Properties

Label 756.3.bk.g.53.4
Level $756$
Weight $3$
Character 756.53
Analytic conductor $20.600$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 46 x^{14} + 1437 x^{12} - 24668 x^{10} + 309582 x^{8} - 2188585 x^{6} + 10478650 x^{4} + \cdots + 194481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.4
Root \(0.321999 + 0.185906i\) of defining polynomial
Character \(\chi\) \(=\) 756.53
Dual form 756.3.bk.g.485.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.181791 + 0.104957i) q^{5} +(6.74497 + 1.87226i) q^{7} +(16.4658 + 9.50651i) q^{11} -7.60538 q^{13} +(4.04837 + 2.33733i) q^{17} +(-9.11147 - 15.7815i) q^{19} +(3.20049 - 1.84780i) q^{23} +(-12.4780 + 21.6125i) q^{25} +25.8897i q^{29} +(4.91813 - 8.51844i) q^{31} +(-1.42268 + 0.367572i) q^{35} +(-3.12741 - 5.41684i) q^{37} +17.8687i q^{41} +41.0391 q^{43} +(25.7037 - 14.8400i) q^{47} +(41.9893 + 25.2567i) q^{49} +(69.4573 + 40.1012i) q^{53} -3.99109 q^{55} +(69.3661 + 40.0485i) q^{59} +(-29.2889 - 50.7298i) q^{61} +(1.38259 - 0.798236i) q^{65} +(-45.4046 + 78.6431i) q^{67} +88.2331i q^{71} +(10.0019 - 17.3238i) q^{73} +(93.2625 + 94.9493i) q^{77} +(-32.1803 - 55.7379i) q^{79} +37.3016i q^{83} -0.981273 q^{85} +(123.592 - 71.3556i) q^{89} +(-51.2981 - 14.2392i) q^{91} +(3.31276 + 1.91262i) q^{95} -44.6187 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} + 88 q^{13} + 14 q^{19} + 36 q^{25} - 68 q^{31} - 76 q^{37} - 292 q^{43} - 20 q^{49} - 272 q^{55} - 110 q^{61} - 72 q^{67} + 60 q^{73} + 154 q^{79} + 700 q^{85} - 74 q^{91} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.181791 + 0.104957i −0.0363581 + 0.0209914i −0.518069 0.855339i \(-0.673349\pi\)
0.481711 + 0.876330i \(0.340016\pi\)
\(6\) 0 0
\(7\) 6.74497 + 1.87226i 0.963567 + 0.267466i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 16.4658 + 9.50651i 1.49689 + 0.864228i 0.999994 0.00358274i \(-0.00114042\pi\)
0.496894 + 0.867811i \(0.334474\pi\)
\(12\) 0 0
\(13\) −7.60538 −0.585029 −0.292515 0.956261i \(-0.594492\pi\)
−0.292515 + 0.956261i \(0.594492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.04837 + 2.33733i 0.238139 + 0.137490i 0.614321 0.789056i \(-0.289430\pi\)
−0.376182 + 0.926546i \(0.622763\pi\)
\(18\) 0 0
\(19\) −9.11147 15.7815i −0.479551 0.830607i 0.520174 0.854060i \(-0.325867\pi\)
−0.999725 + 0.0234536i \(0.992534\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.20049 1.84780i 0.139152 0.0803393i −0.428808 0.903396i \(-0.641066\pi\)
0.567960 + 0.823056i \(0.307733\pi\)
\(24\) 0 0
\(25\) −12.4780 + 21.6125i −0.499119 + 0.864499i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 25.8897i 0.892747i 0.894847 + 0.446373i \(0.147285\pi\)
−0.894847 + 0.446373i \(0.852715\pi\)
\(30\) 0 0
\(31\) 4.91813 8.51844i 0.158649 0.274789i −0.775733 0.631062i \(-0.782619\pi\)
0.934382 + 0.356273i \(0.115953\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.42268 + 0.367572i −0.0406479 + 0.0105021i
\(36\) 0 0
\(37\) −3.12741 5.41684i −0.0845246 0.146401i 0.820664 0.571411i \(-0.193604\pi\)
−0.905189 + 0.425010i \(0.860271\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 17.8687i 0.435822i 0.975969 + 0.217911i \(0.0699242\pi\)
−0.975969 + 0.217911i \(0.930076\pi\)
\(42\) 0 0
\(43\) 41.0391 0.954397 0.477199 0.878795i \(-0.341652\pi\)
0.477199 + 0.878795i \(0.341652\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 25.7037 14.8400i 0.546886 0.315745i −0.200979 0.979596i \(-0.564412\pi\)
0.747865 + 0.663851i \(0.231079\pi\)
\(48\) 0 0
\(49\) 41.9893 + 25.2567i 0.856924 + 0.515442i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 69.4573 + 40.1012i 1.31052 + 0.756627i 0.982181 0.187935i \(-0.0601794\pi\)
0.328334 + 0.944562i \(0.393513\pi\)
\(54\) 0 0
\(55\) −3.99109 −0.0725653
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 69.3661 + 40.0485i 1.17570 + 0.678788i 0.955015 0.296558i \(-0.0958387\pi\)
0.220681 + 0.975346i \(0.429172\pi\)
\(60\) 0 0
\(61\) −29.2889 50.7298i −0.480145 0.831636i 0.519595 0.854413i \(-0.326083\pi\)
−0.999741 + 0.0227763i \(0.992749\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.38259 0.798236i 0.0212706 0.0122806i
\(66\) 0 0
\(67\) −45.4046 + 78.6431i −0.677680 + 1.17378i 0.297997 + 0.954567i \(0.403681\pi\)
−0.975678 + 0.219210i \(0.929652\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 88.2331i 1.24272i 0.783525 + 0.621360i \(0.213420\pi\)
−0.783525 + 0.621360i \(0.786580\pi\)
\(72\) 0 0
\(73\) 10.0019 17.3238i 0.137013 0.237313i −0.789352 0.613941i \(-0.789583\pi\)
0.926364 + 0.376628i \(0.122917\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 93.2625 + 94.9493i 1.21120 + 1.23311i
\(78\) 0 0
