Properties

Label 756.3.p.a.397.9
Level $756$
Weight $3$
Character 756.397
Analytic conductor $20.600$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(397,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.397"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 397.9
Character \(\chi\) \(=\) 756.397
Dual form 756.3.p.a.577.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.963344i q^{5} +(6.86265 - 1.37988i) q^{7} -8.27537 q^{11} +(0.385122 - 0.222350i) q^{13} +(4.35489 - 2.51430i) q^{17} +(19.3354 + 11.1633i) q^{19} +15.0853 q^{23} +24.0720 q^{25} +(12.3863 - 21.4537i) q^{29} +(-21.0881 - 12.1752i) q^{31} +(1.32930 + 6.61109i) q^{35} +(-15.1201 + 26.1888i) q^{37} +(-21.0544 + 12.1558i) q^{41} +(11.5760 - 20.0503i) q^{43} +(-8.13670 + 4.69773i) q^{47} +(45.1918 - 18.9393i) q^{49} +(44.7372 + 77.4871i) q^{53} -7.97203i q^{55} +(23.7510 + 13.7127i) q^{59} +(68.9235 - 39.7930i) q^{61} +(0.214200 + 0.371005i) q^{65} +(7.09042 - 12.2810i) q^{67} +133.436 q^{71} +(51.2871 - 29.6106i) q^{73} +(-56.7910 + 11.4191i) q^{77} +(-9.98363 - 17.2921i) q^{79} +(101.021 + 58.3246i) q^{83} +(2.42213 + 4.19526i) q^{85} +(105.064 + 60.6588i) q^{89} +(2.33614 - 2.05734i) q^{91} +(-10.7541 + 18.6266i) q^{95} +(-53.2313 - 30.7331i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{7} + 12 q^{11} + 15 q^{13} + 27 q^{17} - 30 q^{23} - 160 q^{25} - 24 q^{29} - 24 q^{31} - 141 q^{35} + 11 q^{37} + 90 q^{41} - 16 q^{43} - 108 q^{47} - 61 q^{49} - 54 q^{53} - 45 q^{59} - 165 q^{61}+ \cdots - 57 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.963344i 0.192669i 0.995349 + 0.0963344i \(0.0307118\pi\)
−0.995349 + 0.0963344i \(0.969288\pi\)
\(6\) 0 0
\(7\) 6.86265 1.37988i 0.980378 0.197126i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.27537 −0.752307 −0.376153 0.926557i \(-0.622753\pi\)
−0.376153 + 0.926557i \(0.622753\pi\)
\(12\) 0 0
\(13\) 0.385122 0.222350i 0.0296248 0.0171039i −0.485114 0.874451i \(-0.661222\pi\)
0.514739 + 0.857347i \(0.327889\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.35489 2.51430i 0.256170 0.147900i −0.366416 0.930451i \(-0.619415\pi\)
0.622586 + 0.782551i \(0.286082\pi\)
\(18\) 0 0
\(19\) 19.3354 + 11.1633i 1.01765 + 0.587542i 0.913423 0.407011i \(-0.133429\pi\)
0.104230 + 0.994553i \(0.466762\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 15.0853 0.655883 0.327942 0.944698i \(-0.393645\pi\)
0.327942 + 0.944698i \(0.393645\pi\)
\(24\) 0 0
\(25\) 24.0720 0.962879
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 12.3863 21.4537i 0.427113 0.739782i −0.569502 0.821990i \(-0.692864\pi\)
0.996615 + 0.0822080i \(0.0261972\pi\)
\(30\) 0 0
\(31\) −21.0881 12.1752i −0.680263 0.392750i 0.119691 0.992811i \(-0.461810\pi\)
−0.799954 + 0.600061i \(0.795143\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.32930 + 6.61109i 0.0379801 + 0.188888i
\(36\) 0 0
\(37\) −15.1201 + 26.1888i −0.408652 + 0.707806i −0.994739 0.102442i \(-0.967334\pi\)
0.586087 + 0.810248i \(0.300668\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −21.0544 + 12.1558i −0.513523 + 0.296483i −0.734281 0.678846i \(-0.762480\pi\)
0.220758 + 0.975329i \(0.429147\pi\)
\(42\) 0 0
\(43\) 11.5760 20.0503i 0.269210 0.466286i −0.699448 0.714684i \(-0.746571\pi\)
0.968658 + 0.248398i \(0.0799041\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.13670 + 4.69773i −0.173121 + 0.0999517i −0.584057 0.811713i \(-0.698535\pi\)
0.410935 + 0.911664i \(0.365202\pi\)
\(48\) 0 0
\(49\) 45.1918 18.9393i 0.922282 0.386517i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 44.7372 + 77.4871i 0.844098 + 1.46202i 0.886402 + 0.462915i \(0.153197\pi\)
−0.0423047 + 0.999105i \(0.513470\pi\)
\(54\) 0 0
\(55\) 7.97203i 0.144946i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 23.7510 + 13.7127i 0.402560 + 0.232418i 0.687588 0.726101i \(-0.258670\pi\)
−0.285028 + 0.958519i \(0.592003\pi\)
\(60\) 0 0
\(61\) 68.9235 39.7930i 1.12989 0.652344i 0.185985 0.982553i \(-0.440452\pi\)
0.943908 + 0.330208i \(0.107119\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.214200 + 0.371005i 0.00329538 + 0.00570777i
\(66\) 0 0
\(67\) 7.09042 12.2810i 0.105827 0.183298i −0.808249 0.588841i \(-0.799584\pi\)
0.914076 + 0.405543i \(0.132918\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 133.436 1.87938 0.939688 0.342032i \(-0.111115\pi\)
0.939688 + 0.342032i \(0.111115\pi\)
\(72\) 0 0
\(73\) 51.2871 29.6106i 0.702563 0.405625i −0.105738 0.994394i \(-0.533721\pi\)
0.808301 + 0.588769i \(0.200387\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −56.7910 + 11.4191i −0.737545 + 0.148299i
\(78\) 0 0
\(79\) −9.98363 17.2921i −0.126375 0.218888i 0.795895 0.605435i \(-0.207001\pi\)
