Properties

Label 756.3.bk.g.485.4
Level $756$
Weight $3$
Character 756.485
Analytic conductor $20.600$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 46 x^{14} + 1437 x^{12} - 24668 x^{10} + 309582 x^{8} - 2188585 x^{6} + 10478650 x^{4} + \cdots + 194481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 485.4
Root \(0.321999 - 0.185906i\) of defining polynomial
Character \(\chi\) \(=\) 756.485
Dual form 756.3.bk.g.53.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.181791 - 0.104957i) q^{5} +(6.74497 - 1.87226i) q^{7} +(16.4658 - 9.50651i) q^{11} -7.60538 q^{13} +(4.04837 - 2.33733i) q^{17} +(-9.11147 + 15.7815i) q^{19} +(3.20049 + 1.84780i) q^{23} +(-12.4780 - 21.6125i) q^{25} -25.8897i q^{29} +(4.91813 + 8.51844i) q^{31} +(-1.42268 - 0.367572i) q^{35} +(-3.12741 + 5.41684i) q^{37} -17.8687i q^{41} +41.0391 q^{43} +(25.7037 + 14.8400i) q^{47} +(41.9893 - 25.2567i) q^{49} +(69.4573 - 40.1012i) q^{53} -3.99109 q^{55} +(69.3661 - 40.0485i) q^{59} +(-29.2889 + 50.7298i) q^{61} +(1.38259 + 0.798236i) q^{65} +(-45.4046 - 78.6431i) q^{67} -88.2331i q^{71} +(10.0019 + 17.3238i) q^{73} +(93.2625 - 94.9493i) q^{77} +(-32.1803 + 55.7379i) q^{79} -37.3016i q^{83} -0.981273 q^{85} +(123.592 + 71.3556i) q^{89} +(-51.2981 + 14.2392i) q^{91} +(3.31276 - 1.91262i) q^{95} -44.6187 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} + 88 q^{13} + 14 q^{19} + 36 q^{25} - 68 q^{31} - 76 q^{37} - 292 q^{43} - 20 q^{49} - 272 q^{55} - 110 q^{61} - 72 q^{67} + 60 q^{73} + 154 q^{79} + 700 q^{85} - 74 q^{91} + 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.181791 0.104957i −0.0363581 0.0209914i 0.481711 0.876330i \(-0.340016\pi\)
−0.518069 + 0.855339i \(0.673349\pi\)
\(6\) 0 0
\(7\) 6.74497 1.87226i 0.963567 0.267466i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 16.4658 9.50651i 1.49689 0.864228i 0.496894 0.867811i \(-0.334474\pi\)
0.999994 + 0.00358274i \(0.00114042\pi\)
\(12\) 0 0
\(13\) −7.60538 −0.585029 −0.292515 0.956261i \(-0.594492\pi\)
−0.292515 + 0.956261i \(0.594492\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.04837 2.33733i 0.238139 0.137490i −0.376182 0.926546i \(-0.622763\pi\)
0.614321 + 0.789056i \(0.289430\pi\)
\(18\) 0 0
\(19\) −9.11147 + 15.7815i −0.479551 + 0.830607i −0.999725 0.0234536i \(-0.992534\pi\)
0.520174 + 0.854060i \(0.325867\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.20049 + 1.84780i 0.139152 + 0.0803393i 0.567960 0.823056i \(-0.307733\pi\)
−0.428808 + 0.903396i \(0.641066\pi\)
\(24\) 0 0
\(25\) −12.4780 21.6125i −0.499119 0.864499i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 25.8897i 0.892747i −0.894847 0.446373i \(-0.852715\pi\)
0.894847 0.446373i \(-0.147285\pi\)
\(30\) 0 0
\(31\) 4.91813 + 8.51844i 0.158649 + 0.274789i 0.934382 0.356273i \(-0.115953\pi\)
−0.775733 + 0.631062i \(0.782619\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.42268 0.367572i −0.0406479 0.0105021i
\(36\) 0 0
\(37\) −3.12741 + 5.41684i −0.0845246 + 0.146401i −0.905189 0.425010i \(-0.860271\pi\)
