(645\) −12.3288 −0.485446
\(646\) 0 0
\(647\) −42.8416 −1.68428 −0.842138 0.539262i \(-0.818703\pi\)
−0.842138 + 0.539262i \(0.818703\pi\)
\(648\) 1.70024 0.0667917
\(649\) −46.2991 −1.81740
\(650\) 20.1952 0.792121
\(651\) 1.23044 0.0482248
\(652\) 20.0233 0.784173
\(653\) 14.2200 0.556472 0.278236 0.960513i \(-0.410250\pi\)
0.278236 + 0.960513i \(0.410250\pi\)
\(654\) 2.86073 0.111863
\(655\) 40.7809 1.59344
\(656\) −22.6649 −0.884917
\(657\) −15.1473 −0.590953
\(658\) −0.888863 −0.0346515
\(659\) 13.2053 0.514406 0.257203 0.966357i \(-0.417199\pi\)
0.257203 + 0.966357i \(0.417199\pi\)
\(660\) 25.7245 1.00133
\(661\) −0.529737 −0.0206044 −0.0103022 0.999947i \(-0.503279\pi\)
−0.0103022 + 0.999947i \(0.503279\pi\)
\(662\) 6.16149 0.239473
\(663\) −24.5923 −0.955085
\(664\) 6.82010 0.264671
\(665\) 0 0
\(666\) 0.311355 0.0120647
\(667\) 70.3502 2.72397
\(668\) 3.75295 0.145206
\(669\) −7.61106 −0.294261
\(670\) −17.0914 −0.660298
\(671\) 54.5465 2.10575
\(672\) −4.67071 −0.180177
\(673\) −3.95758 −0.152554 −0.0762768 0.997087i \(-0.524303\pi\)
−0.0762768 + 0.997087i \(0.524303\pi\)
\(674\) 10.8829 0.419194
\(675\) 9.34434 0.359664
\(676\) −18.5899 −0.714994
\(677\) 34.9108 1.34173 0.670865 0.741580i \(-0.265923\pi\)
0.670865 + 0.741580i \(0.265923\pi\)
\(678\) −1.91595 −0.0735818
\(679\) 15.6600 0.600976
\(680\) 32.7870 1.25732
\(681\) 5.36461 0.205572
\(682\) 2.07778 0.0795622
\(683\) 29.8433 1.14192 0.570961 0.820977i \(-0.306571\pi\)
0.570961 + 0.820977i \(0.306571\pi\)
\(684\) 0 0
\(685\) −9.16678 −0.350245
\(686\) −0.447457 −0.0170840
\(687\) −11.1139 −0.424022
\(688\) −9.24085 −0.352304
\(689\) 16.4361 0.626166
\(690\) −14.3956 −0.548030
\(691\) 34.4624 1.31101 0.655505 0.755191i \(-0.272456\pi\)
0.655505 + 0.755191i \(0.272456\pi\)
\(692\) −13.0726 −0.496945
\(693\) −3.77387 −0.143357
\(694\) −1.74455 −0.0662224
\(695\) −7.37850 −0.279883
\(696\) 14.0812 0.533745
\(697\) −40.6512 −1.53978
\(698\) 6.57256 0.248775
\(699\) 10.9664 0.414789
\(700\) −16.8178 −0.635652
\(701\) −24.0484 −0.908297 −0.454148 0.890926i \(-0.650056\pi\)
−0.454148 + 0.890926i \(0.650056\pi\)
\(702\) 2.16122 0.0815700
\(703\) 0 0
\(704\) 13.5392 0.510277
\(705\) 7.52357 0.283354
\(706\) 9.64060 0.362829
\(707\) 18.4562 0.694116
\(708\) −22.0804 −0.829830
\(709\) 46.9216 1.76218 0.881088 0.472951i \(-0.156811\pi\)
0.881088 + 0.472951i \(0.156811\pi\)
\(710\) 4.25030 0.159511
\(711\) 0.906002 0.0339777
\(712\) 22.0572 0.826629
\(713\) 10.4520 0.391429
\(714\) −2.27826 −0.0852616
\(715\) 69.0359 2.58180
\(716\) −17.7240 −0.662376
\(717\) −0.101184 −0.00377878
\(718\) −1.71082 −0.0638472
\(719\) −42.7532 −1.59443 −0.797214 0.603697i \(-0.793694\pi\)