−0.922270 + 0.386547i \(0.873668\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 101.021 + 58.3246i 1.21712 + 0.702705i 0.964301 0.264808i \(-0.0853085\pi\)
0.252820 + 0.967513i \(0.418642\pi\)
\(84\) 0 0
\(85\) 2.42213 + 4.19526i 0.0284957 + 0.0493559i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 105.064 + 60.6588i 1.18050 + 0.681560i 0.956129 0.292945i \(-0.0946352\pi\)
0.224367 + 0.974505i \(0.427969\pi\)
\(90\) 0 0
\(91\) 2.33614 2.05734i 0.0256719 0.0226081i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.7541 + 18.6266i −0.113201 + 0.196070i
\(96\) 0 0
\(97\) −53.2313 30.7331i −0.548776 0.316836i 0.199852 0.979826i \(-0.435954\pi\)
−0.748628 + 0.662990i \(0.769287\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 119.021i 1.17842i 0.807979 + 0.589212i \(0.200562\pi\)
−0.807979 + 0.589212i \(0.799438\pi\)
\(102\) 0 0
\(103\) 97.0278i 0.942018i −0.882129 0.471009i \(-0.843890\pi\)
0.882129 0.471009i \(-0.156110\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 38.1581 66.0918i 0.356618 0.617681i −0.630775 0.775965i \(-0.717263\pi\)
0.987394 + 0.158285i \(0.0505964\pi\)
\(108\) 0 0
\(109\) 19.1865 + 33.2320i 0.176023 + 0.304880i 0.940515 0.339753i \(-0.110343\pi\)
−0.764492 + 0.644633i \(0.777010\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −102.540 177.605i −0.907437 1.57173i −0.817611 0.575770i \(-0.804702\pi\)
−0.0898260 0.995957i \(-0.528631\pi\)
\(114\) 0 0
\(115\) 14.5323i 0.126368i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 26.4166 23.2640i 0.221988 0.195496i
\(120\) 0 0
\(121\) −52.5182 −0.434035
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 47.2732i 0.378185i
\(126\) 0 0
\(127\) −71.8116 −0.565446 −0.282723 0.959202i \(-0.591238\pi\)
−0.282723 + 0.959202i \(0.591238\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.55009i 0.0576343i −0.999585 0.0288172i \(-0.990826\pi\)
0.999585 0.0288172i \(-0.00917405\pi\)
\(132\) 0 0
\(133\) 148.096 + 49.9292i 1.11350 + 0.375407i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −203.912 −1.48841 −0.744203 0.667954i \(-0.767170\pi\)
−0.744203 + 0.667954i \(0.767170\pi\)
\(138\) 0 0
\(139\) −77.3785 + 44.6745i −0.556680 + 0.321399i −0.751812 0.659378i \(-0.770820\pi\)
0.195132 + 0.980777i \(0.437486\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.18703 + 1.84003i −0.0222869 + 0.0128674i
\(144\) 0 0
\(145\) 20.6673 + 11.9323i 0.142533 + 0.0822914i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −126.472 −0.848808 −0.424404 0.905473i \(-0.639516\pi\)
−0.424404 + 0.905473i \(0.639516\pi\)
\(150\) 0 0
\(151\) 33.9775 0.225017 0.112508 0.993651i \(-0.464111\pi\)
0.112508 + 0.993651i \(0.464111\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 11.7289 20.3151i 0.0756706 0.131065i
\(156\) 0 0
\(157\) 39.5383 + 22.8274i 0.251836 + 0.145398i 0.620605 0.784124i \(-0.286887\pi\)
−0.368769 + 0.929521i \(0.620220\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 103.525 20.8160i 0.643013 0.129292i
\(162\) 0 0
\(163\) 65.6487 113.707i 0.402753 0.697588i −0.591304 0.806449i \(-0.701387\pi\)
0.994057 + 0.108860i \(0.0347201\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 205.982 118.924i 1.23343 0.712118i 0.265683 0.964060i \(-0.414403\pi\)
0.967742 + 0.251942i \(0.0810692\pi\)
\(168\) 0 0
\(169\) −84.4011 + 146.187i −0.499415 + 0.865012i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −268.118 + 154.798i −1.54981 + 0.894785i −0.551657 + 0.834071i \(0.686004\pi\)
−0.998155 + 0.0607137i \(0.980662\pi\)
\(174\) 0 0
\(175\) 165.197 33.2165i 0.943985 0.189809i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −151.419 262.266i −0.845917 1.46517i −0.884822 0.465928i \(-0.845720\pi\)
0.0389054 0.999243i \(-0.487613\pi\)
\(180\) 0 0
\(181\) 205.717i 1.13656i 0.822835 + 0.568280i \(0.192391\pi\)
−0.822835 + 0.568280i \(0.807609\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −25.2288 14.5659i −0.136372 0.0787344i
\(186\) 0 0
\(187\) −36.0383 + 20.8067i −0.192718 + 0.111266i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 36.5455 + 63.2987i 0.191338 + 0.331407i 0.945694 0.325059i \(-0.105384\pi\)
−0.754356 + 0.656465i \(0.772051\pi\)
\(192\) 0 0
\(193\) −177.413 + 307.288i −0.919236 + 1.59216i −0.118658 + 0.992935i \(0.537859\pi\)
−0.800578 + 0.599229i \(0.795474\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.81361 0.0142823 0.00714113 0.999975i \(-0.497727\pi\)
0.00714113 + 0.999975i \(0.497727\pi\)
\(198\) 0 0
\(199\) 92.6937 53.5167i 0.465797 0.268928i −0.248681 0.968585i \(-0.579997\pi\)
0.714479 + 0.699657i \(0.246664\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 55.3991 164.321i 0.272902 0.809461i