\(79\) −32.1803 55.7379i −0.407346 0.705543i 0.587246 0.809409i \(-0.300212\pi\)
−0.994591 + 0.103865i \(0.966879\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 37.3016i 0.449416i 0.974426 + 0.224708i \(0.0721429\pi\)
−0.974426 + 0.224708i \(0.927857\pi\)
\(84\) 0 0
\(85\) −0.981273 −0.0115444
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 123.592 71.3556i 1.38867 0.801748i 0.395503 0.918465i \(-0.370570\pi\)
0.993165 + 0.116716i \(0.0372369\pi\)
\(90\) 0 0
\(91\) −51.2981 14.2392i −0.563715 0.156475i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.31276 + 1.91262i 0.0348711 + 0.0201329i
\(96\) 0 0
\(97\) −44.6187 −0.459987 −0.229993 0.973192i \(-0.573870\pi\)
−0.229993 + 0.973192i \(0.573870\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.3713 + 10.6067i 0.181894 + 0.105017i 0.588182 0.808728i \(-0.299844\pi\)
−0.406288 + 0.913745i \(0.633177\pi\)
\(102\) 0 0
\(103\) 62.7498 + 108.686i 0.609221 + 1.05520i 0.991369 + 0.131101i \(0.0418512\pi\)
−0.382148 + 0.924101i \(0.624815\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −94.0831 + 54.3189i −0.879281 + 0.507653i −0.870421 0.492307i \(-0.836154\pi\)
−0.00886005 + 0.999961i \(0.502820\pi\)
\(108\) 0 0
\(109\) 88.7759 153.764i 0.814458 1.41068i −0.0952585 0.995453i \(-0.530368\pi\)
0.909716 0.415230i \(-0.136299\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 150.170i 1.32894i −0.747314 0.664471i \(-0.768657\pi\)
0.747314 0.664471i \(-0.231343\pi\)
\(114\) 0 0
\(115\) −0.387879 + 0.671827i −0.00337286 + 0.00584197i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 22.9300 + 23.3448i 0.192689 + 0.196175i
\(120\) 0 0
\(121\) 120.248 + 208.275i 0.993782 + 1.72128i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.4864i 0.0838914i
\(126\) 0 0
\(127\) −101.926 −0.802564 −0.401282 0.915955i \(-0.631435\pi\)
−0.401282 + 0.915955i \(0.631435\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −211.426 + 122.067i −1.61394 + 0.931806i −0.625490 + 0.780232i \(0.715101\pi\)
−0.988446 + 0.151574i \(0.951566\pi\)
\(132\) 0 0
\(133\) −31.9095 123.505i −0.239921 0.928609i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 109.199 + 63.0463i 0.797076 + 0.460192i 0.842448 0.538778i \(-0.181114\pi\)
−0.0453718 + 0.998970i \(0.514447\pi\)
\(138\) 0 0
\(139\) 176.319 1.26848 0.634241 0.773136i \(-0.281313\pi\)
0.634241 + 0.773136i \(0.281313\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −125.228 72.3006i −0.875723 0.505599i
\(144\) 0 0
\(145\) −2.71730 4.70649i −0.0187400 0.0324586i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.4047 12.3580i 0.143656 0.0829396i −0.426450 0.904511i \(-0.640236\pi\)
0.570105 + 0.821572i \(0.306902\pi\)
\(150\) 0 0
\(151\) 51.0267 88.3808i 0.337925 0.585303i −0.646117 0.763238i \(-0.723608\pi\)
0.984042 + 0.177935i \(0.0569416\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.06476i 0.0133211i
\(156\) 0 0
\(157\) −104.088 + 180.286i −0.662984 + 1.14832i 0.316844 + 0.948478i \(0.397377\pi\)
−0.979828 + 0.199844i \(0.935957\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 25.0468 6.47124i 0.155570 0.0401940i
\(162\) 0 0
\(163\) −101.170 175.231i −0.620674 1.07504i −0.989360 0.145485i \(-0.953526\pi\)
0.368687 0.929554i \(-0.379808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 274.788i 1.64544i −0.568449 0.822719i \(-0.692456\pi\)
0.568449 0.822719i \(-0.307544\pi\)
\(168\) 0 0
\(169\) −111.158 −0.657741
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 100.783 58.1871i 0.582560 0.336341i −0.179590 0.983742i \(-0.557477\pi\)
0.762150 + 0.647400i \(0.224144\pi\)
\(174\) 0 0
\(175\) −124.628 + 122.414i −0.712158 + 0.699506i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.1847 + 13.3857i 0.129523 + 0.0747803i 0.563362 0.826210i \(-0.309508\pi\)
−0.433838 + 0.900991i \(0.642841\pi\)
\(180\) 0 0
\(181\) −105.045 −0.580359 −0.290180 0.956972i \(-0.593715\pi\)
−0.290180 + 0.956972i \(0.593715\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.13707 + 0.656486i 0.00614631 + 0.00354857i
\(186\) 0 0
\(187\) 44.4396 + 76.9717i 0.237645 + 0.411613i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −271.187 + 156.570i −1.41983 + 0.819737i −0.996283 0.0861385i \(-0.972547\pi\)
−0.423543 + 0.905876i \(0.639214\pi\)
\(192\) 0 0
\(193\) 10.8132 18.7290i 0.0560270 0.0970416i −0.836652 0.547735i \(-0.815490\pi\)
0.892679 + 0.450694i \(0.148823\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 102.841i 0.522038i −0.965334 0.261019i \(-0.915942\pi\)
0.965334 0.261019i \(-0.0840585\pi\)
\(198\) 0 0
\(199\) 97.1497 168.268i 0.488189 0.845569i −0.511718 0.859153i \(-0.670991\pi\)