0.820664 + 0.571411i \(0.193604\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 17.8687i 0.435822i −0.975969 0.217911i \(-0.930076\pi\)
0.975969 0.217911i \(-0.0699242\pi\)
\(42\) 0 0
\(43\) 41.0391 0.954397 0.477199 0.878795i \(-0.341652\pi\)
0.477199 + 0.878795i \(0.341652\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 25.7037 + 14.8400i 0.546886 + 0.315745i 0.747865 0.663851i \(-0.231079\pi\)
−0.200979 + 0.979596i \(0.564412\pi\)
\(48\) 0 0
\(49\) 41.9893 25.2567i 0.856924 0.515442i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 69.4573 40.1012i 1.31052 0.756627i 0.328334 0.944562i \(-0.393513\pi\)
0.982181 + 0.187935i \(0.0601794\pi\)
\(54\) 0 0
\(55\) −3.99109 −0.0725653
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 69.3661 40.0485i 1.17570 0.678788i 0.220681 0.975346i \(-0.429172\pi\)
0.955015 + 0.296558i \(0.0958387\pi\)
\(60\) 0 0
\(61\) −29.2889 + 50.7298i −0.480145 + 0.831636i −0.999741 0.0227763i \(-0.992749\pi\)
0.519595 + 0.854413i \(0.326083\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.38259 + 0.798236i 0.0212706 + 0.0122806i
\(66\) 0 0
\(67\) −45.4046 78.6431i −0.677680 1.17378i −0.975678 0.219210i \(-0.929652\pi\)
0.297997 0.954567i \(-0.403681\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 88.2331i 1.24272i −0.783525 0.621360i \(-0.786580\pi\)
0.783525 0.621360i \(-0.213420\pi\)
\(72\) 0 0
\(73\) 10.0019 + 17.3238i 0.137013 + 0.237313i 0.926364 0.376628i \(-0.122917\pi\)
−0.789352 + 0.613941i \(0.789583\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 93.2625 94.9493i 1.21120 1.23311i
\(78\) 0 0
\(79\) −32.1803 + 55.7379i −0.407346 + 0.705543i −0.994591 0.103865i \(-0.966879\pi\)
0.587246 + 0.809409i \(0.300212\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 37.3016i 0.449416i −0.974426 0.224708i \(-0.927857\pi\)
0.974426 0.224708i \(-0.0721429\pi\)
\(84\) 0 0
\(85\) −0.981273 −0.0115444
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 123.592 + 71.3556i 1.38867 + 0.801748i 0.993165 0.116716i \(-0.0372369\pi\)
0.395503 + 0.918465i \(0.370570\pi\)
\(90\) 0 0
\(91\) −51.2981 + 14.2392i −0.563715 + 0.156475i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.31276 1.91262i 0.0348711 0.0201329i
\(96\) 0 0
\(97\) −44.6187 −0.459987 −0.229993 0.973192i \(-0.573870\pi\)
−0.229993 + 0.973192i \(0.573870\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 18.3713 10.6067i 0.181894 0.105017i −0.406288 0.913745i \(-0.633177\pi\)
0.588182 + 0.808728i \(0.299844\pi\)
\(102\) 0 0
\(103\) 62.7498 108.686i 0.609221 1.05520i −0.382148 0.924101i \(-0.624815\pi\)
0.991369 0.131101i \(-0.0418512\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −94.0831 54.3189i −0.879281 0.507653i −0.00886005 0.999961i \(-0.502820\pi\)
−0.870421 + 0.492307i \(0.836154\pi\)
\(108\) 0 0
\(109\) 88.7759 + 153.764i 0.814458 + 1.41068i 0.909716 + 0.415230i \(0.136299\pi\)
−0.0952585 + 0.995453i \(0.530368\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 150.170i 1.32894i 0.747314 + 0.664471i \(0.231343\pi\)
−0.747314 + 0.664471i \(0.768657\pi\)
