Properties

Label 252.3.p.a.157.12
Level $252$
Weight $3$
Character 252.157
Analytic conductor $6.867$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,3,Mod(61,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.61"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 157.12
Character \(\chi\) \(=\) 252.157
Dual form 252.3.p.a.61.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.94529 - 2.28383i) q^{3} +0.963344i q^{5} +(6.86265 + 1.37988i) q^{7} +(-1.43172 - 8.88539i) q^{9} +8.27537 q^{11} +(0.385122 + 0.222350i) q^{13} +(2.20011 + 1.87398i) q^{15} +(-4.35489 - 2.51430i) q^{17} +(19.3354 - 11.1633i) q^{19} +(16.5012 - 12.9888i) q^{21} -15.0853 q^{23} +24.0720 q^{25} +(-23.0778 - 14.0148i) q^{27} +(-12.3863 - 21.4537i) q^{29} +(-21.0881 + 12.1752i) q^{31} +(16.0980 - 18.8995i) q^{33} +(-1.32930 + 6.61109i) q^{35} +(-15.1201 - 26.1888i) q^{37} +(1.25698 - 0.447016i) q^{39} +(21.0544 + 12.1558i) q^{41} +(11.5760 + 20.0503i) q^{43} +(8.55969 - 1.37924i) q^{45} +(8.13670 + 4.69773i) q^{47} +(45.1918 + 18.9393i) q^{49} +(-14.2137 + 5.05478i) q^{51} +(-44.7372 + 77.4871i) q^{53} +7.97203i q^{55} +(12.1179 - 65.8745i) q^{57} +(-23.7510 + 13.7127i) q^{59} +(68.9235 + 39.7930i) q^{61} +(2.43544 - 62.9529i) q^{63} +(-0.214200 + 0.371005i) q^{65} +(7.09042 + 12.2810i) q^{67} +(-29.3453 + 34.4522i) q^{69} -133.436 q^{71} +(51.2871 + 29.6106i) q^{73} +(46.8269 - 54.9762i) q^{75} +(56.7910 + 11.4191i) q^{77} +(-9.98363 + 17.2921i) q^{79} +(-76.9004 + 25.4427i) q^{81} +(-101.021 + 58.3246i) q^{83} +(2.42213 - 4.19526i) q^{85} +(-73.0914 - 13.4454i) q^{87} +(-105.064 + 60.6588i) q^{89} +(2.33614 + 2.05734i) q^{91} +(-13.2164 + 71.8460i) q^{93} +(10.7541 + 18.6266i) q^{95} +(-53.2313 + 30.7331i) q^{97} +(-11.8480 - 73.5299i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + q^{7} - 6 q^{9} - 12 q^{11} + 15 q^{13} + 9 q^{15} - 27 q^{17} - 36 q^{21} + 30 q^{23} - 160 q^{25} - 9 q^{27} + 24 q^{29} - 24 q^{31} + 81 q^{33} + 141 q^{35} + 11 q^{37} - 21 q^{39} - 90 q^{41}+ \cdots - 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.94529 2.28383i 0.648429 0.761275i
\(4\) 0 0
\(5\) 0.963344i 0.192669i 0.995349 + 0.0963344i \(0.0307118\pi\)
−0.995349 + 0.0963344i \(0.969288\pi\)
\(6\) 0 0
\(7\) 6.86265 + 1.37988i 0.980378 + 0.197126i
\(8\) 0 0
\(9\) −1.43172 8.88539i −0.159080 0.987266i
\(10\) 0 0
\(11\) 8.27537 0.752307 0.376153 0.926557i \(-0.377247\pi\)
0.376153 + 0.926557i \(0.377247\pi\)
\(12\) 0 0
\(13\) 0.385122 + 0.222350i 0.0296248 + 0.0171039i 0.514739 0.857347i \(-0.327889\pi\)
−0.485114 + 0.874451i \(0.661222\pi\)
\(14\) 0 0
\(15\) 2.20011 + 1.87398i 0.146674 + 0.124932i
\(16\) 0 0
\(17\) −4.35489 2.51430i −0.256170 0.147900i 0.366416 0.930451i \(-0.380585\pi\)
−0.622586 + 0.782551i \(0.713918\pi\)
\(18\) 0 0
\(19\) 19.3354 11.1633i 1.01765 0.587542i 0.104230 0.994553i \(-0.466762\pi\)
0.913423 + 0.407011i \(0.133429\pi\)
\(20\) 0 0
\(21\) 16.5012 12.9888i 0.785773 0.618515i
\(22\) 0 0
\(23\) −15.0853 −0.655883 −0.327942 0.944698i \(-0.606355\pi\)
−0.327942 + 0.944698i \(0.606355\pi\)
\(24\) 0 0
\(25\) 24.0720 0.962879
\(26\) 0 0
\(27\) −23.0778 14.0148i −0.854733 0.519068i
\(28\) 0 0
\(29\) −12.3863 21.4537i −0.427113 0.739782i 0.569502 0.821990i \(-0.307136\pi\)
−0.996615 + 0.0822080i \(0.973803\pi\)
\(30\) 0 0
\(31\) −21.0881 + 12.1752i −0.680263 + 0.392750i −0.799954 0.600061i \(-0.795143\pi\)
0.119691 + 0.992811i \(0.461810\pi\)
\(32\) 0 0
\(33\) 16.0980 18.8995i 0.487817 0.572712i
\(34\) 0 0
\(35\) −1.32930 + 6.61109i −0.0379801 + 0.188888i
\(36\) 0 0
\(37\) −15.1201 26.1888i −0.408652 0.707806i 0.586087 0.810248i \(-0.300668\pi\)
−0.994739 + 0.102442i \(0.967334\pi\)
\(38\) 0 0
\(39\) 1.25698 0.447016i 0.0322303 0.0114620i
\(40\) 0 0
\(41\) 21.0544 + 12.1558i 0.513523 + 0.296483i 0.734281 0.678846i \(-0.237520\pi\)
−0.220758 + 0.975329i \(0.570853\pi\)
\(42\) 0 0
\(43\) 11.5760 + 20.0503i 0.269210 + 0.466286i 0.968658 0.248398i \(-0.0799041\pi\)
−0.699448 + 0.714684i \(0.746571\pi\)
\(44\) 0 0
\(45\) 8.55969 1.37924i 0.190215 0.0306497i
\(46\) 0 0
\(47\) 8.13670 + 4.69773i 0.173121 + 0.0999517i 0.584057 0.811713i \(-0.301465\pi\)
−0.410935 + 0.911664i \(0.634798\pi\)
\(48\) 0 0
\(49\) 45.1918 + 18.9393i 0.922282 + 0.386517i
\(50\) 0 0
\(51\) −14.2137 + 5.05478i −0.278700 + 0.0991133i
\(52\) 0 0
\(53\) −44.7372 + 77.4871i −0.844098 + 1.46202i 0.0423047 + 0.999105i \(0.486530\pi\)
−0.886402 + 0.462915i \(0.846803\pi\)
\(54\) 0 0
\(55\) 7.97203i 0.144946i
\(56\) 0 0
\(57\) 12.1179 65.8745i 0.212594 1.15569i
\(58\) 0 0
\(59\) −23.7510 + 13.7127i −0.402560 + 0.232418i −0.687588 0.726101i \(-0.741330\pi\)
0.285028 + 0.958519i \(0.407997\pi\)
\(60\) 0 0
\(61\) 68.9235 + 39.7930i 1.12989 + 0.652344i 0.943908 0.330208i \(-0.107119\pi\)
0.185985 + 0.982553i \(0.440452\pi\)
\(62\) 0 0
\(63\) 2.43544 62.9529i 0.0386578 0.999253i
\(64\) 0 0
\(65\) −0.214200 + 0.371005i −0.00329538 + 0.00570777i
\(66\) 0 0
\(67\) 7.09042 + 12.2810i 0.105827 + 0.183298i 0.914076 0.405543i \(-0.132918\pi\)
−0.808249 + 0.588841i \(0.799584\pi\)
\(68\) 0 0
\(69\) −29.3453 + 34.4522i −0.425294 + 0.499307i
\(70\) 0 0
\(71\) −133.436 −1.87938 −0.939688 0.342032i \(-0.888885\pi\)
−0.939688 + 0.342032i \(0.888885\pi\)
\(72\) 0 0
\(73\) 51.2871 + 29.6106i 0.702563 + 0.405625i 0.808301 0.588769i \(-0.200387\pi\)
−0.105738 + 0.994394i \(0.533721\pi\)