\(204\) 0 0
\(205\) −11.7102 20.2827i −0.0571230 0.0989399i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −160.008 92.3805i −0.765587 0.442012i
\(210\) 0 0
\(211\) 0.310904 + 0.538502i 0.00147348 + 0.00255214i 0.866761 0.498723i \(-0.166198\pi\)
−0.865288 + 0.501276i \(0.832864\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.3153 + 11.1517i 0.0898387 + 0.0518684i
\(216\) 0 0
\(217\) −161.521 54.4552i −0.744336 0.250946i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.11811 1.93662i 0.00505932 0.00876299i
\(222\) 0 0
\(223\) −347.765 200.782i −1.55948 0.900368i −0.997306 0.0733508i \(-0.976631\pi\)
−0.562177 0.827017i \(-0.690036\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 391.807i 1.72602i 0.505187 + 0.863010i \(0.331424\pi\)
−0.505187 + 0.863010i \(0.668576\pi\)
\(228\) 0 0
\(229\) 128.808i 0.562480i −0.959637 0.281240i \(-0.909254\pi\)
0.959637 0.281240i \(-0.0907458\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 17.8368 30.8942i 0.0765526 0.132593i −0.825208 0.564829i \(-0.808942\pi\)
0.901760 + 0.432236i \(0.142275\pi\)
\(234\) 0 0
\(235\) −4.52553 7.83844i −0.0192576 0.0333551i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −142.757 247.262i −0.597308 1.03457i −0.993217 0.116278i \(-0.962904\pi\)
0.395909 0.918290i \(-0.370430\pi\)
\(240\) 0 0
\(241\) 138.284i 0.573792i 0.957962 + 0.286896i \(0.0926234\pi\)
−0.957962 + 0.286896i \(0.907377\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.2451 + 43.5353i 0.0744696 + 0.177695i
\(246\) 0 0
\(247\) 9.92866 0.0401970
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.7450i 0.118506i −0.998243 0.0592530i \(-0.981128\pi\)
0.998243 0.0592530i \(-0.0188719\pi\)
\(252\) 0 0
\(253\) −124.837 −0.493425
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 289.004i 1.12453i −0.826957 0.562265i \(-0.809930\pi\)
0.826957 0.562265i \(-0.190070\pi\)
\(258\) 0 0
\(259\) −67.6265 + 200.589i −0.261106 + 0.774473i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −316.849 −1.20475 −0.602375 0.798213i \(-0.705779\pi\)
−0.602375 + 0.798213i \(0.705779\pi\)
\(264\) 0 0
\(265\) −74.6467 + 43.0973i −0.281686 + 0.162631i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −154.361 + 89.1206i −0.573834 + 0.331303i −0.758679 0.651464i \(-0.774155\pi\)
0.184845 + 0.982768i \(0.440822\pi\)
\(270\) 0 0
\(271\) −299.052 172.658i −1.10351 0.637114i −0.166373 0.986063i \(-0.553205\pi\)
−0.937142 + 0.348948i \(0.886539\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −199.204 −0.724380
\(276\) 0 0
\(277\) −374.339 −1.35140 −0.675702 0.737175i \(-0.736159\pi\)
−0.675702 + 0.737175i \(0.736159\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 168.976 292.676i 0.601340 1.04155i −0.391279 0.920272i \(-0.627967\pi\)
0.992618 0.121279i \(-0.0386995\pi\)
\(282\) 0 0
\(283\) 370.026 + 213.634i 1.30751 + 0.754892i 0.981680 0.190536i \(-0.0610225\pi\)
0.325831 + 0.945428i \(0.394356\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −127.716 + 112.474i −0.445002 + 0.391894i
\(288\) 0 0
\(289\) −131.857 + 228.382i −0.456251 + 0.790250i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 54.0168 31.1866i 0.184358 0.106439i −0.404981 0.914325i \(-0.632722\pi\)
0.589338 + 0.807886i \(0.299388\pi\)
\(294\) 0 0
\(295\) −13.2100 + 22.8804i −0.0447797 + 0.0775607i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.80968 3.35422i 0.0194304 0.0112181i
\(300\) 0 0
\(301\) 51.7752 153.572i 0.172011 0.510205i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 38.3343 + 66.3970i 0.125686 + 0.217695i
\(306\) 0 0
\(307\) 473.374i 1.54194i −0.636874 0.770968i \(-0.719773\pi\)
0.636874 0.770968i \(-0.280227\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 125.112 + 72.2333i 0.402288 + 0.232261i 0.687471 0.726212i \(-0.258721\pi\)
−0.285183 + 0.958473i \(0.592054\pi\)
\(312\) 0 0
\(313\) 16.2589 9.38707i 0.0519453 0.0299906i −0.473802 0.880631i \(-0.657119\pi\)
0.525748 + 0.850641i \(0.323786\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 13.0645 + 22.6284i 0.0412131 + 0.0713831i 0.885896 0.463884i \(-0.153544\pi\)
−0.844683 + 0.535267i \(0.820211\pi\)
\(318\) 0 0
\(319\) −102.501 + 177.537i −0.321320 + 0.556543i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 112.271 0.347590
\(324\) 0 0
\(325\) 9.27064 5.35241i 0.0285251 0.0164690i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −49.3570 + 43.4666i −0.150021 + 0.132117i
\(330\) 0 0
\(331\) −140.657 243.624i −0.424944 0.736025i 0.571471 0.820622i \(-0.306373\pi\)
−0.996415 + 0.0845973i \(0.973040\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 11.8308 + 6.83051i 0.0353158 + 0.0203896i