0.999908 + 0.0135845i \(0.00432421\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −48.4721 + 174.625i −0.238779 + 0.860222i
\(204\) 0 0
\(205\) −1.87544 3.24836i −0.00914850 0.0158457i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 346.473i 1.65777i
\(210\) 0 0
\(211\) 62.0446 0.294050 0.147025 0.989133i \(-0.453030\pi\)
0.147025 + 0.989133i \(0.453030\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.46052 + 4.30733i −0.0347001 + 0.0200341i
\(216\) 0 0
\(217\) 49.1214 48.2487i 0.226366 0.222344i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −30.7894 17.7762i −0.139318 0.0804355i
\(222\) 0 0
\(223\) 180.161 0.807899 0.403949 0.914781i \(-0.367637\pi\)
0.403949 + 0.914781i \(0.367637\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −390.063 225.203i −1.71834 0.992083i −0.921960 0.387285i \(-0.873413\pi\)
−0.796378 0.604799i \(-0.793254\pi\)
\(228\) 0 0
\(229\) 100.935 + 174.825i 0.440765 + 0.763428i 0.997746 0.0670971i \(-0.0213737\pi\)
−0.556981 + 0.830525i \(0.688040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −198.611 + 114.668i −0.852408 + 0.492138i −0.861463 0.507821i \(-0.830451\pi\)
0.00905441 + 0.999959i \(0.497118\pi\)
\(234\) 0 0
\(235\) −3.11512 + 5.39555i −0.0132558 + 0.0229598i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 80.7464i 0.337851i −0.985629 0.168925i \(-0.945970\pi\)
0.985629 0.168925i \(-0.0540297\pi\)
\(240\) 0 0
\(241\) −5.63130 + 9.75370i −0.0233664 + 0.0404718i −0.877472 0.479628i \(-0.840772\pi\)
0.854106 + 0.520099i \(0.174105\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.2841 0.184361i −0.0419760 0.000752492i
\(246\) 0 0
\(247\) 69.2962 + 120.025i 0.280551 + 0.485929i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 323.254i 1.28786i −0.765083 0.643932i \(-0.777302\pi\)
0.765083 0.643932i \(-0.222698\pi\)
\(252\) 0 0
\(253\) 70.2647 0.277726
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 235.895 136.194i 0.917878 0.529937i 0.0349203 0.999390i \(-0.488882\pi\)
0.882957 + 0.469453i \(0.155549\pi\)
\(258\) 0 0
\(259\) −10.9526 42.3917i −0.0422880 0.163675i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −147.756 85.3071i −0.561811 0.324362i 0.192061 0.981383i \(-0.438483\pi\)
−0.753872 + 0.657021i \(0.771816\pi\)
\(264\) 0 0
\(265\) −16.8356 −0.0635305
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −196.531 113.467i −0.730599 0.421812i 0.0880422 0.996117i \(-0.471939\pi\)
−0.818641 + 0.574305i \(0.805272\pi\)
\(270\) 0 0
\(271\) −150.201 260.156i −0.554249 0.959987i −0.997962 0.0638179i \(-0.979672\pi\)
0.443713 0.896169i \(-0.353661\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −410.919 + 237.244i −1.49425 + 0.862705i
\(276\) 0 0
\(277\) −60.2976 + 104.439i −0.217681 + 0.377034i −0.954099 0.299493i \(-0.903183\pi\)
0.736418 + 0.676527i \(0.236516\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 174.327i 0.620381i −0.950674 0.310191i \(-0.899607\pi\)
0.950674 0.310191i \(-0.100393\pi\)
\(282\) 0 0
\(283\) −80.3886 + 139.237i −0.284059 + 0.492004i −0.972380 0.233401i \(-0.925014\pi\)
0.688322 + 0.725405i \(0.258348\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −33.4548 + 120.524i −0.116567 + 0.419944i
\(288\) 0 0
\(289\) −133.574 231.357i −0.462193 0.800542i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 169.668i 0.579071i −0.957167 0.289536i \(-0.906499\pi\)
0.957167 0.289536i \(-0.0935009\pi\)
\(294\) 0 0
\(295\) −16.8135 −0.0569948
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.3409 + 14.0533i −0.0814079 + 0.0470008i
\(300\) 0 0
\(301\) 276.807 + 76.8358i 0.919626 + 0.255268i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.6489 + 6.14813i 0.0349144 + 0.0201578i
\(306\) 0 0
\(307\) −466.100 −1.51824 −0.759120 0.650950i \(-0.774371\pi\)
−0.759120 + 0.650950i \(0.774371\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −499.817 288.569i −1.60713 0.927876i −0.990009 0.141006i \(-0.954966\pi\)
−0.617119 0.786870i \(-0.711700\pi\)
\(312\) 0 0
\(313\) −237.831 411.936i −0.759845 1.31609i −0.942929 0.332993i \(-0.891942\pi\)
0.183085 0.983097i \(-0.441392\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −154.787 + 89.3665i −0.488288 + 0.281913i −0.723864 0.689943i \(-0.757636\pi\)
0.235576 + 0.971856i \(0.424302\pi\)
\(318\) 0 0
\(319\) −246.120 + 426.293i −0.771537 + 1.33634i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 85.1859i 0.263733i
\(324\) 0 0
\(325\) 94.8997 164.371i 0.291999 0.505757i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 201.155 51.9716i 0.611413 0.157968i
\(330\) 0 0
\(331\) 29.0733 + 50.3565i 0.0878348 + 0.152134i 0.906596 0.422000i \(-0.138672\pi\)
−0.818761 + 0.574135i \(0.805339\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.0621i 0.0569017i
