Newspace parameters
Level: | \( N \) | \(=\) | \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 756.p (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(20.5995079856\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 252) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
397.1 | 0 | 0 | 0 | − | 8.86566i | 0 | 4.97462 | − | 4.92475i | 0 | 0 | 0 | |||||||||||||||
397.2 | 0 | 0 | 0 | − | 7.47619i | 0 | −1.51829 | − | 6.83336i | 0 | 0 | 0 | |||||||||||||||
397.3 | 0 | 0 | 0 | − | 6.76413i | 0 | −6.54281 | − | 2.48830i | 0 | 0 | 0 | |||||||||||||||
397.4 | 0 | 0 | 0 | − | 5.81748i | 0 | 2.61032 | + | 6.49509i | 0 | 0 | 0 | |||||||||||||||
397.5 | 0 | 0 | 0 | − | 4.03768i | 0 | 2.36524 | + | 6.58829i | 0 | 0 | 0 | |||||||||||||||
397.6 | 0 | 0 | 0 | − | 3.08422i | 0 | 6.74289 | + | 1.87973i | 0 | 0 | 0 | |||||||||||||||
397.7 | 0 | 0 | 0 | − | 2.13702i | 0 | −6.60308 | + | 2.32365i | 0 | 0 | 0 | |||||||||||||||
397.8 | 0 | 0 | 0 | 0.196075i | 0 | −5.97368 | − | 3.64898i | 0 | 0 | 0 | ||||||||||||||||
397.9 | 0 | 0 | 0 | 0.963344i | 0 | 6.86265 | − | 1.37988i | 0 | 0 | 0 | ||||||||||||||||
397.10 | 0 | 0 | 0 | 2.30326i | 0 | −1.15122 | + | 6.90469i | 0 | 0 | 0 | ||||||||||||||||
397.11 | 0 | 0 | 0 | 3.16374i | 0 | 4.69832 | − | 5.18900i | 0 | 0 | 0 | ||||||||||||||||
397.12 | 0 | 0 | 0 | 4.01620i | 0 | 1.61222 | − | 6.81181i | 0 | 0 | 0 | ||||||||||||||||
397.13 | 0 | 0 | 0 | 4.90249i | 0 | −6.05364 | + | 3.51475i | 0 | 0 | 0 | ||||||||||||||||
397.14 | 0 | 0 | 0 | 5.22643i | 0 | −2.36655 | − | 6.58783i | 0 | 0 | 0 | ||||||||||||||||
397.15 | 0 | 0 | 0 | 8.39011i | 0 | 5.61921 | + | 4.17426i | 0 | 0 | 0 | ||||||||||||||||
397.16 | 0 | 0 | 0 | 9.02073i | 0 | −4.77619 | + | 5.11742i | 0 | 0 | 0 | ||||||||||||||||
577.1 | 0 | 0 | 0 | − | 9.02073i | 0 | −4.77619 | − | 5.11742i | 0 | 0 | 0 | |||||||||||||||
577.2 | 0 | 0 | 0 | − | 8.39011i | 0 | 5.61921 | − | 4.17426i | 0 | 0 | 0 | |||||||||||||||
577.3 | 0 | 0 | 0 | − | 5.22643i | 0 | −2.36655 | + | 6.58783i | 0 | 0 | 0 | |||||||||||||||
577.4 | 0 | 0 | 0 | − | 4.90249i | 0 | −6.05364 | − | 3.51475i | 0 | 0 | 0 | |||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.k | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 756.3.p.a | 32 | |
3.b | odd | 2 | 1 | 252.3.p.a | ✓ | 32 | |
7.d | odd | 6 | 1 | 756.3.bd.a | 32 | ||
9.c | even | 3 | 1 | 756.3.bd.a | 32 | ||
9.d | odd | 6 | 1 | 252.3.bd.a | yes | 32 | |
21.g | even | 6 | 1 | 252.3.bd.a | yes | 32 | |
63.k | odd | 6 | 1 | inner | 756.3.p.a | 32 | |
63.s | even | 6 | 1 | 252.3.p.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
252.3.p.a | ✓ | 32 | 3.b | odd | 2 | 1 | |
252.3.p.a | ✓ | 32 | 63.s | even | 6 | 1 | |
252.3.bd.a | yes | 32 | 9.d | odd | 6 | 1 | |
252.3.bd.a | yes | 32 | 21.g | even | 6 | 1 | |
756.3.p.a | 32 | 1.a | even | 1 | 1 | trivial | |
756.3.p.a | 32 | 63.k | odd | 6 | 1 | inner | |
756.3.bd.a | 32 | 7.d | odd | 6 | 1 | ||
756.3.bd.a | 32 | 9.c | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(756, [\chi])\).