\(336\) 0 0
\(337\) −94.4669 163.621i −0.280317 0.485523i 0.691146 0.722715i \(-0.257106\pi\)
−0.971463 + 0.237192i \(0.923773\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 174.512 + 100.755i 0.511766 + 0.295468i
\(342\) 0 0
\(343\) 284.002 192.333i 0.827993 0.560738i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −39.7467 + 68.8433i −0.114544 + 0.198396i −0.917597 0.397511i \(-0.869874\pi\)
0.803054 + 0.595907i \(0.203207\pi\)
\(348\) 0 0
\(349\) 256.280 + 147.963i 0.734327 + 0.423964i 0.820003 0.572359i \(-0.193972\pi\)
−0.0856763 + 0.996323i \(0.527305\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 479.848i 1.35934i 0.733516 + 0.679672i \(0.237878\pi\)
−0.733516 + 0.679672i \(0.762122\pi\)
\(354\) 0 0
\(355\) 128.544i 0.362097i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 267.870 463.964i 0.746156 1.29238i −0.203497 0.979076i \(-0.565231\pi\)
0.949653 0.313304i \(-0.101436\pi\)
\(360\) 0 0
\(361\) 68.7387 + 119.059i 0.190412 + 0.329803i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.5252 + 49.4071i 0.0781512 + 0.135362i
\(366\) 0 0
\(367\) 272.723i 0.743115i 0.928410 + 0.371557i \(0.121176\pi\)
−0.928410 + 0.371557i \(0.878824\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 413.939 + 470.034i 1.11574 + 1.26694i
\(372\) 0 0
\(373\) −671.704 −1.80082 −0.900408 0.435047i \(-0.856732\pi\)
−0.900408 + 0.435047i \(0.856732\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11.0164i 0.0292212i
\(378\) 0 0
\(379\) −140.974 −0.371962 −0.185981 0.982553i \(-0.559546\pi\)
−0.185981 + 0.982553i \(0.559546\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 397.648i 1.03825i −0.854700 0.519123i \(-0.826259\pi\)
0.854700 0.519123i \(-0.173741\pi\)
\(384\) 0 0
\(385\) −11.0005 54.7092i −0.0285726 0.142102i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −518.270 −1.33231 −0.666157 0.745812i \(-0.732062\pi\)
−0.666157 + 0.745812i \(0.732062\pi\)
\(390\) 0 0
\(391\) 65.6949 37.9289i 0.168018 0.0970050i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.6583 9.61766i 0.0421729 0.0243485i
\(396\) 0 0
\(397\) 301.974 + 174.345i 0.760640 + 0.439156i 0.829525 0.558469i \(-0.188611\pi\)
−0.0688856 + 0.997625i \(0.521944\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −210.523 −0.524996 −0.262498 0.964933i \(-0.584546\pi\)
−0.262498 + 0.964933i \(0.584546\pi\)
\(402\) 0 0
\(403\) −10.8287 −0.0268702
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 125.125 216.722i 0.307431 0.532487i
\(408\) 0 0
\(409\) 464.682 + 268.285i 1.13614 + 0.655952i 0.945473 0.325702i \(-0.105601\pi\)
0.190670 + 0.981654i \(0.438934\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 181.917 + 61.3315i 0.440476 + 0.148502i
\(414\) 0 0
\(415\) −56.1866 + 97.3180i −0.135389 + 0.234501i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −368.723 + 212.882i −0.880007 + 0.508072i −0.870661 0.491884i \(-0.836308\pi\)
−0.00934643 + 0.999956i \(0.502975\pi\)
\(420\) 0 0
\(421\) 399.672 692.253i 0.949341 1.64431i 0.202523 0.979277i \(-0.435086\pi\)
0.746818 0.665029i \(-0.231581\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 104.831 60.5241i 0.246661 0.142410i
\(426\) 0 0
\(427\) 418.088 368.192i 0.979129 0.862276i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.3100 57.6946i −0.0772854 0.133862i 0.824792 0.565436i \(-0.191292\pi\)
−0.902078 + 0.431573i \(0.857959\pi\)
\(432\) 0 0
\(433\) 532.074i 1.22881i 0.788991 + 0.614405i \(0.210604\pi\)
−0.788991 + 0.614405i \(0.789396\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 291.681 + 168.402i 0.667461 + 0.385359i
\(438\) 0 0
\(439\) 222.308 128.350i 0.506397 0.292368i −0.224955 0.974369i \(-0.572223\pi\)
0.731351 + 0.682001i \(0.238890\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 45.0204 + 77.9776i 0.101626 + 0.176022i 0.912355 0.409400i \(-0.134262\pi\)
−0.810729 + 0.585422i \(0.800929\pi\)
\(444\) 0 0
\(445\) −58.4353 + 101.213i −0.131315 + 0.227445i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 238.627 0.531464 0.265732 0.964047i \(-0.414386\pi\)
0.265732 + 0.964047i \(0.414386\pi\)
\(450\) 0 0
\(451\) 174.233 100.594i 0.386327 0.223046i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.98192 + 2.25050i 0.00435587 + 0.00494616i
\(456\) 0 0
\(457\) 312.577 + 541.400i 0.683977 + 1.18468i 0.973757 + 0.227589i \(0.0730843\pi\)
−0.289781 + 0.957093i \(0.593582\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −612.475 353.613i −1.32858 0.767056i −0.343500 0.939153i \(-0.611612\pi\)
−0.985080 + 0.172097i \(0.944946\pi\)
\(462\) 0 0
\(463\) −420.069 727.582i −0.907277 1.57145i −0.817831 0.575459i \(-0.804823\pi\)