\(336\) 0 0
\(337\) 321.818 0.954948 0.477474 0.878646i \(-0.341552\pi\)
0.477474 + 0.878646i \(0.341552\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 161.961 93.5085i 0.474960 0.274218i
\(342\) 0 0
\(343\) 235.930 + 248.970i 0.687841 + 0.725861i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 232.474 + 134.219i 0.669953 + 0.386798i 0.796059 0.605219i \(-0.206915\pi\)
−0.126106 + 0.992017i \(0.540248\pi\)
\(348\) 0 0
\(349\) −9.87359 −0.0282911 −0.0141455 0.999900i \(-0.504503\pi\)
−0.0141455 + 0.999900i \(0.504503\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 237.031 + 136.850i 0.671476 + 0.387677i 0.796636 0.604460i \(-0.206611\pi\)
−0.125160 + 0.992137i \(0.539944\pi\)
\(354\) 0 0
\(355\) −9.26067 16.0399i −0.0260864 0.0451829i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −247.509 + 142.899i −0.689440 + 0.398048i −0.803402 0.595437i \(-0.796979\pi\)
0.113962 + 0.993485i \(0.463646\pi\)
\(360\) 0 0
\(361\) 14.4622 25.0493i 0.0400616 0.0693887i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.19908i 0.0115043i
\(366\) 0 0
\(367\) 139.261 241.207i 0.379457 0.657239i −0.611526 0.791224i \(-0.709444\pi\)
0.990983 + 0.133985i \(0.0427775\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 393.408 + 400.524i 1.06040 + 1.07958i
\(372\) 0 0
\(373\) 118.591 + 205.405i 0.317937 + 0.550684i 0.980058 0.198714i \(-0.0636765\pi\)
−0.662120 + 0.749398i \(0.730343\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 196.901i 0.522283i
\(378\) 0 0
\(379\) 472.380 1.24639 0.623193 0.782068i \(-0.285835\pi\)
0.623193 + 0.782068i \(0.285835\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 358.666 207.076i 0.936465 0.540668i 0.0476147 0.998866i \(-0.484838\pi\)
0.888850 + 0.458197i \(0.151505\pi\)
\(384\) 0 0
\(385\) −26.9198 7.47236i −0.0699216 0.0194087i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 614.253 + 354.639i 1.57906 + 0.911669i 0.994991 + 0.0999627i \(0.0318724\pi\)
0.584066 + 0.811706i \(0.301461\pi\)
\(390\) 0 0
\(391\) 17.2757 0.0441833
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.7001 + 6.75508i 0.0296206 + 0.0171015i
\(396\) 0 0
\(397\) 125.857 + 217.990i 0.317019 + 0.549093i 0.979865 0.199663i \(-0.0639847\pi\)
−0.662845 + 0.748756i \(0.730651\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −496.267 + 286.520i −1.23757 + 0.714514i −0.968598 0.248633i \(-0.920019\pi\)
−0.268977 + 0.963147i \(0.586685\pi\)
\(402\) 0 0
\(403\) −37.4042 + 64.7860i −0.0928144 + 0.160759i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 118.923i 0.292194i
\(408\) 0 0
\(409\) 58.5577 101.425i 0.143173 0.247983i −0.785517 0.618840i \(-0.787603\pi\)
0.928690 + 0.370858i \(0.120936\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 392.891 + 399.997i 0.951310 + 0.968516i
\(414\) 0 0
\(415\) −3.91505 6.78107i −0.00943386 0.0163399i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.5477i 0.0729062i −0.999335 0.0364531i \(-0.988394\pi\)
0.999335 0.0364531i \(-0.0116059\pi\)
\(420\) 0 0
\(421\) −402.732 −0.956608 −0.478304 0.878194i \(-0.658748\pi\)
−0.478304 + 0.878194i \(0.658748\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −101.031 + 58.3301i −0.237719 + 0.137247i
\(426\) 0 0
\(427\) −102.573 397.008i −0.240218 0.929760i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 330.346 + 190.725i 0.766464 + 0.442518i 0.831612 0.555357i \(-0.187418\pi\)
−0.0651475 + 0.997876i \(0.520752\pi\)
\(432\) 0 0
\(433\) −177.293 −0.409453 −0.204727 0.978819i \(-0.565631\pi\)
−0.204727 + 0.978819i \(0.565631\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −58.3224 33.6724i −0.133461 0.0770536i
\(438\) 0 0
\(439\) −31.5890 54.7138i −0.0719567 0.124633i 0.827802 0.561020i \(-0.189591\pi\)
−0.899759 + 0.436388i \(0.856258\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −285.537 + 164.855i −0.644553 + 0.372133i −0.786366 0.617761i \(-0.788040\pi\)
0.141813 + 0.989893i \(0.454707\pi\)
\(444\) 0 0
\(445\) −14.9785 + 25.9435i −0.0336596 + 0.0583001i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 335.346i 0.746872i −0.927656 0.373436i \(-0.878180\pi\)
0.927656 0.373436i \(-0.121820\pi\)
\(450\) 0 0
\(451\) −169.869 + 294.222i −0.376650 + 0.652377i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.8200 2.79552i 0.0237802 0.00614401i
\(456\) 0 0
\(457\) −62.0641 107.498i −0.135808 0.235226i 0.790098 0.612981i \(-0.210030\pi\)
−0.925906 + 0.377755i \(0.876696\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 776.337i 1.68403i −0.539456 0.842014i \(-0.681370\pi\)
0.539456 0.842014i \(-0.318630\pi\)
\(462\) 0 0
\(463\) −595.677 −1.28656 −0.643280 0.765631i \(-0.722427\pi\)