−0.797214 + 0.603697i \(0.793694\pi\)
\(720\) 10.7516 0.400687
\(721\) −7.54774 −0.281092
\(722\) 0 0
\(723\) −3.78983 −0.140945
\(724\) −10.0821 −0.374697
\(725\) 77.3887 2.87414
\(726\) −1.45070 −0.0538404
\(727\) −29.9126 −1.10940 −0.554698 0.832052i \(-0.687166\pi\)
−0.554698 + 0.832052i \(0.687166\pi\)
\(728\) −8.21217 −0.304363
\(729\) 1.00000 0.0370370
\(730\) 25.6701 0.950092
\(731\) −16.5741 −0.613017
\(732\) 26.0136 0.961490
\(733\) −1.63929 −0.0605484 −0.0302742 0.999542i \(-0.509638\pi\)
−0.0302742 + 0.999542i \(0.509638\pi\)
\(734\) −4.85678 −0.179267
\(735\) 3.78739 0.139700
\(736\) −39.6753 −1.46245
\(737\) −38.0603 −1.40197
\(738\) 3.57252 0.131506
\(739\) 31.1692 1.14658 0.573289 0.819353i \(-0.305667\pi\)
0.573289 + 0.819353i \(0.305667\pi\)
\(740\) 4.74312 0.174361
\(741\) 0 0
\(742\) 1.52266 0.0558986
\(743\) 28.6218 1.05003 0.525015 0.851093i \(-0.324060\pi\)
0.525015 + 0.851093i \(0.324060\pi\)
\(744\) 2.09205 0.0766981
\(745\) 4.94799 0.181280
\(746\) 12.1162 0.443606
\(747\) 4.01125 0.146764
\(748\) 34.5826 1.26447
\(749\) −1.72695 −0.0631013
\(750\) −7.36235 −0.268835
\(751\) 10.4730 0.382165 0.191082 0.981574i \(-0.438800\pi\)
0.191082 + 0.981574i \(0.438800\pi\)
\(752\) 5.63917 0.205639
\(753\) 7.42769 0.270680
\(754\) 17.8990 0.651841
\(755\) −16.9705 −0.617620
\(756\) −1.79978 −0.0654574
\(757\) −40.7907 −1.48256 −0.741281 0.671195i \(-0.765781\pi\)
−0.741281 + 0.671195i \(0.765781\pi\)
\(758\) −16.7518 −0.608454
\(759\) −32.0571 −1.16360
\(760\) 0 0
\(761\) −39.8989 −1.44633 −0.723167 0.690674i \(-0.757314\pi\)
−0.723167 + 0.690674i \(0.757314\pi\)
\(762\) 7.08913 0.256812
\(763\) −6.39329 −0.231453
\(764\) −15.7394 −0.569433
\(765\) 19.2837 0.697205
\(766\) −4.24835 −0.153499
\(767\) −59.2562 −2.13962
\(768\) 2.27703 0.0821654
\(769\) 0.847825 0.0305733 0.0152867 0.999883i \(-0.495134\pi\)
0.0152867 + 0.999883i \(0.495134\pi\)
\(770\) 6.39556 0.230480
\(771\) −7.13848 −0.257086
\(772\) −48.0939 −1.73094
\(773\) −13.6395 −0.490579 −0.245290 0.969450i \(-0.578883\pi\)
−0.245290 + 0.969450i \(0.578883\pi\)
\(774\) 1.45657 0.0523554
\(775\) 11.4977 0.413008
\(776\) 26.6258 0.955810
\(777\) −0.695831 −0.0249628
\(778\) 4.97300 0.178291
\(779\) 0 0
\(780\) 32.9236 1.17886
\(781\) 9.46487 0.338680
\(782\) −19.3526 −0.692048
\(783\) 8.28187 0.295970
\(784\) 2.83878 0.101385
\(785\) 43.8297 1.56435
\(786\) −4.81801 −0.171853
\(787\) 22.6717 0.808157 0.404079 0.914724i \(-0.367592\pi\)
0.404079 + 0.914724i \(0.367592\pi\)
\(788\) −27.6442 −0.984783
\(789\) 5.55883 0.197899
\(790\) −1.53540 −0.0546270
\(791\) 4.28187 0.152246
\(792\) −6.41648 −0.228000
\(793\) 69.8116 2.47908