\(74\) 0 0
\(75\) 46.8269 54.9762i 0.624359 0.733016i
\(76\) 0 0
\(77\) 56.7910 + 11.4191i 0.737545 + 0.148299i
\(78\) 0 0
\(79\) −9.98363 + 17.2921i −0.126375 + 0.218888i −0.922270 0.386547i \(-0.873668\pi\)
0.795895 + 0.605435i \(0.207001\pi\)
\(80\) 0 0
\(81\) −76.9004 + 25.4427i −0.949387 + 0.314108i
\(82\) 0 0
\(83\) −101.021 + 58.3246i −1.21712 + 0.702705i −0.964301 0.264808i \(-0.914691\pi\)
−0.252820 + 0.967513i \(0.581358\pi\)
\(84\) 0 0
\(85\) 2.42213 4.19526i 0.0284957 0.0493559i
\(86\) 0 0
\(87\) −73.0914 13.4454i −0.840130 0.154545i
\(88\) 0 0
\(89\) −105.064 + 60.6588i −1.18050 + 0.681560i −0.956129 0.292945i \(-0.905365\pi\)
−0.224367 + 0.974505i \(0.572031\pi\)
\(90\) 0 0
\(91\) 2.33614 + 2.05734i 0.0256719 + 0.0226081i
\(92\) 0 0
\(93\) −13.2164 + 71.8460i −0.142111 + 0.772538i
\(94\) 0 0
\(95\) 10.7541 + 18.6266i 0.113201 + 0.196070i
\(96\) 0 0
\(97\) −53.2313 + 30.7331i −0.548776 + 0.316836i −0.748628 0.662990i \(-0.769287\pi\)
0.199852 + 0.979826i \(0.435954\pi\)
\(98\) 0 0
\(99\) −11.8480 73.5299i −0.119677 0.742726i
\(100\) 0 0
\(101\) 119.021i 1.17842i 0.807979 + 0.589212i \(0.200562\pi\)
−0.807979 + 0.589212i \(0.799438\pi\)
\(102\) 0 0
\(103\) 97.0278i 0.942018i 0.882129 + 0.471009i \(0.156110\pi\)
−0.882129 + 0.471009i \(0.843890\pi\)
\(104\) 0 0
\(105\) 12.5127 + 15.8964i 0.119169 + 0.151394i
\(106\) 0 0
\(107\) −38.1581 66.0918i −0.356618 0.617681i 0.630775 0.775965i \(-0.282737\pi\)
−0.987394 + 0.158285i \(0.949404\pi\)
\(108\) 0 0
\(109\) 19.1865 33.2320i 0.176023 0.304880i −0.764492 0.644633i \(-0.777010\pi\)
0.940515 + 0.339753i \(0.110343\pi\)
\(110\) 0 0
\(111\) −89.2236 16.4130i −0.803817 0.147865i
\(112\) 0 0
\(113\) 102.540 177.605i 0.907437 1.57173i 0.0898260 0.995957i \(-0.471369\pi\)
0.817611 0.575770i \(-0.195298\pi\)
\(114\) 0 0
\(115\) 14.5323i 0.126368i
\(116\) 0 0
\(117\) 1.42428 3.74030i 0.0121734 0.0319684i
\(118\) 0 0
\(119\) −26.4166 23.2640i −0.221988 0.195496i
\(120\) 0 0
\(121\) −52.5182 −0.434035
\(122\) 0 0
\(123\) 68.7187 24.4382i 0.558688 0.198684i
\(124\) 0 0
\(125\) 47.2732i 0.378185i
\(126\) 0 0
\(127\) −71.8116 −0.565446 −0.282723 0.959202i \(-0.591238\pi\)
−0.282723 + 0.959202i \(0.591238\pi\)
\(128\) 0 0
\(129\) 68.3100 + 12.5659i 0.529535 + 0.0974101i
\(130\) 0 0
\(131\) 7.55009i 0.0576343i −0.999585 0.0288172i \(-0.990826\pi\)
0.999585 0.0288172i \(-0.00917405\pi\)
\(132\) 0 0
\(133\) 148.096 49.9292i 1.11350 0.375407i
\(134\) 0 0
\(135\) 13.5011 22.2318i 0.100008 0.164680i
\(136\) 0 0
\(137\) 203.912 1.48841 0.744203 0.667954i \(-0.232830\pi\)
0.744203 + 0.667954i \(0.232830\pi\)
\(138\) 0 0
\(139\) −77.3785 44.6745i −0.556680 0.321399i 0.195132 0.980777i \(-0.437486\pi\)
−0.751812 + 0.659378i \(0.770820\pi\)
\(140\) 0 0
\(141\) 26.5570 9.44438i 0.188348 0.0669814i
\(142\) 0 0
\(143\) 3.18703 + 1.84003i 0.0222869 + 0.0128674i
\(144\) 0 0
\(145\) 20.6673 11.9323i 0.142533 0.0822914i
\(146\) 0 0
\(147\) 131.165 66.3679i 0.892280 0.451482i
\(148\) 0 0
\(149\) 126.472 0.848808 0.424404 0.905473i \(-0.360484\pi\)
0.424404 + 0.905473i \(0.360484\pi\)
\(150\) 0 0
\(151\) 33.9775 0.225017 0.112508 0.993651i \(-0.464111\pi\)
0.112508 + 0.993651i \(0.464111\pi\)
\(152\) 0 0
\(153\) −16.1055 + 42.2947i −0.105265 + 0.276436i
\(154\) 0 0
\(155\) −11.7289 20.3151i −0.0756706 0.131065i
\(156\) 0 0
\(157\) 39.5383 22.8274i 0.251836 0.145398i −0.368769 0.929521i \(-0.620220\pi\)
0.620605 + 0.784124i \(0.286887\pi\)
\(158\) 0 0
\(159\) 89.9403 + 252.907i 0.565662 + 1.59061i
\(160\) 0 0
\(161\) −103.525 20.8160i −0.643013 0.129292i
\(162\) 0 0
\(163\) 65.6487 + 113.707i 0.402753 + 0.697588i 0.994057 0.108860i \(-0.0347201\pi\)
−0.591304 + 0.806449i \(0.701387\pi\)
\(164\) 0 0
\(165\) 18.2067 + 15.5079i 0.110344 + 0.0939872i
\(166\) 0 0
\(167\) −205.982 118.924i −1.23343 0.712118i −0.265683 0.964060i \(-0.585597\pi\)
−0.967742 + 0.251942i \(0.918931\pi\)
\(168\) 0 0
\(169\) −84.4011 146.187i −0.499415 0.865012i
\(170\) 0 0
\(171\) −126.873 155.820i −0.741948 0.911228i
\(172\) 0 0
\(173\) 268.118 + 154.798i 1.54981 + 0.894785i 0.998155 + 0.0607137i \(0.0193377\pi\)
0.551657 + 0.834071i \(0.313996\pi\)
\(174\) 0 0
\(175\) 165.197 + 33.2165i 0.943985 + 0.189809i
\(176\) 0 0
\(177\) −14.8852 + 80.9182i −0.0840974 + 0.457165i
\(178\) 0 0
\(179\) 151.419 262.266i 0.845917 1.46517i −0.0389054 0.999243i \(-0.512387\pi\)
0.884822 0.465928i \(-0.154280\pi\)
\(180\) 0 0
\(181\) 205.717i 1.13656i −0.822835 0.568280i \(-0.807609\pi\)
0.822835 0.568280i \(-0.192391\pi\)
\(182\) 0 0
\(183\) 224.956 80.0004i 1.22927 0.437161i
\(184\) 0 0
\(185\) 25.2288 14.5659i 0.136372 0.0787344i
\(186\) 0 0
\(187\) −36.0383 20.8067i −0.192718 0.111266i
\(188\) 0 0
\(189\) −139.036 128.024i −0.735639 0.677373i
\(190\) 0 0
\(191\) −36.5455 + 63.2987i −0.191338 + 0.331407i −0.945694 0.325059i \(-0.894616\pi\)
0.754356 + 0.656465i \(0.227949\pi\)
\(192\) 0 0
\(193\) −177.413 307.288i −0.919236 1.59216i −0.800578 0.599229i \(-0.795474\pi\)
−0.118658 0.992935i \(-0.537859\pi\)
\(194\) 0 0
\(195\) 0.430630 + 1.21091i 0.00220836 + 0.00620977i
\(196\) 0 0
\(197\) −2.81361 −0.0142823 −0.00714113 0.999975i \(-0.502273\pi\)
−0.00714113 + 0.999975i \(0.502273\pi\)
\(198\) 0 0
\(199\) 92.6937 + 53.5167i 0.465797 + 0.268928i 0.714479 0.699657i \(-0.246664\pi\)
−0.248681 + 0.968585i \(0.579997\pi\)
\(200\) 0 0