−0.643280 + 0.765631i \(0.722427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −595.122 + 343.594i −1.27435 + 0.735747i −0.975804 0.218647i \(-0.929836\pi\)
−0.298548 + 0.954395i \(0.596502\pi\)
\(468\) 0 0
\(469\) −453.493 + 445.436i −0.966936 + 0.949757i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 675.740 + 390.139i 1.42863 + 0.824817i
\(474\) 0 0
\(475\) 454.771 0.957412
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.0835 21.9875i −0.0795062 0.0459029i 0.459720 0.888064i \(-0.347950\pi\)
−0.539226 + 0.842161i \(0.681283\pi\)
\(480\) 0 0
\(481\) 23.7852 + 41.1971i 0.0494494 + 0.0856488i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.11126 4.68304i 0.0167242 0.00965575i
\(486\) 0 0
\(487\) 400.853 694.298i 0.823107 1.42566i −0.0802496 0.996775i \(-0.525572\pi\)
0.903357 0.428889i \(-0.141095\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 949.361i 1.93353i 0.255676 + 0.966763i \(0.417702\pi\)
−0.255676 + 0.966763i \(0.582298\pi\)
\(492\) 0 0
\(493\) −60.5126 + 104.811i −0.122744 + 0.212598i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −165.195 + 595.130i −0.332385 + 1.19744i
\(498\) 0 0
\(499\) −289.433 501.313i −0.580026 1.00463i −0.995476 0.0950181i \(-0.969709\pi\)
0.415450 0.909616i \(-0.363624\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 439.255i 0.873271i −0.899639 0.436635i \(-0.856170\pi\)
0.899639 0.436635i \(-0.143830\pi\)
\(504\) 0 0
\(505\) −4.45297 −0.00881776
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 762.229 440.073i 1.49750 0.864584i 0.497507 0.867460i \(-0.334249\pi\)
0.999996 + 0.00287592i \(0.000915436\pi\)
\(510\) 0 0
\(511\) 99.8974 98.1226i 0.195494 0.192021i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −22.8146 13.1720i −0.0443003 0.0255768i
\(516\) 0 0
\(517\) 564.307 1.09150
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 860.620 + 496.879i 1.65186 + 0.953703i 0.976306 + 0.216395i \(0.0694298\pi\)
0.675556 + 0.737308i \(0.263903\pi\)
\(522\) 0 0
\(523\) 389.830 + 675.205i 0.745372 + 1.29102i 0.950021 + 0.312187i \(0.101062\pi\)
−0.204649 + 0.978836i \(0.565605\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.8207 22.9905i 0.0755612 0.0436253i
\(528\) 0 0
\(529\) −257.671 + 446.300i −0.487091 + 0.843667i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 135.898i 0.254969i
\(534\) 0 0
\(535\) 11.4023 19.7493i 0.0213127 0.0369146i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 451.283 + 815.042i 0.837260 + 1.51214i
\(540\) 0 0
\(541\) 13.3902 + 23.1924i 0.0247507 + 0.0428695i 0.878135 0.478412i \(-0.158787\pi\)
−0.853385 + 0.521282i \(0.825454\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 37.2705i 0.0683863i
\(546\) 0 0
\(547\) 359.940 0.658025 0.329013 0.944326i \(-0.393284\pi\)
0.329013 + 0.944326i \(0.393284\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 408.578 235.893i 0.741522 0.428118i
\(552\) 0 0
\(553\) −112.699 436.201i −0.203796 0.788790i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 315.324 + 182.052i 0.566111 + 0.326845i 0.755595 0.655039i \(-0.227348\pi\)
−0.189483 + 0.981884i \(0.560681\pi\)
\(558\) 0 0
\(559\) −312.118 −0.558350
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 61.4640 + 35.4863i 0.109172 + 0.0630307i 0.553592 0.832788i \(-0.313257\pi\)
−0.444420 + 0.895819i \(0.646590\pi\)
\(564\) 0 0
\(565\) 15.7614 + 27.2995i 0.0278963 + 0.0483178i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −239.749 + 138.419i −0.421351 + 0.243267i −0.695655 0.718376i \(-0.744886\pi\)
0.274304 + 0.961643i \(0.411552\pi\)
\(570\) 0 0
\(571\) 347.610 602.078i 0.608773 1.05443i −0.382669 0.923885i \(-0.624995\pi\)
0.991443 0.130541i \(-0.0416715\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 92.2274i 0.160395i
\(576\) 0 0
\(577\) −81.1614 + 140.576i −0.140661 + 0.243632i −0.927746 0.373213i \(-0.878256\pi\)
0.787085 + 0.616845i \(0.211589\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −69.8382 + 251.598i −0.120203 + 0.433043i
\(582\) 0 0
\(583\) 762.445 + 1320.59i 1.30780 + 2.26517i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 544.350i 0.927342i 0.886007 + 0.463671i \(0.153468\pi\)
−0.886007 + 0.463671i \(0.846532\pi\)
\(588\) 0 0
\(589\) −179.245 −0.304322
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 269.171 155.406i 0.453914 0.262067i −0.255568 0.966791i \(-0.582262\pi\)
0.709482 + 0.704724i \(0.248929\pi\)
\(594\) 0 0
\(595\) −6.61866 1.83720i −0.0111238 0.00308773i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 646.818 + 373.440i 1.07983 + 0.623439i 0.930850 0.365401i \(-0.119068\pi\)
0.148979 + 0.988840i \(0.452401\pi\)