−0.0894469 0.995992i \(-0.528510\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.7190 + 21.7771i 0.0807688 + 0.0466319i 0.539840 0.841767i \(-0.318485\pi\)
−0.459072 + 0.888399i \(0.651818\pi\)
\(468\) 0 0
\(469\) 31.7127 94.0638i 0.0676177 0.200563i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −95.7960 + 165.924i −0.202529 + 0.350790i
\(474\) 0 0
\(475\) 465.441 + 268.723i 0.979877 + 0.565732i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 670.529i 1.39985i −0.714215 0.699926i \(-0.753216\pi\)
0.714215 0.699926i \(-0.246784\pi\)
\(480\) 0 0
\(481\) 13.4478i 0.0279581i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 29.6065 51.2800i 0.0610444 0.105732i
\(486\) 0 0
\(487\) 365.228 + 632.594i 0.749955 + 1.29896i 0.947843 + 0.318736i \(0.103258\pi\)
−0.197888 + 0.980225i \(0.563408\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 256.934 + 445.023i 0.523287 + 0.906360i 0.999633 + 0.0271018i \(0.00862782\pi\)
−0.476346 + 0.879258i \(0.658039\pi\)
\(492\) 0 0
\(493\) 124.571i 0.252680i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 915.722 184.126i 1.84250 0.370474i
\(498\) 0 0
\(499\) 153.056 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 80.5356i 0.160110i 0.996790 + 0.0800552i \(0.0255097\pi\)
−0.996790 + 0.0800552i \(0.974490\pi\)
\(504\) 0 0
\(505\) −114.658 −0.227045
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 66.7632i 0.131165i 0.997847 + 0.0655827i \(0.0208906\pi\)
−0.997847 + 0.0655827i \(0.979109\pi\)
\(510\) 0 0
\(511\) 311.106 273.977i 0.608818 0.536159i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 93.4711 0.181497
\(516\) 0 0
\(517\) 67.3342 38.8754i 0.130240 0.0751943i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −828.396 + 478.274i −1.59001 + 0.917993i −0.596707 + 0.802459i \(0.703525\pi\)
−0.993303 + 0.115534i \(0.963142\pi\)
\(522\) 0 0
\(523\) −77.4777 44.7318i −0.148141 0.0855292i 0.424097 0.905617i \(-0.360591\pi\)
−0.572238 + 0.820087i \(0.693925\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −122.449 −0.232350
\(528\) 0 0
\(529\) −301.433 −0.569817
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.40569 + 9.36293i −0.0101420 + 0.0175665i
\(534\) 0 0
\(535\) 63.6691 + 36.7594i 0.119008 + 0.0687092i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −373.979 + 156.730i −0.693839 + 0.290779i
\(540\) 0 0
\(541\) 13.8403 23.9722i 0.0255829 0.0443109i −0.852951 0.521992i \(-0.825189\pi\)
0.878533 + 0.477681i \(0.158522\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −32.0138 + 18.4832i −0.0587409 + 0.0339141i
\(546\) 0 0
\(547\) 339.847 588.632i 0.621292 1.07611i −0.367953 0.929844i \(-0.619941\pi\)
0.989245 0.146265i \(-0.0467253\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 478.988 276.544i 0.869307 0.501894i
\(552\) 0 0
\(553\) −92.3753 104.894i −0.167044 0.189681i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 172.676 + 299.083i 0.310010 + 0.536954i 0.978364 0.206890i \(-0.0663342\pi\)
−0.668354 + 0.743843i \(0.733001\pi\)
\(558\) 0 0
\(559\) 10.2957i 0.0184181i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 930.283 + 537.099i 1.65237 + 0.953995i 0.976095 + 0.217344i \(0.0697394\pi\)
0.676273 + 0.736651i \(0.263594\pi\)
\(564\) 0 0
\(565\) 171.095 98.7817i 0.302823 0.174835i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −307.619 532.811i −0.540630 0.936399i −0.998868 0.0475691i \(-0.984853\pi\)
0.458238 0.888830i \(-0.348481\pi\)
\(570\) 0 0
\(571\) −248.251 + 429.983i −0.434765 + 0.753035i −0.997276 0.0737547i \(-0.976502\pi\)
0.562512 + 0.826789i \(0.309835\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 363.133 0.631536
\(576\) 0 0
\(577\) 514.284 296.922i 0.891306 0.514596i 0.0169365 0.999857i \(-0.494609\pi\)
0.874369 + 0.485261i \(0.161275\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 773.753 + 260.863i 1.33176 + 0.448990i
\(582\) 0 0
\(583\) −370.217 641.234i −0.635020 1.09989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 322.786 + 186.360i 0.549890 + 0.317479i 0.749078 0.662482i \(-0.230497\pi\)
−0.199187 + 0.979961i \(0.563830\pi\)
\(588\) 0 0
\(589\) −271.832 470.827i −0.461514 0.799366i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 857.809 + 495.256i 1.44656 + 0.835171i 0.998274 0.0587202i \(-0.0187020\pi\)
0.448284 + 0.893891i \(0.352035\pi\)
\(594\) 0 0
\(595\) 22.4112 + 25.4483i 0.0376659 + 0.0427702i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −340.110 + 589.088i −0.567796 + 0.983452i 0.428987 + 0.903311i \(0.358871\pi\)
−0.996784 + 0.0801414i \(0.974463\pi\)
\(600\) 0 0
\(601\) 132.268 + 76.3649i 0.220080 + 0.127063i 0.605987 0.795474i \(-0.292778\pi\)