\(201\) 41.8405 + 7.69672i 0.208161 + 0.0382921i
\(202\) 0 0
\(203\) −55.3991 164.321i −0.272902 0.809461i
\(204\) 0 0
\(205\) −11.7102 + 20.2827i −0.0571230 + 0.0989399i
\(206\) 0 0
\(207\) 21.5979 + 134.039i 0.104338 + 0.647531i
\(208\) 0 0
\(209\) 160.008 92.3805i 0.765587 0.442012i
\(210\) 0 0
\(211\) 0.310904 0.538502i 0.00147348 0.00255214i −0.865288 0.501276i \(-0.832864\pi\)
0.866761 + 0.498723i \(0.166198\pi\)
\(212\) 0 0
\(213\) −259.571 + 304.744i −1.21864 + 1.43072i
\(214\) 0 0
\(215\) −19.3153 + 11.1517i −0.0898387 + 0.0518684i
\(216\) 0 0
\(217\) −161.521 + 54.4552i −0.744336 + 0.250946i
\(218\) 0 0
\(219\) 167.394 59.5296i 0.764354 0.271825i
\(220\) 0 0
\(221\) −1.11811 1.93662i −0.00505932 0.00876299i
\(222\) 0 0
\(223\) −347.765 + 200.782i −1.55948 + 0.900368i −0.562177 + 0.827017i \(0.690036\pi\)
−0.997306 + 0.0733508i \(0.976631\pi\)
\(224\) 0 0
\(225\) −34.4642 213.889i −0.153174 0.950617i
\(226\) 0 0
\(227\) 391.807i 1.72602i 0.505187 + 0.863010i \(0.331424\pi\)
−0.505187 + 0.863010i \(0.668576\pi\)
\(228\) 0 0
\(229\) 128.808i 0.562480i 0.959637 + 0.281240i \(0.0907458\pi\)
−0.959637 + 0.281240i \(0.909254\pi\)
\(230\) 0 0
\(231\) 136.554 107.487i 0.591142 0.465313i
\(232\) 0 0
\(233\) −17.8368 30.8942i −0.0765526 0.132593i 0.825208 0.564829i \(-0.191058\pi\)
−0.901760 + 0.432236i \(0.857725\pi\)
\(234\) 0 0
\(235\) −4.52553 + 7.83844i −0.0192576 + 0.0333551i
\(236\) 0 0
\(237\) 20.0712 + 56.4391i 0.0846887 + 0.238139i
\(238\) 0 0
\(239\) 142.757 247.262i 0.597308 1.03457i −0.395909 0.918290i \(-0.629570\pi\)
0.993217 0.116278i \(-0.0370963\pi\)
\(240\) 0 0
\(241\) 138.284i 0.573792i −0.957962 0.286896i \(-0.907377\pi\)
0.957962 0.286896i \(-0.0926234\pi\)
\(242\) 0 0
\(243\) −91.4865 + 225.120i −0.376488 + 0.926422i
\(244\) 0 0
\(245\) −18.2451 + 43.5353i −0.0744696 + 0.177695i
\(246\) 0 0
\(247\) 9.92866 0.0401970
\(248\) 0 0
\(249\) −63.3119 + 344.173i −0.254265 + 1.38222i
\(250\) 0 0
\(251\) 29.7450i 0.118506i −0.998243 0.0592530i \(-0.981128\pi\)
0.998243 0.0592530i \(-0.0188719\pi\)
\(252\) 0 0
\(253\) −124.837 −0.493425
\(254\) 0 0
\(255\) −4.86949 13.6927i −0.0190960 0.0536969i
\(256\) 0 0
\(257\) 289.004i 1.12453i −0.826957 0.562265i \(-0.809930\pi\)
0.826957 0.562265i \(-0.190070\pi\)
\(258\) 0 0
\(259\) −67.6265 200.589i −0.261106 0.774473i
\(260\) 0 0
\(261\) −172.891 + 140.773i −0.662417 + 0.539359i
\(262\) 0 0
\(263\) 316.849 1.20475 0.602375 0.798213i \(-0.294221\pi\)
0.602375 + 0.798213i \(0.294221\pi\)
\(264\) 0 0
\(265\) −74.6467 43.0973i −0.281686 0.162631i
\(266\) 0 0
\(267\) −65.8458 + 357.947i −0.246613 + 1.34063i
\(268\) 0 0
\(269\) 154.361 + 89.1206i 0.573834 + 0.331303i 0.758679 0.651464i \(-0.225845\pi\)
−0.184845 + 0.982768i \(0.559178\pi\)
\(270\) 0 0
\(271\) −299.052 + 172.658i −1.10351 + 0.637114i −0.937142 0.348948i \(-0.886539\pi\)
−0.166373 + 0.986063i \(0.553205\pi\)
\(272\) 0 0
\(273\) 9.24305 1.33323i 0.0338573 0.00488361i
\(274\) 0 0
\(275\) 199.204 0.724380
\(276\) 0 0
\(277\) −374.339 −1.35140 −0.675702 0.737175i \(-0.736159\pi\)
−0.675702 + 0.737175i \(0.736159\pi\)
\(278\) 0 0
\(279\) 138.374 + 169.945i 0.495964 + 0.609122i
\(280\) 0 0
\(281\) −168.976 292.676i −0.601340 1.04155i −0.992618 0.121279i \(-0.961301\pi\)
0.391279 0.920272i \(-0.372033\pi\)
\(282\) 0 0
\(283\) 370.026 213.634i 1.30751 0.754892i 0.325831 0.945428i \(-0.394356\pi\)
0.981680 + 0.190536i \(0.0610225\pi\)
\(284\) 0 0
\(285\) 63.4598 + 11.6737i 0.222666 + 0.0409603i
\(286\) 0 0
\(287\) 127.716 + 112.474i 0.445002 + 0.391894i
\(288\) 0 0
\(289\) −131.857 228.382i −0.456251 0.790250i
\(290\) 0 0
\(291\) −33.3611 + 181.356i −0.114643 + 0.623215i
\(292\) 0 0
\(293\) −54.0168 31.1866i −0.184358 0.106439i 0.404981 0.914325i \(-0.367278\pi\)
−0.589338 + 0.807886i \(0.700612\pi\)
\(294\) 0 0
\(295\) −13.2100 22.8804i −0.0447797 0.0775607i
\(296\) 0 0
\(297\) −190.977 115.978i −0.643021 0.390498i
\(298\) 0 0
\(299\) −5.80968 3.35422i −0.0194304 0.0112181i
\(300\) 0 0
\(301\) 51.7752 + 153.572i 0.172011 + 0.510205i
\(302\) 0 0
\(303\) 271.823 + 231.530i 0.897104 + 0.764124i
\(304\) 0 0
\(305\) −38.3343 + 66.3970i −0.125686 + 0.217695i
\(306\) 0 0
\(307\) 473.374i 1.54194i 0.636874 + 0.770968i \(0.280227\pi\)
−0.636874 + 0.770968i \(0.719773\pi\)
\(308\) 0 0
\(309\) 221.595 + 188.747i 0.717135 + 0.610832i
\(310\) 0 0
\(311\) −125.112 + 72.2333i −0.402288 + 0.232261i −0.687471 0.726212i \(-0.741279\pi\)
0.285183 + 0.958473i \(0.407946\pi\)
\(312\) 0 0
\(313\) 16.2589 + 9.38707i 0.0519453 + 0.0299906i 0.525748 0.850641i \(-0.323786\pi\)
−0.473802 + 0.880631i \(0.657119\pi\)
\(314\) 0 0
\(315\) 60.6453 + 2.34616i 0.192525 + 0.00744814i
\(316\) 0 0
\(317\) −13.0645 + 22.6284i −0.0412131 + 0.0713831i −0.885896 0.463884i \(-0.846456\pi\)
0.844683 + 0.535267i \(0.179789\pi\)
\(318\) 0 0
\(319\) −102.501 177.537i −0.321320 0.556543i
\(320\) 0 0
\(321\) −225.171 41.4211i −0.701466 0.129038i
\(322\) 0 0
\(323\) −112.271 −0.347590
\(324\) 0 0
\(325\) 9.27064 + 5.35241i 0.0285251 + 0.0164690i
\(326\) 0 0
\(327\) −38.5728 108.464i −0.117960 0.331695i
\(328\) 0 0
\(329\) 49.3570 + 43.4666i 0.150021 + 0.132117i
\(330\) 0 0
\(331\) −140.657 + 243.624i −0.424944 + 0.736025i −0.996415 0.0845973i \(-0.973040\pi\)
0.571471 + 0.820622i \(0.306373\pi\)
\(332\) 0 0
\(333\) −211.050 + 171.843i −0.633784 + 0.516045i