\(600\) 0 0
\(601\) 452.880 0.753544 0.376772 0.926306i \(-0.377034\pi\)
0.376772 + 0.926306i \(0.377034\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −43.7197 25.2416i −0.0722640 0.0417217i
\(606\) 0 0
\(607\) −450.859 780.910i −0.742766 1.28651i −0.951231 0.308478i \(-0.900180\pi\)
0.208466 0.978030i \(-0.433153\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −195.486 + 112.864i −0.319944 + 0.184720i
\(612\) 0 0
\(613\) 423.312 733.198i 0.690558 1.19608i −0.281097 0.959679i \(-0.590698\pi\)
0.971655 0.236403i \(-0.0759685\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.96933i 0.00967477i −0.999988 0.00483739i \(-0.998460\pi\)
0.999988 0.00483739i \(-0.00153979\pi\)
\(618\) 0 0
\(619\) −387.612 + 671.364i −0.626191 + 1.08459i 0.362118 + 0.932132i \(0.382054\pi\)
−0.988309 + 0.152463i \(0.951280\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 967.217 249.896i 1.55252 0.401117i
\(624\) 0 0
\(625\) −310.849 538.406i −0.497358 0.861449i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.2391i 0.0464851i
\(630\) 0 0
\(631\) −619.610 −0.981950 −0.490975 0.871174i \(-0.663359\pi\)
−0.490975 + 0.871174i \(0.663359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.5291 10.6978i 0.0291797 0.0168469i
\(636\) 0 0
\(637\) −319.345 192.087i −0.501326 0.301549i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 581.796 + 335.900i 0.907638 + 0.524025i 0.879670 0.475584i \(-0.157763\pi\)
0.0279676 + 0.999609i \(0.491096\pi\)
\(642\) 0 0
\(643\) −1042.23 −1.62088 −0.810441 0.585820i \(-0.800772\pi\)
−0.810441 + 0.585820i \(0.800772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −791.505 456.976i −1.22335 0.706300i −0.257717 0.966220i \(-0.582970\pi\)
−0.965630 + 0.259921i \(0.916303\pi\)
\(648\) 0 0
\(649\) 761.443 + 1318.86i 1.17326 + 2.03214i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −792.106 + 457.322i −1.21303 + 0.700341i −0.963417 0.268006i \(-0.913635\pi\)
−0.249608 + 0.968347i \(0.580302\pi\)
\(654\) 0 0
\(655\) 25.6234 44.3811i 0.0391198 0.0677574i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 201.561i 0.305858i 0.988237 + 0.152929i \(0.0488706\pi\)
−0.988237 + 0.152929i \(0.951129\pi\)
\(660\) 0 0
\(661\) 333.315 577.319i 0.504259 0.873402i −0.495729 0.868477i \(-0.665099\pi\)
0.999988 0.00492495i \(-0.00156767\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.7635 + 19.1029i 0.0282158 + 0.0287262i
\(666\) 0 0
\(667\) 47.8390 + 82.8596i 0.0717227 + 0.124227i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1113.74i 1.65982i
\(672\) 0 0
\(673\) −369.069 −0.548394 −0.274197 0.961674i \(-0.588412\pi\)
−0.274197 + 0.961674i \(0.588412\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −266.790 + 154.031i −0.394077 + 0.227521i −0.683925 0.729552i \(-0.739729\pi\)
0.289848 + 0.957073i \(0.406395\pi\)
\(678\) 0 0
\(679\) −300.952 83.5378i −0.443228 0.123031i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 105.264 + 60.7745i 0.154121 + 0.0889817i 0.575077 0.818099i \(-0.304972\pi\)
−0.420956 + 0.907081i \(0.638305\pi\)
\(684\) 0 0
\(685\) −26.4685 −0.0386402
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −528.249 304.985i −0.766690 0.442649i
\(690\) 0 0
\(691\) 86.0268 + 149.003i 0.124496 + 0.215634i 0.921536 0.388293i \(-0.126935\pi\)
−0.797040 + 0.603927i \(0.793602\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −32.0531 + 18.5059i −0.0461196 + 0.0266272i
\(696\) 0 0
\(697\) −41.7650 + 72.3390i −0.0599210 + 0.103786i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 602.280i 0.859173i −0.903026 0.429587i \(-0.858659\pi\)
0.903026 0.429587i \(-0.141341\pi\)
\(702\) 0 0
\(703\) −56.9906 + 98.7107i −0.0810678 + 0.140413i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 104.055 + 105.938i 0.147179 + 0.149841i
\(708\) 0 0
\(709\) −417.436 723.020i −0.588767 1.01977i −0.994394 0.105736i \(-0.966280\pi\)
0.405627 0.914039i \(-0.367053\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 36.3509i 0.0509831i
\(714\) 0 0
\(715\) 30.3538 0.0424528
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 774.168 446.966i 1.07673 0.621650i 0.146717 0.989179i \(-0.453129\pi\)
0.930012 + 0.367529i \(0.119796\pi\)
\(720\) 0 0
\(721\) 219.758 + 850.567i 0.304796 + 1.17970i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −559.540 323.050i −0.771779 0.445587i
\(726\) 0 0
\(727\) 862.131 1.18587 0.592937 0.805249i \(-0.297968\pi\)
0.592937 + 0.805249i \(0.297968\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 166.141 + 95.9217i 0.227279 + 0.131220i
\(732\) 0 0
\(733\) −658.287 1140.19i −0.898072 1.55551i −0.829956 0.557829i \(-0.811635\pi\)