\(794\) −8.64838 −0.306919
\(795\) −12.8882 −0.457097
\(796\) 7.15045 0.253441
\(797\) −42.5032 −1.50554 −0.752770 0.658284i \(-0.771283\pi\)
−0.752770 + 0.658284i \(0.771283\pi\)
\(798\) 0 0
\(799\) 10.1143 0.357817
\(800\) −43.6447 −1.54307
\(801\) 12.9730 0.458378
\(802\) 4.90987 0.173374
\(803\) 57.1639 2.01727
\(804\) −18.1512 −0.640144
\(805\) 32.1719 1.13391
\(806\) 2.65925 0.0936683
\(807\) 16.2299 0.571319
\(808\) 31.3799 1.10394
\(809\) −56.8194 −1.99766 −0.998832 0.0483155i \(-0.984615\pi\)
−0.998832 + 0.0483155i \(0.984615\pi\)
\(810\) −1.69470 −0.0595456
\(811\) −11.1319 −0.390895 −0.195448 0.980714i \(-0.562616\pi\)
−0.195448 + 0.980714i \(0.562616\pi\)
\(812\) −14.9056 −0.523083
\(813\) −24.3735 −0.854815
\(814\) −1.17501 −0.0411841
\(815\) −42.1363 −1.47597
\(816\) 14.4538 0.505985
\(817\) 0 0
\(818\) 1.39681 0.0488382
\(819\) −4.83000 −0.168774
\(820\) 54.4231 1.90054
\(821\) −22.3495 −0.780003 −0.390001 0.920814i \(-0.627525\pi\)
−0.390001 + 0.920814i \(0.627525\pi\)
\(822\) 1.08300 0.0377739
\(823\) 44.7797 1.56092 0.780460 0.625205i \(-0.214985\pi\)
0.780460 + 0.625205i \(0.214985\pi\)
\(824\) −12.8330 −0.447058
\(825\) −35.2643 −1.22775
\(826\) −5.48956 −0.191006
\(827\) −31.7960 −1.10566 −0.552828 0.833295i \(-0.686451\pi\)
−0.552828 + 0.833295i \(0.686451\pi\)
\(828\) −15.2882 −0.531302
\(829\) −0.129908 −0.00451189 −0.00225594 0.999997i \(-0.500718\pi\)
−0.00225594 + 0.999997i \(0.500718\pi\)
\(830\) −6.79786 −0.235957
\(831\) −6.80523 −0.236071
\(832\) 17.3282 0.600747
\(833\) 5.09156 0.176412
\(834\) 0.871725 0.0301854
\(835\) −7.89756 −0.273306
\(836\) 0 0
\(837\) 1.23044 0.0425303
\(838\) −7.03487 −0.243015
\(839\) 46.2508 1.59675 0.798377 0.602157i \(-0.205692\pi\)
0.798377 + 0.602157i \(0.205692\pi\)
\(840\) 6.43948 0.222183
\(841\) 39.5894 1.36515
\(842\) 14.9260 0.514385
\(843\) 10.5525 0.363447
\(844\) −17.0791 −0.587888
\(845\) 39.1198 1.34576
\(846\) −0.888863 −0.0305598
\(847\) 3.24209 0.111400
\(848\) −9.66013 −0.331730
\(849\) −17.4625 −0.599312
\(850\) −21.2888 −0.730200
\(851\) −5.91072 −0.202617
\(852\) 4.51386 0.154642
\(853\) −1.67756 −0.0574385 −0.0287192 0.999588i \(-0.509143\pi\)
−0.0287192 + 0.999588i \(0.509143\pi\)
\(854\) 6.46743 0.221311
\(855\) 0 0
\(856\) −2.93622 −0.100358
\(857\) 20.3909 0.696540 0.348270 0.937394i \(-0.386769\pi\)
0.348270 + 0.937394i \(0.386769\pi\)
\(858\) −8.15617 −0.278447
\(859\) −34.2508 −1.16862 −0.584311 0.811530i \(-0.698635\pi\)
−0.584311 + 0.811530i \(0.698635\pi\)
\(860\) 22.1891 0.756643
\(861\) −7.98404 −0.272095
\(862\) −9.20315 −0.313460
\(863\) 0.402083 0.0136871 0.00684353 0.999977i \(-0.497822\pi\)
0.00684353 + 0.999977i \(0.497822\pi\)