\(334\) 0 0
\(335\) −11.8308 + 6.83051i −0.0353158 + 0.0203896i
\(336\) 0 0
\(337\) −94.4669 + 163.621i −0.280317 + 0.485523i −0.971463 0.237192i \(-0.923773\pi\)
0.691146 + 0.722715i \(0.257106\pi\)
\(338\) 0 0
\(339\) −206.149 579.678i −0.608109 1.70996i
\(340\) 0 0
\(341\) −174.512 + 100.755i −0.511766 + 0.295468i
\(342\) 0 0
\(343\) 284.002 + 192.333i 0.827993 + 0.560738i
\(344\) 0 0
\(345\) −33.1893 28.2696i −0.0962009 0.0819408i
\(346\) 0 0
\(347\) 39.7467 + 68.8433i 0.114544 + 0.198396i 0.917597 0.397511i \(-0.130126\pi\)
−0.803054 + 0.595907i \(0.796793\pi\)
\(348\) 0 0
\(349\) 256.280 147.963i 0.734327 0.423964i −0.0856763 0.996323i \(-0.527305\pi\)
0.820003 + 0.572359i \(0.193972\pi\)
\(350\) 0 0
\(351\) −5.77156 10.5288i −0.0164432 0.0299965i
\(352\) 0 0
\(353\) 479.848i 1.35934i 0.733516 + 0.679672i \(0.237878\pi\)
−0.733516 + 0.679672i \(0.762122\pi\)
\(354\) 0 0
\(355\) 128.544i 0.362097i
\(356\) 0 0
\(357\) −104.519 + 15.0759i −0.292770 + 0.0422293i
\(358\) 0 0
\(359\) −267.870 463.964i −0.746156 1.29238i −0.949653 0.313304i \(-0.898564\pi\)
0.203497 0.979076i \(-0.434769\pi\)
\(360\) 0 0
\(361\) 68.7387 119.059i 0.190412 0.329803i
\(362\) 0 0
\(363\) −102.163 + 119.942i −0.281441 + 0.330420i
\(364\) 0 0
\(365\) −28.5252 + 49.4071i −0.0781512 + 0.135362i
\(366\) 0 0
\(367\) 272.723i 0.743115i −0.928410 0.371557i \(-0.878824\pi\)
0.928410 0.371557i \(-0.121176\pi\)
\(368\) 0 0
\(369\) 77.8650 204.481i 0.211016 0.554148i
\(370\) 0 0
\(371\) −413.939 + 470.034i −1.11574 + 1.26694i
\(372\) 0 0
\(373\) −671.704 −1.80082 −0.900408 0.435047i \(-0.856732\pi\)
−0.900408 + 0.435047i \(0.856732\pi\)
\(374\) 0 0
\(375\) 107.964 + 91.9599i 0.287903 + 0.245226i
\(376\) 0 0
\(377\) 11.0164i 0.0292212i
\(378\) 0 0
\(379\) −140.974 −0.371962 −0.185981 0.982553i \(-0.559546\pi\)
−0.185981 + 0.982553i \(0.559546\pi\)
\(380\) 0 0
\(381\) −139.694 + 164.005i −0.366651 + 0.430460i
\(382\) 0 0
\(383\) 397.648i 1.03825i −0.854700 0.519123i \(-0.826259\pi\)
0.854700 0.519123i \(-0.173741\pi\)
\(384\) 0 0
\(385\) −11.0005 + 54.7092i −0.0285726 + 0.142102i
\(386\) 0 0
\(387\) 161.581 131.564i 0.417522 0.339958i
\(388\) 0 0
\(389\) 518.270 1.33231 0.666157 0.745812i \(-0.267938\pi\)
0.666157 + 0.745812i \(0.267938\pi\)
\(390\) 0 0
\(391\) 65.6949 + 37.9289i 0.168018 + 0.0970050i
\(392\) 0 0
\(393\) −17.2431 14.6871i −0.0438756 0.0373718i
\(394\) 0 0
\(395\) −16.6583 9.61766i −0.0421729 0.0243485i
\(396\) 0 0
\(397\) 301.974 174.345i 0.760640 0.439156i −0.0688856 0.997625i \(-0.521944\pi\)
0.829525 + 0.558469i \(0.188611\pi\)
\(398\) 0 0
\(399\) 174.060 435.352i 0.436240 1.09111i
\(400\) 0 0
\(401\) 210.523 0.524996 0.262498 0.964933i \(-0.415454\pi\)
0.262498 + 0.964933i \(0.415454\pi\)
\(402\) 0 0
\(403\) −10.8287 −0.0268702
\(404\) 0 0
\(405\) −24.5101 74.0815i −0.0605188 0.182917i
\(406\) 0 0
\(407\) −125.125 216.722i −0.307431 0.532487i
\(408\) 0 0
\(409\) 464.682 268.285i 1.13614 0.655952i 0.190670 0.981654i \(-0.438934\pi\)
0.945473 + 0.325702i \(0.105601\pi\)
\(410\) 0 0
\(411\) 396.666 465.698i 0.965125 1.13309i
\(412\) 0 0
\(413\) −181.917 + 61.3315i −0.440476 + 0.148502i
\(414\) 0 0
\(415\) −56.1866 97.3180i −0.135389 0.234501i
\(416\) 0 0
\(417\) −252.552 + 89.8142i −0.605640 + 0.215382i
\(418\) 0 0
\(419\) 368.723 + 212.882i 0.880007 + 0.508072i 0.870661 0.491884i \(-0.163692\pi\)
0.00934643 + 0.999956i \(0.497025\pi\)
\(420\) 0 0
\(421\) 399.672 + 692.253i 0.949341 + 1.64431i 0.746818 + 0.665029i \(0.231581\pi\)
0.202523 + 0.979277i \(0.435086\pi\)
\(422\) 0 0
\(423\) 30.0917 79.0236i 0.0711388 0.186817i
\(424\) 0 0
\(425\) −104.831 60.5241i −0.246661 0.142410i
\(426\) 0 0
\(427\) 418.088 + 368.192i 0.979129 + 0.862276i
\(428\) 0 0
\(429\) 10.4020 3.69923i 0.0242471 0.00862290i
\(430\) 0 0
\(431\) 33.3100 57.6946i 0.0772854 0.133862i −0.824792 0.565436i \(-0.808708\pi\)
0.902078 + 0.431573i \(0.142041\pi\)
\(432\) 0 0
\(433\) 532.074i 1.22881i −0.788991 0.614405i \(-0.789396\pi\)
0.788991 0.614405i \(-0.210604\pi\)
\(434\) 0 0
\(435\) 12.9526 70.4121i 0.0297761 0.161867i
\(436\) 0 0
\(437\) −291.681 + 168.402i −0.667461 + 0.385359i
\(438\) 0 0
\(439\) 222.308 + 128.350i 0.506397 + 0.292368i 0.731351 0.682001i \(-0.238890\pi\)
−0.224955 + 0.974369i \(0.572223\pi\)
\(440\) 0 0
\(441\) 103.581 428.663i 0.234878 0.972025i
\(442\) 0 0
\(443\) −45.0204 + 77.9776i −0.101626 + 0.176022i −0.912355 0.409400i \(-0.865738\pi\)
0.810729 + 0.585422i \(0.199071\pi\)
\(444\) 0 0
\(445\) −58.4353 101.213i −0.131315 0.227445i
\(446\) 0 0
\(447\) 246.025 288.841i 0.550391 0.646176i
\(448\) 0 0
\(449\) −238.627 −0.531464 −0.265732 0.964047i \(-0.585614\pi\)
−0.265732 + 0.964047i \(0.585614\pi\)
\(450\) 0 0
\(451\) 174.233 + 100.594i 0.386327 + 0.223046i
\(452\) 0 0
\(453\) 66.0960 77.5987i 0.145907 0.171300i
\(454\) 0 0
\(455\) −1.98192 + 2.25050i −0.00435587 + 0.00494616i
\(456\) 0 0
\(457\) 312.577 541.400i 0.683977 1.18468i −0.289781 0.957093i \(-0.593582\pi\)
0.973757 0.227589i \(-0.0730843\pi\)
\(458\) 0 0
\(459\) 65.2637 + 119.057i 0.142187 + 0.259385i
\(460\) 0 0
\(461\) 612.475 353.613i 1.32858 0.767056i 0.343500 0.939153i \(-0.388388\pi\)
0.985080 + 0.172097i \(0.0550542\pi\)
\(462\) 0 0
\(463\) −420.069 + 727.582i −0.907277 + 1.57145i −0.0894469 + 0.995992i \(0.528510\pi\)
−0.817831 + 0.575459i \(0.804823\pi\)
\(464\) 0 0