−0.0681159 0.997677i \(-0.521699\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1495.24 + 863.279i −2.02882 + 1.17134i
\(738\) 0 0
\(739\) −318.373 + 551.438i −0.430816 + 0.746195i −0.996944 0.0781223i \(-0.975108\pi\)
0.566128 + 0.824317i \(0.308441\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 720.253i 0.969385i −0.874685 0.484692i \(-0.838932\pi\)
0.874685 0.484692i \(-0.161068\pi\)
\(744\) 0 0
\(745\) −2.59411 + 4.49313i −0.00348203 + 0.00603105i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −736.287 + 190.232i −0.983027 + 0.253981i
\(750\) 0 0
\(751\) 114.613 + 198.515i 0.152614 + 0.264335i 0.932188 0.361976i \(-0.117898\pi\)
−0.779574 + 0.626310i \(0.784564\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.4224i 0.0283740i
\(756\) 0 0
\(757\) 1207.52 1.59514 0.797570 0.603226i \(-0.206118\pi\)
0.797570 + 0.603226i \(0.206118\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −417.256 + 240.903i −0.548300 + 0.316561i −0.748436 0.663207i \(-0.769195\pi\)
0.200136 + 0.979768i \(0.435862\pi\)
\(762\) 0 0
\(763\) 886.678 870.925i 1.16209 1.14145i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −527.555 304.584i −0.687816 0.397111i
\(768\) 0 0
\(769\) 1187.92 1.54475 0.772377 0.635165i \(-0.219068\pi\)
0.772377 + 0.635165i \(0.219068\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −912.742 526.972i −1.18078 0.681723i −0.224584 0.974455i \(-0.572102\pi\)
−0.956195 + 0.292732i \(0.905436\pi\)
\(774\) 0 0
\(775\) 122.736 + 212.586i 0.158370 + 0.274304i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 281.995 162.810i 0.361997 0.208999i
\(780\) 0 0
\(781\) −838.789 + 1452.83i −1.07399 + 1.86021i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.6992i 0.0556677i
\(786\) 0 0
\(787\) 198.710 344.175i 0.252490 0.437325i −0.711721 0.702462i \(-0.752084\pi\)
0.964211 + 0.265137i \(0.0854172\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 281.158 1012.89i 0.355446 1.28052i
\(792\) 0 0
\(793\) 222.753 + 385.820i 0.280899 + 0.486532i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 538.927i 0.676194i 0.941111 + 0.338097i \(0.109783\pi\)
−0.941111 + 0.338097i \(0.890217\pi\)
\(798\) 0 0
\(799\) 138.744 0.173647
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 329.378 190.167i 0.410185 0.236820i
\(804\) 0 0
\(805\) −3.87407 + 3.80524i −0.00481251 + 0.00472701i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −105.177 60.7238i −0.130008 0.0750603i 0.433585 0.901113i \(-0.357248\pi\)
−0.563594 + 0.826052i \(0.690582\pi\)
\(810\) 0 0
\(811\) −1552.10 −1.91381 −0.956904 0.290405i \(-0.906210\pi\)
−0.956904 + 0.290405i \(0.906210\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 36.7834 + 21.2369i 0.0451330 + 0.0260576i
\(816\) 0 0
\(817\) −373.926 647.659i −0.457682 0.792729i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −275.818 + 159.243i −0.335953 + 0.193963i −0.658481 0.752597i \(-0.728801\pi\)
0.322528 + 0.946560i \(0.395467\pi\)
\(822\) 0 0
\(823\) 35.2055 60.9778i 0.0427771 0.0740921i −0.843844 0.536588i \(-0.819713\pi\)
0.886621 + 0.462496i \(0.153046\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 848.986i 1.02659i 0.858214 + 0.513293i \(0.171575\pi\)
−0.858214 + 0.513293i \(0.828425\pi\)
\(828\) 0 0
\(829\) 362.558 627.968i 0.437343 0.757501i −0.560140 0.828398i \(-0.689253\pi\)
0.997484 + 0.0708969i \(0.0225861\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 110.955 + 200.391i 0.133199 + 0.240565i
\(834\) 0 0
\(835\) 28.8409 + 49.9539i 0.0345400 + 0.0598250i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1406.16i 1.67600i −0.545674 0.837998i \(-0.683726\pi\)
0.545674 0.837998i \(-0.316274\pi\)
\(840\) 0 0
\(841\) 170.726 0.203003
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.2075 11.6668i 0.0239142 0.0138069i
\(846\) 0 0
\(847\) 421.122 + 1629.94i 0.497192 + 1.92437i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.0185 11.5577i −0.0235235 0.0135813i
\(852\) 0 0
\(853\) −1076.57 −1.26210 −0.631051 0.775742i \(-0.717376\pi\)
−0.631051 + 0.775742i \(0.717376\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1068.50 616.900i −1.24679 0.719837i −0.276325 0.961064i \(-0.589117\pi\)
−0.970469 + 0.241227i \(0.922450\pi\)
\(858\) 0 0
\(859\) −538.904 933.409i −0.627362 1.08662i −0.988079 0.153947i \(-0.950801\pi\)
0.360717 0.932675i \(-0.382532\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 986.156 569.358i 1.14271 0.659742i 0.195608 0.980682i \(-0.437332\pi\)
0.947100 + 0.320940i \(0.103999\pi\)
\(864\) 0 0
\(865\) −12.2143 + 21.1557i −0.0141205 + 0.0244575i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1223.69i 1.40816i
\(870\) 0 0