\(864\) −4.67071 −0.158901
\(865\) 27.5095 0.935350
\(866\) −15.5763 −0.529306
\(867\) 8.92400 0.303075
\(868\) −2.21453 −0.0751659
\(869\) −3.41913 −0.115986
\(870\) −14.0353 −0.475840
\(871\) −48.7117 −1.65053
\(872\) −10.8701 −0.368109
\(873\) 15.6600 0.530011
\(874\) 0 0
\(875\) 16.4537 0.556238
\(876\) 27.2618 0.921092
\(877\) −36.4949 −1.23235 −0.616173 0.787611i \(-0.711318\pi\)
−0.616173 + 0.787611i \(0.711318\pi\)
\(878\) −0.228128 −0.00769895
\(879\) −2.09631 −0.0707068
\(880\) −40.5750 −1.36778
\(881\) −0.808269 −0.0272313 −0.0136156 0.999907i \(-0.504334\pi\)
−0.0136156 + 0.999907i \(0.504334\pi\)
\(882\) −0.447457 −0.0150667
\(883\) 0.501818 0.0168875 0.00844375 0.999964i \(-0.497312\pi\)
0.00844375 + 0.999964i \(0.497312\pi\)
\(884\) 44.2607 1.48865
\(885\) 46.4651 1.56191
\(886\) −1.19022 −0.0399863
\(887\) −21.0336 −0.706241 −0.353120 0.935578i \(-0.614879\pi\)
−0.353120 + 0.935578i \(0.614879\pi\)
\(888\) −1.18308 −0.0397016
\(889\) −15.8431 −0.531362
\(890\) −21.9853 −0.736949
\(891\) −3.77387 −0.126429
\(892\) 13.6982 0.458651
\(893\) 0 0
\(894\) −0.584575 −0.0195511
\(895\) 37.2976 1.24672
\(896\) 10.9467 0.365705
\(897\) −41.0284 −1.36990
\(898\) 0.341257 0.0113879
\(899\) 10.1904 0.339867
\(900\) −16.8178 −0.560593
\(901\) −17.3262 −0.577218
\(902\) −13.4822 −0.448909
\(903\) −3.25522 −0.108327
\(904\) 7.28021 0.242136
\(905\) 21.2163 0.705255
\(906\) 2.00496 0.0666104
\(907\) 5.77219 0.191662 0.0958312 0.995398i \(-0.469449\pi\)
0.0958312 + 0.995398i \(0.469449\pi\)
\(908\) −9.65514 −0.320417
\(909\) 18.4562 0.612153
\(910\) 8.18539 0.271343
\(911\) −56.0333 −1.85647 −0.928233 0.371998i \(-0.878673\pi\)
−0.928233 + 0.371998i \(0.878673\pi\)
\(912\) 0 0
\(913\) −15.1380 −0.500993
\(914\) 7.55354 0.249849
\(915\) −54.7420 −1.80971
\(916\) 20.0026 0.660905
\(917\) 10.7675 0.355575
\(918\) −2.27826 −0.0751937
\(919\) 47.4364 1.56478 0.782391 0.622788i \(-0.214000\pi\)
0.782391 + 0.622788i \(0.214000\pi\)
\(920\) 54.7000 1.80341
\(921\) 26.3173 0.867184
\(922\) 2.62233 0.0863618
\(923\) 12.1137 0.398726
\(924\) 6.79214 0.223445
\(925\) −6.50208 −0.213787
\(926\) −8.59079 −0.282311
\(927\) −7.54774 −0.247900
\(928\) −38.6822 −1.26981
\(929\) −29.2748 −0.960474 −0.480237 0.877139i \(-0.659449\pi\)
−0.480237 + 0.877139i \(0.659449\pi\)
\(930\) −2.08522 −0.0683772
\(931\) 0 0
\(932\) −19.7372 −0.646514
\(933\) 16.9236 0.554054
\(934\) −10.1974 −0.333670
\(935\) −72.7743 −2.37998
\(936\) −8.21217 −0.268423
\(937\) 18.3167 0.598380 0.299190 0.954194i \(-0.403284\pi\)
0.299190 + 0.954194i \(0.403284\pi\)
\(938\) −4.51271 −0.147345
\(939\) 17.0137 0.555222
\(940\) −13.5408 −0.441652