\(465\) −69.2124 12.7319i −0.148844 0.0273804i
\(466\) 0 0
\(467\) −37.7190 + 21.7771i −0.0807688 + 0.0466319i −0.539840 0.841767i \(-0.681515\pi\)
0.459072 + 0.888399i \(0.348182\pi\)
\(468\) 0 0
\(469\) 31.7127 + 94.0638i 0.0676177 + 0.200563i
\(470\) 0 0
\(471\) 24.7794 134.704i 0.0526102 0.285997i
\(472\) 0 0
\(473\) 95.7960 + 165.924i 0.202529 + 0.350790i
\(474\) 0 0
\(475\) 465.441 268.723i 0.979877 0.565732i
\(476\) 0 0
\(477\) 752.554 + 286.568i 1.57768 + 0.600771i
\(478\) 0 0
\(479\) 670.529i 1.39985i −0.714215 0.699926i \(-0.753216\pi\)
0.714215 0.699926i \(-0.246784\pi\)
\(480\) 0 0
\(481\) 13.4478i 0.0279581i
\(482\) 0 0
\(483\) −248.926 + 195.940i −0.515375 + 0.405674i
\(484\) 0 0
\(485\) −29.6065 51.2800i −0.0610444 0.105732i
\(486\) 0 0
\(487\) 365.228 632.594i 0.749955 1.29896i −0.197888 0.980225i \(-0.563408\pi\)
0.947843 0.318736i \(-0.103258\pi\)
\(488\) 0 0
\(489\) 387.392 + 71.2624i 0.792213 + 0.145731i
\(490\) 0 0
\(491\) −256.934 + 445.023i −0.523287 + 0.906360i 0.476346 + 0.879258i \(0.341961\pi\)
−0.999633 + 0.0271018i \(0.991372\pi\)
\(492\) 0 0
\(493\) 124.571i 0.252680i
\(494\) 0 0
\(495\) 70.8346 11.4137i 0.143100 0.0230580i
\(496\) 0 0
\(497\) −915.722 184.126i −1.84250 0.370474i
\(498\) 0 0
\(499\) 153.056 0.306724 0.153362 0.988170i \(-0.450990\pi\)
0.153362 + 0.988170i \(0.450990\pi\)
\(500\) 0 0
\(501\) −672.295 + 239.086i −1.34191 + 0.477218i
\(502\) 0 0
\(503\) 80.5356i 0.160110i 0.996790 + 0.0800552i \(0.0255097\pi\)
−0.996790 + 0.0800552i \(0.974490\pi\)
\(504\) 0 0
\(505\) −114.658 −0.227045
\(506\) 0 0
\(507\) −498.050 91.6183i −0.982347 0.180707i
\(508\) 0 0
\(509\) 66.7632i 0.131165i 0.997847 + 0.0655827i \(0.0208906\pi\)
−0.997847 + 0.0655827i \(0.979109\pi\)
\(510\) 0 0
\(511\) 311.106 + 273.977i 0.608818 + 0.536159i
\(512\) 0 0
\(513\) −602.670 13.3585i −1.17480 0.0260399i
\(514\) 0 0
\(515\) −93.4711 −0.181497
\(516\) 0 0
\(517\) 67.3342 + 38.8754i 0.130240 + 0.0751943i
\(518\) 0 0
\(519\) 875.097 311.208i 1.68612 0.599629i
\(520\) 0 0
\(521\) 828.396 + 478.274i 1.59001 + 0.917993i 0.993303 + 0.115534i \(0.0368580\pi\)
0.596707 + 0.802459i \(0.296475\pi\)
\(522\) 0 0
\(523\) −77.4777 + 44.7318i −0.148141 + 0.0855292i −0.572238 0.820087i \(-0.693925\pi\)
0.424097 + 0.905617i \(0.360591\pi\)
\(524\) 0 0
\(525\) 397.217 312.666i 0.756604 0.595555i
\(526\) 0 0
\(527\) 122.449 0.232350
\(528\) 0 0
\(529\) −301.433 −0.569817
\(530\) 0 0
\(531\) 155.847 + 191.404i 0.293497 + 0.360460i
\(532\) 0 0
\(533\) 5.40569 + 9.36293i 0.0101420 + 0.0175665i
\(534\) 0 0
\(535\) 63.6691 36.7594i 0.119008 0.0687092i
\(536\) 0 0
\(537\) −304.415 855.997i −0.566881 1.59404i
\(538\) 0 0
\(539\) 373.979 + 156.730i 0.693839 + 0.290779i
\(540\) 0 0
\(541\) 13.8403 + 23.9722i 0.0255829 + 0.0443109i 0.878533 0.477681i \(-0.158522\pi\)
−0.852951 + 0.521992i \(0.825189\pi\)
\(542\) 0 0
\(543\) −469.823 400.179i −0.865235 0.736979i
\(544\) 0 0
\(545\) 32.0138 + 18.4832i 0.0587409 + 0.0339141i
\(546\) 0 0
\(547\) 339.847 + 588.632i 0.621292 + 1.07611i 0.989245 + 0.146265i \(0.0467253\pi\)
−0.367953 + 0.929844i \(0.619941\pi\)
\(548\) 0 0
\(549\) 254.897 669.385i 0.464294 1.21928i
\(550\) 0 0
\(551\) −478.988 276.544i −0.869307 0.501894i
\(552\) 0 0
\(553\) −92.3753 + 104.894i −0.167044 + 0.189681i
\(554\) 0 0
\(555\) 15.8114 85.9530i 0.0284890 0.154870i
\(556\) 0 0
\(557\) −172.676 + 299.083i −0.310010 + 0.536954i −0.978364 0.206890i \(-0.933666\pi\)
0.668354 + 0.743843i \(0.266999\pi\)
\(558\) 0 0
\(559\) 10.2957i 0.0184181i
\(560\) 0 0
\(561\) −117.624 + 41.8302i −0.209668 + 0.0745636i
\(562\) 0 0
\(563\) −930.283 + 537.099i −1.65237 + 0.953995i −0.676273 + 0.736651i \(0.736406\pi\)
−0.976095 + 0.217344i \(0.930261\pi\)
\(564\) 0 0
\(565\) 171.095 + 98.7817i 0.302823 + 0.174835i
\(566\) 0 0
\(567\) −562.848 + 68.4909i −0.992677 + 0.120795i
\(568\) 0 0
\(569\) 307.619 532.811i 0.540630 0.936399i −0.458238 0.888830i \(-0.651519\pi\)
0.998868 0.0475691i \(-0.0151474\pi\)
\(570\) 0 0
\(571\) −248.251 429.983i −0.434765 0.753035i 0.562512 0.826789i \(-0.309835\pi\)
−0.997276 + 0.0737547i \(0.976502\pi\)
\(572\) 0 0
\(573\) 73.4716 + 206.598i 0.128223 + 0.360554i
\(574\) 0 0
\(575\) −363.133 −0.631536
\(576\) 0 0
\(577\) 514.284 + 296.922i 0.891306 + 0.514596i 0.874369 0.485261i \(-0.161275\pi\)
0.0169365 + 0.999857i \(0.494609\pi\)
\(578\) 0 0
\(579\) −1046.91 192.583i −1.80813 0.332614i
\(580\) 0 0
\(581\) −773.753 + 260.863i −1.33176 + 0.448990i
\(582\) 0 0
\(583\) −370.217 + 641.234i −0.635020 + 1.09989i
\(584\) 0 0
\(585\) 3.60320 + 1.37207i 0.00615931 + 0.00234543i
\(586\) 0 0
\(587\) −322.786 + 186.360i −0.549890 + 0.317479i −0.749078 0.662482i \(-0.769503\pi\)
0.199187 + 0.979961i \(0.436170\pi\)
\(588\) 0 0
\(589\) −271.832 + 470.827i −0.461514 + 0.799366i
\(590\) 0 0
\(591\) −5.47327 + 6.42578i −0.00926103 + 0.0108727i
\(592\) 0 0
\(593\) −857.809 + 495.256i −1.44656 + 0.835171i −0.998274 0.0587202i \(-0.981298\pi\)
−0.448284 + 0.893891i \(0.647965\pi\)
\(594\) 0 0
\(595\) 22.4112 25.4483i 0.0376659 0.0427702i
\(596\) 0 0
\(597\) 302.539 107.591i 0.506765 0.180219i
\(598\) 0 0
\(599\) 340.110 + 589.088i 0.567796 + 0.983452i 0.996784 + 0.0801414i \(0.0255372\pi\)
−0.428987 + 0.903311i \(0.641129\pi\)
\(600\) 0 0
\(601\) 132.268 76.3649i 0.220080 0.127063i −0.385908 0.922537i \(-0.626112\pi\)