−0.385908 + 0.922537i \(0.626112\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 50.5931i 0.0836250i
\(606\) 0 0
\(607\) 291.769i 0.480674i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.08908 + 3.61840i −0.00341912 + 0.00592209i
\(612\) 0 0
\(613\) −152.238 263.684i −0.248349 0.430154i 0.714719 0.699412i \(-0.246555\pi\)
−0.963068 + 0.269258i \(0.913221\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.3876 + 73.4174i 0.0686995 + 0.118991i 0.898329 0.439323i \(-0.144782\pi\)
−0.829630 + 0.558314i \(0.811448\pi\)
\(618\) 0 0
\(619\) 649.483i 1.04925i 0.851335 + 0.524623i \(0.175794\pi\)
−0.851335 + 0.524623i \(0.824206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 804.720 + 271.304i 1.29169 + 0.435480i
\(624\) 0 0
\(625\) 556.259 0.890014
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 152.066i 0.241758i
\(630\) 0 0
\(631\) −46.9650 −0.0744295 −0.0372147 0.999307i \(-0.511849\pi\)
−0.0372147 + 0.999307i \(0.511849\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 69.1793i 0.108944i
\(636\) 0 0
\(637\) 13.1932 17.3424i 0.0207115 0.0272251i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −287.551 −0.448597 −0.224298 0.974520i \(-0.572009\pi\)
−0.224298 + 0.974520i \(0.572009\pi\)
\(642\) 0 0
\(643\) −7.84398 + 4.52872i −0.0121990 + 0.00704312i −0.506087 0.862482i \(-0.668909\pi\)
0.493888 + 0.869525i \(0.335575\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −366.328 + 211.499i −0.566194 + 0.326892i −0.755628 0.655001i \(-0.772668\pi\)
0.189434 + 0.981894i \(0.439335\pi\)
\(648\) 0 0
\(649\) −196.548 113.477i −0.302848 0.174850i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −361.234 −0.553191 −0.276596 0.960986i \(-0.589206\pi\)
−0.276596 + 0.960986i \(0.589206\pi\)
\(654\) 0 0
\(655\) 7.27333 0.0111043
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 271.135 469.619i 0.411433 0.712624i −0.583613 0.812032i \(-0.698362\pi\)
0.995047 + 0.0994081i \(0.0316949\pi\)
\(660\) 0 0
\(661\) 772.501 + 446.003i 1.16868 + 0.674740i 0.953370 0.301804i \(-0.0975889\pi\)
0.215315 + 0.976545i \(0.430922\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −48.0990 + 142.667i −0.0723293 + 0.214538i
\(666\) 0 0
\(667\) 186.851 323.635i 0.280136 0.485211i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −570.368 + 329.302i −0.850026 + 0.490763i
\(672\) 0 0
\(673\) 40.9317 70.8958i 0.0608197 0.105343i −0.834012 0.551746i \(-0.813962\pi\)
0.894832 + 0.446403i \(0.147295\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 452.877 261.469i 0.668946 0.386216i −0.126731 0.991937i \(-0.540448\pi\)
0.795677 + 0.605721i \(0.207115\pi\)
\(678\) 0 0
\(679\) −407.715 137.457i −0.600464 0.202441i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −466.207 807.494i −0.682587 1.18228i −0.974189 0.225736i \(-0.927521\pi\)
0.291601 0.956540i \(-0.405812\pi\)
\(684\) 0 0
\(685\) 196.437i 0.286769i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 34.4585 + 19.8947i 0.0500124 + 0.0288747i
\(690\) 0 0
\(691\) −978.220 + 564.775i −1.41566 + 0.817331i −0.995914 0.0903117i \(-0.971214\pi\)
−0.419745 + 0.907642i \(0.637880\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −43.0369 74.5421i −0.0619236 0.107255i
\(696\) 0 0
\(697\) −61.1265 + 105.874i −0.0876995 + 0.151900i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −883.655 −1.26056 −0.630281 0.776367i \(-0.717061\pi\)
−0.630281 + 0.776367i \(0.717061\pi\)
\(702\) 0 0
\(703\) −584.707 + 337.581i −0.831732 + 0.480200i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 164.235 + 816.797i 0.232298 + 1.15530i
\(708\) 0 0
\(709\) 118.989 + 206.096i 0.167827 + 0.290685i 0.937656 0.347566i \(-0.112992\pi\)
−0.769829 + 0.638251i \(0.779658\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −318.121 183.667i −0.446173 0.257598i
\(714\) 0 0
\(715\) −1.77258 3.07020i −0.00247914 0.00429399i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 54.4638 + 31.4447i 0.0757494 + 0.0437339i 0.537396 0.843330i \(-0.319408\pi\)
−0.461647 + 0.887064i \(0.652741\pi\)
\(720\) 0 0
\(721\) −133.887 665.868i −0.185696 0.923533i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 298.162 516.432i 0.411258 0.712321i
\(726\) 0 0
\(727\) 245.665 + 141.835i 0.337917 + 0.195096i 0.659350 0.751836i \(-0.270831\pi\)
−0.321434 + 0.946932i \(0.604165\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 116.422i 0.159264i
\(732\) 0 0
\(733\) 486.378i 0.663544i −0.943360 0.331772i \(-0.892353\pi\)
0.943360 0.331772i \(-0.107647\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −58.6758 + 101.630i −0.0796144 + 0.137896i
\(738\) 0 0
\(739\) 378.929 + 656.325i 0.512759 + 0.888125i 0.999891 + 0.0147966i \(0.00471007\pi\)
