Properties

Label 756.3.p.a
Level $756$
Weight $3$
Character orbit 756.p
Analytic conductor $20.600$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(397,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.397"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + q^{7} + 12 q^{11} + 15 q^{13} + 27 q^{17} - 30 q^{23} - 160 q^{25} - 24 q^{29} - 24 q^{31} - 141 q^{35} + 11 q^{37} + 90 q^{41} - 16 q^{43} - 108 q^{47} - 61 q^{49} - 54 q^{53} - 45 q^{59} - 165 q^{61}+ \cdots - 57 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
397.1 0 0 0 8.86566i 0 4.97462 4.92475i 0 0 0
397.2 0 0 0 7.47619i 0 −1.51829 6.83336i 0 0 0
397.3 0 0 0 6.76413i 0 −6.54281 2.48830i 0 0 0
397.4 0 0 0 5.81748i 0 2.61032 + 6.49509i 0 0 0
397.5 0 0 0 4.03768i 0 2.36524 + 6.58829i 0 0 0
397.6 0 0 0 3.08422i 0 6.74289 + 1.87973i 0 0 0
397.7 0 0 0 2.13702i 0 −6.60308 + 2.32365i 0 0 0
397.8 0 0 0 0.196075i 0 −5.97368 3.64898i 0 0 0
397.9 0 0 0 0.963344i 0 6.86265 1.37988i 0 0 0
397.10 0 0 0 2.30326i 0 −1.15122 + 6.90469i 0 0 0
397.11 0 0 0 3.16374i 0 4.69832 5.18900i 0 0 0
397.12 0 0 0 4.01620i 0 1.61222 6.81181i 0 0 0
397.13 0 0 0 4.90249i 0 −6.05364 + 3.51475i 0 0 0
397.14 0 0 0 5.22643i 0 −2.36655 6.58783i 0 0 0
397.15 0 0 0 8.39011i 0 5.61921 + 4.17426i 0 0 0
397.16 0 0 0 9.02073i 0 −4.77619 + 5.11742i 0 0 0
577.1 0 0 0 9.02073i 0 −4.77619 5.11742i 0 0 0
577.2 0 0 0 8.39011i 0 5.61921 4.17426i 0 0 0
577.3 0 0 0 5.22643i 0 −2.36655 + 6.58783i 0 0 0
577.4 0 0 0 4.90249i 0 −6.05364 3.51475i 0 0 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 397.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.3.p.a 32
3.b odd 2 1 252.3.p.a 32
7.d odd 6 1 756.3.bd.a 32
9.c even 3 1 756.3.bd.a 32
9.d odd 6 1 252.3.bd.a yes 32
21.g even 6 1 252.3.bd.a yes 32
63.k odd 6 1 inner 756.3.p.a 32
63.s even 6 1 252.3.p.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.3.p.a 32 3.b odd 2 1
252.3.p.a 32 63.s even 6 1
252.3.bd.a yes 32 9.d odd 6 1
252.3.bd.a yes 32 21.g even 6 1
756.3.p.a 32 1.a even 1 1 trivial
756.3.p.a 32 63.k odd 6 1 inner
756.3.bd.a 32 7.d odd 6 1
756.3.bd.a 32 9.c even 3 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(756, [\chi])\).