\(941\) −37.1705 −1.21172 −0.605862 0.795570i \(-0.707172\pi\)
−0.605862 + 0.795570i \(0.707172\pi\)
\(942\) −5.17821 −0.168715
\(943\) −67.8203 −2.20853
\(944\) 34.8271 1.13353
\(945\) 3.78739 0.123204
\(946\) −5.49691 −0.178720
\(947\) 48.7220 1.58325 0.791626 0.611006i \(-0.209235\pi\)
0.791626 + 0.611006i \(0.209235\pi\)
\(948\) −1.63061 −0.0529596
\(949\) 73.1615 2.37492
\(950\) 0 0
\(951\) 0.734133 0.0238059
\(952\) 8.65688 0.280571
\(953\) 41.7422 1.35216 0.676081 0.736827i \(-0.263677\pi\)
0.676081 + 0.736827i \(0.263677\pi\)
\(954\) 1.52266 0.0492979
\(955\) 33.1215 1.07179
\(956\) 0.182109 0.00588982
\(957\) −31.2547 −1.01032
\(958\) −12.0682 −0.389905
\(959\) −2.42034 −0.0781569
\(960\) −13.5877 −0.438541
\(961\) −29.4860 −0.951162
\(962\) −1.50384 −0.0484859
\(963\) −1.72695 −0.0556501
\(964\) 6.82087 0.219685
\(965\) 101.207 3.25797
\(966\) −3.80092 −0.122292
\(967\) 40.1803 1.29211 0.646056 0.763290i \(-0.276417\pi\)
0.646056 + 0.763290i \(0.276417\pi\)
\(968\) 5.51233 0.177173
\(969\) 0 0
\(970\) −26.5390 −0.852115
\(971\) 7.32895 0.235197 0.117599 0.993061i \(-0.462480\pi\)
0.117599 + 0.993061i \(0.462480\pi\)
\(972\) −1.79978 −0.0577280
\(973\) −1.94817 −0.0624556
\(974\) −10.3564 −0.331841
\(975\) −45.1332 −1.44542
\(976\) −41.0310 −1.31337
\(977\) −34.9855 −1.11929 −0.559643 0.828734i \(-0.689062\pi\)
−0.559643 + 0.828734i \(0.689062\pi\)
\(978\) 4.97814 0.159183
\(979\) −48.9584 −1.56472
\(980\) −6.81648 −0.217745
\(981\) −6.39329 −0.204122
\(982\) 12.4579 0.397548
\(983\) −47.7039 −1.52152 −0.760759 0.649034i \(-0.775173\pi\)
−0.760759 + 0.649034i \(0.775173\pi\)
\(984\) −13.5748 −0.432748
\(985\) 58.1734 1.85356
\(986\) −18.8682 −0.600887
\(987\) 1.98648 0.0632302
\(988\) 0 0
\(989\) −27.6514 −0.879263
\(990\) 6.39556 0.203264
\(991\) −26.4080 −0.838878 −0.419439 0.907784i \(-0.637773\pi\)
−0.419439 + 0.907784i \(0.637773\pi\)
\(992\) −5.74704 −0.182469
\(993\) −13.7700 −0.436978
\(994\) 1.12222 0.0355948
\(995\) −15.0471 −0.477026
\(996\) −7.21938 −0.228755
\(997\) −11.4263 −0.361874 −0.180937 0.983495i \(-0.557913\pi\)
−0.180937 + 0.983495i \(0.557913\pi\)
\(998\) 4.26435 0.134986
\(999\) −0.695831 −0.0220151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7581.2.a.w.1.3 5
19.18 odd 2 399.2.a.g.1.3 5
57.56 even 2 1197.2.a.o.1.3 5
76.75 even 2 6384.2.a.cf.1.5 5
95.94 odd 2 9975.2.a.bp.1.3 5
133.132 even 2 2793.2.a.bg.1.3 5
399.398 odd 2 8379.2.a.cb.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.g.1.3 5 19.18 odd 2
1197.2.a.o.1.3 5 57.56 even 2
2793.2.a.bg.1.3 5 133.132 even 2
6384.2.a.cf.1.5 5 76.75 even 2
7581.2.a.w.1.3 5 1.1 even 1 trivial
8379.2.a.cb.1.3 5 399.398 odd 2
9975.2.a.bp.1.3 5 95.94 odd 2