−0.487131 + 0.873329i \(0.661957\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 181.162 + 313.782i 0.243825 + 0.422317i 0.961801 0.273751i \(-0.0882644\pi\)
−0.717976 + 0.696068i \(0.754931\pi\)
\(744\) 0 0
\(745\) 121.836i 0.163539i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 170.667 506.219i 0.227860 0.675859i
\(750\) 0 0
\(751\) −1353.58 −1.80236 −0.901182 0.433441i \(-0.857299\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 32.7320i 0.0433537i
\(756\) 0 0
\(757\) −160.495 −0.212014 −0.106007 0.994365i \(-0.533807\pi\)
−0.106007 + 0.994365i \(0.533807\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 619.288i 0.813782i −0.913477 0.406891i \(-0.866613\pi\)
0.913477 0.406891i \(-0.133387\pi\)
\(762\) 0 0
\(763\) 177.526 + 201.584i 0.232669 + 0.264199i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1961 0.0159010
\(768\) 0 0
\(769\) 133.828 77.2658i 0.174029 0.100476i −0.410455 0.911881i \(-0.634630\pi\)
0.584484 + 0.811405i \(0.301297\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −554.122 + 319.923i −0.716846 + 0.413871i −0.813591 0.581438i \(-0.802490\pi\)
0.0967447 + 0.995309i \(0.469157\pi\)
\(774\) 0 0
\(775\) −507.633 293.082i −0.655011 0.378171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −542.795 −0.696785
\(780\) 0 0
\(781\) −1104.23 −1.41387
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −21.9907 + 38.0890i −0.0280136 + 0.0485210i
\(786\) 0 0
\(787\) 428.370 + 247.320i 0.544308 + 0.314256i 0.746823 0.665023i \(-0.231578\pi\)
−0.202515 + 0.979279i \(0.564911\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −948.773 1077.35i −1.19946 1.36201i
\(792\) 0 0
\(793\) 17.6960 30.6503i 0.0223152 0.0386511i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 933.311 538.847i 1.17103 0.676095i 0.217108 0.976148i \(-0.430338\pi\)
0.953923 + 0.300053i \(0.0970044\pi\)
\(798\) 0 0
\(799\) −23.6230 + 40.9162i −0.0295657 + 0.0512092i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −424.420 + 245.039i −0.528543 + 0.305154i
\(804\) 0 0
\(805\) 20.0529 + 99.7303i 0.0249105 + 0.123889i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −403.448 698.793i −0.498700 0.863773i 0.501299 0.865274i \(-0.332856\pi\)
−0.999999 + 0.00150078i \(0.999522\pi\)
\(810\) 0 0
\(811\) 940.287i 1.15942i 0.814824 + 0.579708i \(0.196833\pi\)
−0.814824 + 0.579708i \(0.803167\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 109.539 + 63.2423i 0.134403 + 0.0775979i
\(816\) 0 0
\(817\) 447.655 258.454i 0.547925 0.316345i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 395.018 + 684.191i 0.481142 + 0.833363i 0.999766 0.0216400i \(-0.00688877\pi\)
−0.518624 + 0.855003i \(0.673555\pi\)
\(822\) 0 0
\(823\) −494.196 + 855.972i −0.600481 + 1.04006i 0.392267 + 0.919851i \(0.371691\pi\)
−0.992748 + 0.120212i \(0.961642\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1264.20 −1.52865 −0.764327 0.644829i \(-0.776929\pi\)
−0.764327 + 0.644829i \(0.776929\pi\)
\(828\) 0 0
\(829\) 429.224 247.812i 0.517761 0.298929i −0.218257 0.975891i \(-0.570037\pi\)
0.736018 + 0.676962i \(0.236704\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 149.186 196.104i 0.179095 0.235419i
\(834\) 0 0
\(835\) 114.564 + 198.431i 0.137203 + 0.237642i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1056.00 609.684i −1.25865 0.726680i −0.285835 0.958279i \(-0.592271\pi\)
−0.972811 + 0.231599i \(0.925604\pi\)
\(840\) 0 0
\(841\) 113.660 + 196.864i 0.135148 + 0.234084i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −140.828 81.3073i −0.166661 0.0962216i
\(846\) 0 0
\(847\) −360.414 + 72.4690i −0.425518 + 0.0855597i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −228.092 + 395.066i −0.268028 + 0.464238i
\(852\) 0 0
\(853\) −774.869 447.371i −0.908404 0.524467i −0.0284869 0.999594i \(-0.509069\pi\)
−0.879917 + 0.475127i \(0.842402\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 560.997i 0.654605i 0.944920 + 0.327303i \(0.106140\pi\)
−0.944920 + 0.327303i \(0.893860\pi\)
\(858\) 0 0
\(859\) 1468.27i 1.70928i 0.519225 + 0.854638i \(0.326221\pi\)
−0.519225 + 0.854638i \(0.673779\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 723.196 1252.61i 0.838003 1.45146i −0.0535591 0.998565i \(-0.517057\pi\)
0.891562 0.452899i \(-0.149610\pi\)
\(864\) 0 0
\(865\) −149.123 258.289i −0.172397 0.298600i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 82.6182 + 143.099i 0.0950727 + 0.164671i
\(870\) 0 0
\(871\) 6.30622i 0.00724021i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 65.2315 + 324.419i 0.0745503 + 0.370765i
\(876\) 0 0
\(877\) 1370.01 1.56215 0.781075 0.624438i \(-0.214672\pi\)