0.605987 + 0.795474i \(0.292778\pi\)
\(602\) 0 0
\(603\) 98.9697 80.5840i 0.164129 0.133638i
\(604\) 0 0
\(605\) 50.5931i 0.0836250i
\(606\) 0 0
\(607\) 291.769i 0.480674i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(608\) 0 0
\(609\) −483.047 193.129i −0.793181 0.317125i
\(610\) 0 0
\(611\) 2.08908 + 3.61840i 0.00341912 + 0.00592209i
\(612\) 0 0
\(613\) −152.238 + 263.684i −0.248349 + 0.430154i −0.963068 0.269258i \(-0.913221\pi\)
0.714719 + 0.699412i \(0.246555\pi\)
\(614\) 0 0
\(615\) 23.5424 + 66.1997i 0.0382803 + 0.107642i
\(616\) 0 0
\(617\) −42.3876 + 73.4174i −0.0686995 + 0.118991i −0.898329 0.439323i \(-0.855218\pi\)
0.829630 + 0.558314i \(0.188552\pi\)
\(618\) 0 0
\(619\) 649.483i 1.04925i −0.851335 0.524623i \(-0.824206\pi\)
0.851335 0.524623i \(-0.175794\pi\)
\(620\) 0 0
\(621\) 348.136 + 211.418i 0.560605 + 0.340448i
\(622\) 0 0
\(623\) −804.720 + 271.304i −1.29169 + 0.435480i
\(624\) 0 0
\(625\) 556.259 0.890014
\(626\) 0 0
\(627\) 100.280 545.136i 0.159936 0.869436i
\(628\) 0 0
\(629\) 152.066i 0.241758i
\(630\) 0 0
\(631\) −46.9650 −0.0744295 −0.0372147 0.999307i \(-0.511849\pi\)
−0.0372147 + 0.999307i \(0.511849\pi\)
\(632\) 0 0
\(633\) −0.625047 1.75759i −0.000987435 0.00277661i
\(634\) 0 0
\(635\) 69.1793i 0.108944i
\(636\) 0 0
\(637\) 13.1932 + 17.3424i 0.0207115 + 0.0272251i
\(638\) 0 0
\(639\) 191.042 + 1185.63i 0.298971 + 1.85544i
\(640\) 0 0
\(641\) 287.551 0.448597 0.224298 0.974520i \(-0.427991\pi\)
0.224298 + 0.974520i \(0.427991\pi\)
\(642\) 0 0
\(643\) −7.84398 4.52872i −0.0121990 0.00704312i 0.493888 0.869525i \(-0.335575\pi\)
−0.506087 + 0.862482i \(0.668909\pi\)
\(644\) 0 0
\(645\) −12.1053 + 65.8061i −0.0187679 + 0.102025i
\(646\) 0 0
\(647\) 366.328 + 211.499i 0.566194 + 0.326892i 0.755628 0.655001i \(-0.227332\pi\)
−0.189434 + 0.981894i \(0.560665\pi\)
\(648\) 0 0
\(649\) −196.548 + 113.477i −0.302848 + 0.174850i
\(650\) 0 0
\(651\) −189.838 + 474.817i −0.291610 + 0.729365i
\(652\) 0 0
\(653\) 361.234 0.553191 0.276596 0.960986i \(-0.410794\pi\)
0.276596 + 0.960986i \(0.410794\pi\)
\(654\) 0 0
\(655\) 7.27333 0.0111043
\(656\) 0 0
\(657\) 189.673 498.100i 0.288696 0.758143i
\(658\) 0 0
\(659\) −271.135 469.619i −0.411433 0.712624i 0.583613 0.812032i \(-0.301638\pi\)
−0.995047 + 0.0994081i \(0.968305\pi\)
\(660\) 0 0
\(661\) 772.501 446.003i 1.16868 0.674740i 0.215315 0.976545i \(-0.430922\pi\)
0.953370 + 0.301804i \(0.0975889\pi\)
\(662\) 0 0
\(663\) −6.59795 1.21372i −0.00995166 0.00183065i
\(664\) 0 0
\(665\) 48.0990 + 142.667i 0.0723293 + 0.214538i
\(666\) 0 0
\(667\) 186.851 + 323.635i 0.280136 + 0.485211i
\(668\) 0 0
\(669\) −217.951 + 1184.81i −0.325786 + 1.77102i
\(670\) 0 0
\(671\) 570.368 + 329.302i 0.850026 + 0.490763i
\(672\) 0 0
\(673\) 40.9317 + 70.8958i 0.0608197 + 0.105343i 0.894832 0.446403i \(-0.147295\pi\)
−0.834012 + 0.551746i \(0.813962\pi\)
\(674\) 0 0
\(675\) −555.528 337.365i −0.823004 0.499800i
\(676\) 0 0
\(677\) −452.877 261.469i −0.668946 0.386216i 0.126731 0.991937i \(-0.459552\pi\)
−0.795677 + 0.605721i \(0.792885\pi\)
\(678\) 0 0
\(679\) −407.715 + 137.457i −0.600464 + 0.202441i
\(680\) 0 0
\(681\) 894.818 + 762.176i 1.31398 + 1.11920i
\(682\) 0 0
\(683\) 466.207 807.494i 0.682587 1.18228i −0.291601 0.956540i \(-0.594188\pi\)
0.974189 0.225736i \(-0.0724786\pi\)
\(684\) 0 0
\(685\) 196.437i 0.286769i
\(686\) 0 0
\(687\) 294.175 + 250.569i 0.428202 + 0.364729i
\(688\) 0 0
\(689\) −34.4585 + 19.8947i −0.0500124 + 0.0288747i
\(690\) 0 0
\(691\) −978.220 564.775i −1.41566 0.817331i −0.419745 0.907642i \(-0.637880\pi\)
−0.995914 + 0.0903117i \(0.971214\pi\)
\(692\) 0 0
\(693\) 20.1542 520.959i 0.0290825 0.751744i
\(694\) 0 0
\(695\) 43.0369 74.5421i 0.0619236 0.107255i
\(696\) 0 0
\(697\) −61.1265 105.874i −0.0876995 0.151900i
\(698\) 0 0
\(699\) −105.255 19.3620i −0.150579 0.0276996i
\(700\) 0 0
\(701\) 883.655 1.26056 0.630281 0.776367i \(-0.282939\pi\)
0.630281 + 0.776367i \(0.282939\pi\)
\(702\) 0 0
\(703\) −584.707 337.581i −0.831732 0.480200i
\(704\) 0 0
\(705\) 9.09818 + 25.5835i 0.0129052 + 0.0362887i
\(706\) 0 0
\(707\) −164.235 + 816.797i −0.232298 + 1.15530i
\(708\) 0 0
\(709\) 118.989 206.096i 0.167827 0.290685i −0.769829 0.638251i \(-0.779658\pi\)
0.937656 + 0.347566i \(0.112992\pi\)
\(710\) 0 0
\(711\) 167.941 + 63.9510i 0.236204 + 0.0899451i
\(712\) 0 0
\(713\) 318.121 183.667i 0.446173 0.257598i
\(714\) 0 0
\(715\) −1.77258 + 3.07020i −0.00247914 + 0.00429399i
\(716\) 0 0
\(717\) −287.000 807.026i −0.400279 1.12556i
\(718\) 0 0
\(719\) −54.4638 + 31.4447i −0.0757494 + 0.0437339i −0.537396 0.843330i \(-0.680592\pi\)
0.461647 + 0.887064i \(0.347259\pi\)
\(720\) 0 0
\(721\) −133.887 + 665.868i −0.185696 + 0.923533i
\(722\) 0 0
\(723\) −315.816 269.002i −0.436813 0.372063i
\(724\) 0 0
\(725\) −298.162 516.432i −0.411258 0.712321i
\(726\) 0 0
\(727\) 245.665 141.835i 0.337917 0.195096i −0.321434 0.946932i \(-0.604165\pi\)
0.659350 + 0.751836i \(0.270831\pi\)
\(728\) 0 0
\(729\) 336.168 + 646.863i 0.461136 + 0.887329i
\(730\) 0 0
\(731\) 116.422i 0.159264i
\(732\) 0 0
\(733\) 486.378i 0.663544i 0.943360 + 0.331772i \(0.107647\pi\)
−0.943360 + 0.331772i \(0.892353\pi\)
\(734\) 0 0
\(735\) 63.9351 + 126.357i 0.0869865 + 0.171914i
\(736\) 0 0
\(737\) 58.6758 + 101.630i 0.0796144 + 0.137896i
\(738\) 0 0