\(871\) 345.319 598.110i 0.396463 0.686694i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.6333 70.7307i 0.0224381 0.0808351i
\(876\) 0 0
\(877\) −232.103 402.015i −0.264656 0.458398i 0.702817 0.711370i \(-0.251925\pi\)
−0.967473 + 0.252972i \(0.918592\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 343.027i 0.389361i −0.980867 0.194680i \(-0.937633\pi\)
0.980867 0.194680i \(-0.0623669\pi\)
\(882\) 0 0
\(883\) 821.673 0.930547 0.465274 0.885167i \(-0.345956\pi\)
0.465274 + 0.885167i \(0.345956\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1002.29 + 578.670i −1.12997 + 0.652390i −0.943928 0.330151i \(-0.892900\pi\)
−0.186045 + 0.982541i \(0.559567\pi\)
\(888\) 0 0
\(889\) −687.485 190.831i −0.773324 0.214658i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −468.396 270.429i −0.524520 0.302832i
\(894\) 0 0
\(895\) −5.61967 −0.00627896
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 220.540 + 127.329i 0.245317 + 0.141634i
\(900\) 0 0
\(901\) 187.459 + 324.689i 0.208057 + 0.360365i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.0962 11.0252i 0.0211008 0.0121825i
\(906\) 0 0
\(907\) −404.722 + 700.998i −0.446220 + 0.772876i −0.998136 0.0610237i \(-0.980563\pi\)
0.551916 + 0.833900i \(0.313897\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 278.914i 0.306162i −0.988214 0.153081i \(-0.951080\pi\)
0.988214 0.153081i \(-0.0489196\pi\)
\(912\) 0 0
\(913\) −354.608 + 614.199i −0.388398 + 0.672726i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1654.60 + 427.492i −1.80436 + 0.466186i
\(918\) 0 0
\(919\) −523.336 906.445i −0.569463 0.986338i −0.996619 0.0821605i \(-0.973818\pi\)
0.427156 0.904178i \(-0.359515\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 671.046i 0.727028i
\(924\) 0 0
\(925\) 156.095 0.168751
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 154.140 88.9926i 0.165920 0.0957939i −0.414741 0.909940i \(-0.636128\pi\)
0.580661 + 0.814146i \(0.302794\pi\)
\(930\) 0 0
\(931\) 16.0046 892.781i 0.0171908 0.958948i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.1574 9.32848i −0.0172806 0.00997699i
\(936\) 0 0
\(937\) −1333.75 −1.42343 −0.711713 0.702470i \(-0.752080\pi\)
−0.711713 + 0.702470i \(0.752080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 842.430 + 486.377i 0.895250 + 0.516873i 0.875656 0.482935i \(-0.160429\pi\)
0.0195937 + 0.999808i \(0.493763\pi\)
\(942\) 0 0
\(943\) 33.0179 + 57.1886i 0.0350136 + 0.0606454i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −849.798 + 490.631i −0.897358 + 0.518090i −0.876342 0.481690i \(-0.840023\pi\)
−0.0210156 + 0.999779i \(0.506690\pi\)
\(948\) 0 0
\(949\) −76.0684 + 131.754i −0.0801564 + 0.138835i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 294.776i 0.309314i 0.987968 + 0.154657i \(0.0494272\pi\)
−0.987968 + 0.154657i \(0.950573\pi\)
\(954\) 0 0
\(955\) 32.8661 56.9258i 0.0344148 0.0596082i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 618.508 + 629.695i 0.644951 + 0.656616i
\(960\) 0 0
\(961\) 432.124 + 748.461i 0.449661 + 0.778835i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.53968i 0.00470433i
\(966\) 0 0
\(967\) −1314.45 −1.35930 −0.679651 0.733535i \(-0.737869\pi\)
−0.679651 + 0.733535i \(0.737869\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1535 25.4920i 0.0454722 0.0262534i −0.477092 0.878854i \(-0.658309\pi\)
0.522564 + 0.852600i \(0.324976\pi\)
\(972\) 0 0
\(973\) 1189.27 + 330.115i 1.22227 + 0.339275i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1392.84 804.159i −1.42563 0.823090i −0.428862 0.903370i \(-0.641085\pi\)
−0.996772 + 0.0802800i \(0.974419\pi\)
\(978\) 0 0
\(979\) 2713.37 2.77157
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −863.213 498.376i −0.878142 0.506995i −0.00809650 0.999967i \(-0.502577\pi\)
−0.870045 + 0.492972i \(0.835911\pi\)
\(984\) 0 0
\(985\) 10.7939 + 18.6956i 0.0109583 + 0.0189803i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 131.345 75.8322i 0.132806 0.0766756i
\(990\) 0 0
\(991\) 438.637 759.741i 0.442620 0.766641i −0.555263 0.831675i \(-0.687382\pi\)
0.997883 + 0.0650341i \(0.0207156\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 40.7861i 0.0409910i
\(996\) 0 0
\(997\) −860.736 + 1490.84i −0.863326 + 1.49533i 0.00537302 + 0.999986i \(0.498290\pi\)
−0.868699 + 0.495340i \(0.835044\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.g.53.4 16
3.2 odd 2 inner 756.3.bk.g.53.5 yes 16
7.2 even 3 inner 756.3.bk.g.485.5 yes 16
21.2 odd 6 inner 756.3.bk.g.485.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.g.53.4 16 1.1 even 1 trivial
756.3.bk.g.53.5 yes 16 3.2 odd 2 inner
756.3.bk.g.485.4 yes 16 21.2 odd 6 inner
756.3.bk.g.485.5 yes 16 7.2 even 3 inner