0.781075 + 0.624438i \(0.214672\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1155.87i 1.31200i −0.754763 0.655998i \(-0.772248\pi\)
0.754763 0.655998i \(-0.227752\pi\)
\(882\) 0 0
\(883\) 457.894 0.518567 0.259283 0.965801i \(-0.416514\pi\)
0.259283 + 0.965801i \(0.416514\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 64.4365i 0.0726455i 0.999340 + 0.0363227i \(0.0115644\pi\)
−0.999340 + 0.0363227i \(0.988436\pi\)
\(888\) 0 0
\(889\) −492.818 + 99.0917i −0.554351 + 0.111464i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −209.769 −0.234903
\(894\) 0 0
\(895\) 252.652 145.869i 0.282293 0.162982i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −522.408 + 301.612i −0.581099 + 0.335497i
\(900\) 0 0
\(901\) 389.651 + 224.965i 0.432465 + 0.249684i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −198.177 −0.218980
\(906\) 0 0
\(907\) 1027.59 1.13296 0.566480 0.824075i \(-0.308305\pi\)
0.566480 + 0.824075i \(0.308305\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 838.411 1452.17i 0.920320 1.59404i 0.121399 0.992604i \(-0.461262\pi\)
0.798921 0.601437i \(-0.205405\pi\)
\(912\) 0 0
\(913\) −835.987 482.657i −0.915648 0.528650i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.4183 51.8136i −0.0113612 0.0565034i
\(918\) 0 0
\(919\) −724.595 + 1255.03i −0.788460 + 1.36565i 0.138450 + 0.990369i \(0.455788\pi\)
−0.926910 + 0.375283i \(0.877545\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 51.3890 29.6695i 0.0556761 0.0321446i
\(924\) 0 0
\(925\) −363.971 + 630.416i −0.393482 + 0.681531i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1429.67 + 825.418i −1.53893 + 0.888501i −0.540027 + 0.841647i \(0.681586\pi\)
−0.998902 + 0.0468537i \(0.985081\pi\)
\(930\) 0 0
\(931\) 1085.23 + 138.291i 1.16566 + 0.148540i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20.0440 34.7173i −0.0214375 0.0371308i
\(936\) 0 0
\(937\) 1340.89i 1.43105i −0.698588 0.715525i \(-0.746188\pi\)
0.698588 0.715525i \(-0.253812\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 552.125 + 318.769i 0.586743 + 0.338756i 0.763808 0.645443i \(-0.223327\pi\)
−0.177066 + 0.984199i \(0.556661\pi\)
\(942\) 0 0
\(943\) −317.613 + 183.374i −0.336811 + 0.194458i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 506.734 + 877.689i 0.535094 + 0.926810i 0.999159 + 0.0410089i \(0.0130572\pi\)
−0.464065 + 0.885801i \(0.653609\pi\)
\(948\) 0 0
\(949\) 13.1679 22.8074i 0.0138755 0.0240331i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −81.0381 −0.0850347 −0.0425173 0.999096i \(-0.513538\pi\)
−0.0425173 + 0.999096i \(0.513538\pi\)
\(954\) 0 0
\(955\) −60.9784 + 35.2059i −0.0638517 + 0.0368648i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1399.37 + 281.374i −1.45920 + 0.293404i
\(960\) 0 0
\(961\) −184.027 318.744i −0.191495 0.331679i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −296.024 170.909i −0.306760 0.177108i
\(966\) 0 0
\(967\) −253.546 439.155i −0.262199 0.454142i 0.704627 0.709578i \(-0.251114\pi\)
−0.966826 + 0.255436i \(0.917781\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1301.46 751.397i −1.34033 0.773839i −0.353473 0.935445i \(-0.614999\pi\)
−0.986855 + 0.161606i \(0.948333\pi\)
\(972\) 0 0
\(973\) −469.376 + 413.358i −0.482400 + 0.424829i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 310.361 537.562i 0.317668 0.550217i −0.662333 0.749209i \(-0.730434\pi\)
0.980001 + 0.198993i \(0.0637670\pi\)
\(978\) 0 0
\(979\) −869.445 501.974i −0.888095 0.512742i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1128.62i 1.14814i −0.818808 0.574068i \(-0.805365\pi\)
0.818808 0.574068i \(-0.194635\pi\)
\(984\) 0 0
\(985\) 2.71047i 0.00275175i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 174.628 302.465i 0.176570 0.305829i
\(990\) 0 0
\(991\) −501.599 868.795i −0.506154 0.876685i −0.999975 0.00712091i \(-0.997733\pi\)
0.493820 0.869564i \(-0.335600\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 51.5550 + 89.2959i 0.0518141 + 0.0897446i
\(996\) 0 0
\(997\) 1095.10i 1.09839i 0.835694 + 0.549195i \(0.185066\pi\)
−0.835694 + 0.549195i \(0.814934\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.p.a.397.9 32
3.2 odd 2 252.3.p.a.61.12 32
7.3 odd 6 756.3.bd.a.73.9 32
9.4 even 3 756.3.bd.a.145.9 32
9.5 odd 6 252.3.bd.a.229.7 yes 32
21.17 even 6 252.3.bd.a.241.7 yes 32
63.31 odd 6 inner 756.3.p.a.577.8 32
63.59 even 6 252.3.p.a.157.12 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.p.a.61.12 32 3.2 odd 2
252.3.p.a.157.12 yes 32 63.59 even 6
252.3.bd.a.229.7 yes 32 9.5 odd 6
252.3.bd.a.241.7 yes 32 21.17 even 6
756.3.p.a.397.9 32 1.1 even 1 trivial
756.3.p.a.577.8 32 63.31 odd 6 inner
756.3.bd.a.73.9 32 7.3 odd 6
756.3.bd.a.145.9 32 9.4 even 3