\(739\) 378.929 656.325i 0.512759 0.888125i −0.487131 0.873329i \(-0.661957\pi\)
0.999891 0.0147966i \(-0.00471007\pi\)
\(740\) 0 0
\(741\) 19.3141 22.6753i 0.0260649 0.0306010i
\(742\) 0 0
\(743\) −181.162 + 313.782i −0.243825 + 0.422317i −0.961801 0.273751i \(-0.911736\pi\)
0.717976 + 0.696068i \(0.245069\pi\)
\(744\) 0 0
\(745\) 121.836i 0.163539i
\(746\) 0 0
\(747\) 662.870 + 814.108i 0.887376 + 1.08984i
\(748\) 0 0
\(749\) −170.667 506.219i −0.227860 0.675859i
\(750\) 0 0
\(751\) −1353.58 −1.80236 −0.901182 0.433441i \(-0.857299\pi\)
−0.901182 + 0.433441i \(0.857299\pi\)
\(752\) 0 0
\(753\) −67.9324 57.8626i −0.0902157 0.0768428i
\(754\) 0 0
\(755\) 32.7320i 0.0433537i
\(756\) 0 0
\(757\) −160.495 −0.212014 −0.106007 0.994365i \(-0.533807\pi\)
−0.106007 + 0.994365i \(0.533807\pi\)
\(758\) 0 0
\(759\) −242.843 + 285.105i −0.319951 + 0.375632i
\(760\) 0 0
\(761\) 619.288i 0.813782i −0.913477 0.406891i \(-0.866613\pi\)
0.913477 0.406891i \(-0.133387\pi\)
\(762\) 0 0
\(763\) 177.526 201.584i 0.232669 0.264199i
\(764\) 0 0
\(765\) −40.7443 15.5152i −0.0532605 0.0202813i
\(766\) 0 0
\(767\) −12.1961 −0.0159010
\(768\) 0 0
\(769\) 133.828 + 77.2658i 0.174029 + 0.100476i 0.584484 0.811405i \(-0.301297\pi\)
−0.410455 + 0.911881i \(0.634630\pi\)
\(770\) 0 0
\(771\) −660.036 562.197i −0.856077 0.729179i
\(772\) 0 0
\(773\) 554.122 + 319.923i 0.716846 + 0.413871i 0.813591 0.581438i \(-0.197510\pi\)
−0.0967447 + 0.995309i \(0.530843\pi\)
\(774\) 0 0
\(775\) −507.633 + 293.082i −0.655011 + 0.378171i
\(776\) 0 0
\(777\) −589.662 235.755i −0.758896 0.303417i
\(778\) 0 0
\(779\) 542.795 0.696785
\(780\) 0 0
\(781\) −1104.23 −1.41387
\(782\) 0 0
\(783\) −14.8219 + 668.695i −0.0189297 + 0.854017i
\(784\) 0 0
\(785\) 21.9907 + 38.0890i 0.0280136 + 0.0485210i
\(786\) 0 0
\(787\) 428.370 247.320i 0.544308 0.314256i −0.202515 0.979279i \(-0.564911\pi\)
0.746823 + 0.665023i \(0.231578\pi\)
\(788\) 0 0
\(789\) 616.363 723.628i 0.781195 0.917146i
\(790\) 0 0
\(791\) 948.773 1077.35i 1.19946 1.36201i
\(792\) 0 0
\(793\) 17.6960 + 30.6503i 0.0223152 + 0.0386511i
\(794\) 0 0
\(795\) −243.636 + 86.6434i −0.306460 + 0.108985i
\(796\) 0 0
\(797\) −933.311 538.847i −1.17103 0.676095i −0.217108 0.976148i \(-0.569662\pi\)
−0.953923 + 0.300053i \(0.902996\pi\)
\(798\) 0 0
\(799\) −23.6230 40.9162i −0.0295657 0.0512092i
\(800\) 0 0
\(801\) 689.400 + 846.690i 0.860674 + 1.05704i
\(802\) 0 0
\(803\) 424.420 + 245.039i 0.528543 + 0.305154i
\(804\) 0 0
\(805\) 20.0529 99.7303i 0.0249105 0.123889i
\(806\) 0 0
\(807\) 503.813 179.169i 0.624303 0.222019i
\(808\) 0 0
\(809\) 403.448 698.793i 0.498700 0.863773i −0.501299 0.865274i \(-0.667144\pi\)
0.999999 + 0.00150078i \(0.000477712\pi\)
\(810\) 0 0
\(811\) 940.287i 1.15942i −0.814824 0.579708i \(-0.803167\pi\)
0.814824 0.579708i \(-0.196833\pi\)
\(812\) 0 0
\(813\) −187.422 + 1018.85i −0.230531 + 1.25320i
\(814\) 0 0
\(815\) −109.539 + 63.2423i −0.134403 + 0.0775979i
\(816\) 0 0
\(817\) 447.655 + 258.454i 0.547925 + 0.316345i
\(818\) 0 0
\(819\) 14.9355 23.7030i 0.0182363 0.0289414i
\(820\) 0 0
\(821\) −395.018 + 684.191i −0.481142 + 0.833363i −0.999766 0.0216400i \(-0.993111\pi\)
0.518624 + 0.855003i \(0.326445\pi\)
\(822\) 0 0
\(823\) −494.196 855.972i −0.600481 1.04006i −0.992748 0.120212i \(-0.961642\pi\)
0.392267 0.919851i \(-0.371691\pi\)
\(824\) 0 0
\(825\) 387.510 454.948i 0.469709 0.551452i
\(826\) 0 0
\(827\) 1264.20 1.52865 0.764327 0.644829i \(-0.223071\pi\)
0.764327 + 0.644829i \(0.223071\pi\)
\(828\) 0 0
\(829\) 429.224 + 247.812i 0.517761 + 0.298929i 0.736018 0.676962i \(-0.236704\pi\)
−0.218257 + 0.975891i \(0.570037\pi\)
\(830\) 0 0
\(831\) −728.197 + 854.925i −0.876290 + 1.02879i
\(832\) 0 0
\(833\) −149.186 196.104i −0.179095 0.235419i
\(834\) 0 0
\(835\) 114.564 198.431i 0.137203 0.237642i
\(836\) 0 0
\(837\) 657.302 + 14.5694i 0.785307 + 0.0174067i
\(838\) 0 0
\(839\) 1056.00 609.684i 1.25865 0.726680i 0.285835 0.958279i \(-0.407729\pi\)
0.972811 + 0.231599i \(0.0743958\pi\)
\(840\) 0 0
\(841\) 113.660 196.864i 0.135148 0.234084i
\(842\) 0 0
\(843\) −997.128 183.426i −1.18283 0.217587i
\(844\) 0 0
\(845\) 140.828 81.3073i 0.166661 0.0962216i
\(846\) 0 0
\(847\) −360.414 72.4690i −0.425518 0.0855597i
\(848\) 0 0
\(849\) 231.902 1260.65i 0.273148 1.48487i
\(850\) 0 0
\(851\) 228.092 + 395.066i 0.268028 + 0.464238i
\(852\) 0 0
\(853\) −774.869 + 447.371i −0.908404 + 0.524467i −0.879917 0.475127i \(-0.842402\pi\)
−0.0284869 + 0.999594i \(0.509069\pi\)
\(854\) 0 0
\(855\) 150.108 122.222i 0.175565 0.142950i
\(856\) 0 0
\(857\) 560.997i 0.654605i 0.944920 + 0.327303i \(0.106140\pi\)
−0.944920 + 0.327303i \(0.893860\pi\)
\(858\) 0 0
\(859\) 1468.27i 1.70928i −0.519225 0.854638i \(-0.673779\pi\)
0.519225 0.854638i \(-0.326221\pi\)
\(860\) 0 0
\(861\) 505.314 72.8869i 0.586892 0.0846537i
\(862\) 0 0
\(863\) −723.196 1252.61i −0.838003 1.45146i −0.891562 0.452899i \(-0.850390\pi\)
0.0535591 0.998565i \(-0.482943\pi\)
\(864\) 0 0
\(865\) −149.123 + 258.289i −0.172397 + 0.298600i
\(866\) 0 0
\(867\) −778.084 143.132i −0.897445 0.165089i
\(868\) 0 0
\(869\) −82.6182 + 143.099i −0.0950727 + 0.164671i
\(870\) 0 0
\(871\) 6.30622i 0.00724021i
\(872\) 0 0
\(873\) 349.288 + 428.979i 0.400100 + 0.491385i
\(874\) 0 0
\(875\) −65.2315 + 324.419i −0.0745503 + 0.370765i
\(876\) 0 0
\(877\) 1370.01 1.56215 0.781075 0.624438i \(-0.214672\pi\)
0.781075 + 0.624438i \(0.214672\pi\)
\(878\) 0 0
\(879\) −176.303 + 62.6980i −0.200572 + 0.0713288i
\(880\) 0 0
\(881\) 1155.87i 1.31200i −0.754763 0.655998i \(-0.772248\pi\)
0.754763 0.655998i \(-0.227752\pi\)
\(882\) 0 0
\(883\) 457.894 0.518567 0.259283 0.965801i \(-0.416514\pi\)
0.259283 + 0.965801i \(0.416514\pi\)
\(884\) 0 0
\(885\) −77.9521 14.3396i −0.0880814 0.0162029i
\(886\) 0 0
\(887\) 64.4365i 0.0726455i 0.999340 + 0.0363227i \(0.0115644\pi\)
−0.999340 + 0.0363227i \(0.988436\pi\)
\(888\) 0 0
\(889\) −492.818 99.0917i −0.554351 0.111464i
\(890\) 0 0
\(891\) −636.379 + 210.548i −0.714230 + 0.236305i
\(892\) 0 0
\(893\) 209.769 0.234903
\(894\) 0 0
\(895\) 252.652 + 145.869i 0.282293 + 0.162982i
\(896\) 0 0
\(897\) −18.9620 + 6.74338i −0.0211393 + 0.00751770i
\(898\) 0 0
\(899\) 522.408 + 301.612i 0.581099 + 0.335497i
\(900\) 0 0
\(901\) 389.651 224.965i 0.432465 0.249684i
\(902\) 0 0
\(903\) 451.448 + 180.495i 0.499943 + 0.199884i
\(904\) 0 0
\(905\) 198.177 0.218980
\(906\) 0 0
\(907\) 1027.59 1.13296 0.566480 0.824075i \(-0.308305\pi\)
0.566480 + 0.824075i \(0.308305\pi\)
\(908\) 0 0
\(909\) 1057.55 170.404i 1.16342 0.187463i
\(910\) 0 0
\(911\) −838.411 1452.17i −0.920320 1.59404i −0.798921 0.601437i \(-0.794595\pi\)
−0.121399 0.992604i \(-0.538738\pi\)
\(912\) 0 0
\(913\) −835.987 + 482.657i −0.915648 + 0.528650i
\(914\) 0 0
\(915\) 77.0679 + 216.710i 0.0842272 + 0.236842i
\(916\) 0 0
\(917\) 10.4183 51.8136i 0.0113612 0.0565034i
\(918\) 0 0
\(919\) −724.595 1255.03i −0.788460 1.36565i −0.926910 0.375283i \(-0.877545\pi\)
0.138450 0.990369i \(-0.455788\pi\)
\(920\) 0 0
\(921\) 1081.10 + 920.849i 1.17384 + 0.999836i
\(922\) 0 0
\(923\) −51.3890 29.6695i −0.0556761 0.0321446i
\(924\) 0 0
\(925\) −363.971 630.416i −0.393482 0.681531i
\(926\) 0 0
\(927\) 862.130 138.916i 0.930022 0.149856i
\(928\) 0 0
\(929\) 1429.67 + 825.418i 1.53893 + 0.888501i 0.998902 + 0.0468537i \(0.0149194\pi\)
0.540027 + 0.841647i \(0.318414\pi\)
\(930\) 0 0
\(931\) 1085.23 138.291i 1.16566 0.148540i
\(932\) 0 0
\(933\) −78.4100 + 426.248i −0.0840407 + 0.456857i
\(934\) 0 0
\(935\) 20.0440 34.7173i 0.0214375 0.0371308i
\(936\) 0 0
\(937\) 1340.89i 1.43105i 0.698588 + 0.715525i \(0.253812\pi\)
−0.698588 + 0.715525i \(0.746188\pi\)
\(938\) 0 0
\(939\) 53.0666 18.8719i 0.0565140 0.0200979i
\(940\) 0 0
\(941\) −552.125 + 318.769i −0.586743 + 0.338756i −0.763808 0.645443i \(-0.776673\pi\)
0.177066 + 0.984199i \(0.443339\pi\)
\(942\) 0 0
\(943\) −317.613 183.374i −0.336811 0.194458i
\(944\) 0 0
\(945\) 123.331 133.939i 0.130509 0.141735i
\(946\) 0 0
\(947\) −506.734 + 877.689i −0.535094 + 0.926810i 0.464065 + 0.885801i \(0.346391\pi\)
−0.999159 + 0.0410089i \(0.986943\pi\)
\(948\) 0 0
\(949\) 13.1679 + 22.8074i 0.0138755 + 0.0240331i
\(950\) 0 0
\(951\) 26.2651 + 73.8560i 0.0276184 + 0.0776614i
\(952\) 0 0
\(953\) 81.0381 0.0850347 0.0425173 0.999096i \(-0.486462\pi\)
0.0425173 + 0.999096i \(0.486462\pi\)
\(954\) 0 0
\(955\) −60.9784 35.2059i −0.0638517 0.0368648i
\(956\) 0 0
\(957\) −604.858 111.266i −0.632036 0.116265i
\(958\) 0 0
\(959\) 1399.37 + 281.374i 1.45920 + 0.293404i
\(960\) 0 0
\(961\) −184.027 + 318.744i −0.191495 + 0.331679i
\(962\) 0 0
\(963\) −532.620 + 433.675i −0.553084 + 0.450337i
\(964\) 0 0
\(965\) 296.024 170.909i 0.306760 0.177108i
\(966\) 0 0
\(967\) −253.546 + 439.155i −0.262199 + 0.454142i −0.966826 0.255436i \(-0.917781\pi\)
0.704627 + 0.709578i \(0.251114\pi\)
\(968\) 0 0
\(969\) −218.400 + 256.408i −0.225387 + 0.264611i
\(970\) 0 0
\(971\) 1301.46 751.397i 1.34033 0.773839i 0.353473 0.935445i \(-0.385001\pi\)
0.986855 + 0.161606i \(0.0516674\pi\)
\(972\) 0 0
\(973\) −469.376 413.358i −0.482400 0.424829i
\(974\) 0 0
\(975\) 30.2580 10.7606i 0.0310339 0.0110365i
\(976\) 0 0
\(977\) −310.361 537.562i −0.317668 0.550217i 0.662333 0.749209i \(-0.269566\pi\)
−0.980001 + 0.198993i \(0.936233\pi\)
\(978\) 0 0
\(979\) −869.445 + 501.974i −0.888095 + 0.512742i
\(980\) 0 0
\(981\) −322.749 122.901i −0.329000 0.125281i
\(982\) 0 0
\(983\) 1128.62i 1.14814i −0.818808 0.574068i \(-0.805365\pi\)
0.818808 0.574068i \(-0.194635\pi\)
\(984\) 0 0
\(985\) 2.71047i 0.00275175i
\(986\) 0 0
\(987\) 195.284 28.1679i 0.197856 0.0285389i
\(988\) 0 0
\(989\) −174.628 302.465i −0.176570 0.305829i
\(990\) 0 0
\(991\) −501.599 + 868.795i −0.506154 + 0.876685i 0.493820 + 0.869564i \(0.335600\pi\)
−0.999975 + 0.00712091i \(0.997733\pi\)
\(992\) 0 0
\(993\) 282.778 + 795.154i 0.284771 + 0.800759i
\(994\) 0 0
\(995\) −51.5550 + 89.2959i −0.0518141 + 0.0897446i
\(996\) 0 0
\(997\) 1095.10i 1.09839i −0.835694 0.549195i \(-0.814934\pi\)
0.835694 0.549195i \(-0.185066\pi\)
\(998\) 0 0
\(999\) −18.0933 + 816.286i −0.0181114 + 0.817103i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.p.a.157.12 yes 32
3.2 odd 2 756.3.p.a.577.8 32
7.5 odd 6 252.3.bd.a.229.7 yes 32
9.2 odd 6 756.3.bd.a.73.9 32
9.7 even 3 252.3.bd.a.241.7 yes 32
21.5 even 6 756.3.bd.a.145.9 32
63.47 even 6 756.3.p.a.397.9 32
63.61 odd 6 inner 252.3.p.a.61.12 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.3.p.a.61.12 32 63.61 odd 6 inner
252.3.p.a.157.12 yes 32 1.1 even 1 trivial
252.3.bd.a.229.7 yes 32 7.5 odd 6
252.3.bd.a.241.7 yes 32 9.7 even 3
756.3.p.a.397.9 32 63.47 even 6
756.3.p.a.577.8 32 3.2 odd 2
756.3.bd.a.73.9 32 9.2 odd 6
756.3.bd.a.145.9 32 21.5 even 6