\(114\) 0 0
\(115\) −0.387879 0.671827i −0.00337286 0.00584197i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 22.9300 23.3448i 0.192689 0.196175i
\(120\) 0 0
\(121\) 120.248 208.275i 0.993782 1.72128i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.4864i 0.0838914i
\(126\) 0 0
\(127\) −101.926 −0.802564 −0.401282 0.915955i \(-0.631435\pi\)
−0.401282 + 0.915955i \(0.631435\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −211.426 122.067i −1.61394 0.931806i −0.988446 0.151574i \(-0.951566\pi\)
−0.625490 0.780232i \(-0.715101\pi\)
\(132\) 0 0
\(133\) −31.9095 + 123.505i −0.239921 + 0.928609i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 109.199 63.0463i 0.797076 0.460192i −0.0453718 0.998970i \(-0.514447\pi\)
0.842448 + 0.538778i \(0.181114\pi\)
\(138\) 0 0
\(139\) 176.319 1.26848 0.634241 0.773136i \(-0.281313\pi\)
0.634241 + 0.773136i \(0.281313\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −125.228 + 72.3006i −0.875723 + 0.505599i
\(144\) 0 0
\(145\) −2.71730 + 4.70649i −0.0187400 + 0.0324586i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 21.4047 + 12.3580i 0.143656 + 0.0829396i 0.570105 0.821572i \(-0.306902\pi\)
−0.426450 + 0.904511i \(0.640236\pi\)
\(150\) 0 0
\(151\) 51.0267 + 88.3808i 0.337925 + 0.585303i 0.984042 0.177935i \(-0.0569416\pi\)
−0.646117 + 0.763238i \(0.723608\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.06476i 0.0133211i
\(156\) 0 0
\(157\) −104.088 180.286i −0.662984 1.14832i −0.979828 0.199844i \(-0.935957\pi\)
0.316844 0.948478i \(-0.397377\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 25.0468 + 6.47124i 0.155570 + 0.0401940i
\(162\) 0 0
\(163\) −101.170 + 175.231i −0.620674 + 1.07504i 0.368687 + 0.929554i \(0.379808\pi\)
−0.989360 + 0.145485i \(0.953526\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 274.788i 1.64544i 0.568449 + 0.822719i \(0.307544\pi\)
−0.568449 + 0.822719i \(0.692456\pi\)
\(168\) 0 0
\(169\) −111.158 −0.657741
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 100.783 + 58.1871i 0.582560 + 0.336341i 0.762150 0.647400i \(-0.224144\pi\)
−0.179590 + 0.983742i \(0.557477\pi\)
\(174\) 0 0
\(175\) −124.628 122.414i −0.712158 0.699506i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 23.1847 13.3857i 0.129523 0.0747803i −0.433838 0.900991i \(-0.642841\pi\)
0.563362 + 0.826210i \(0.309508\pi\)
\(180\) 0 0
\(181\) −105.045 −0.580359 −0.290180 0.956972i \(-0.593715\pi\)
−0.290180 + 0.956972i \(0.593715\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.13707 0.656486i 0.00614631 0.00354857i
\(186\) 0 0
\(187\) 44.4396 76.9717i 0.237645 0.411613i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −271.187 156.570i −1.41983 0.819737i −0.423543 0.905876i \(-0.639214\pi\)
−0.996283 + 0.0861385i \(0.972547\pi\)
\(192\) 0 0
\(193\) 10.8132 + 18.7290i 0.0560270 + 0.0970416i 0.892679 0.450694i \(-0.148823\pi\)
−0.836652 + 0.547735i \(0.815490\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 102.841i 0.522038i 0.965334 + 0.261019i \(0.0840585\pi\)
−0.965334 + 0.261019i \(0.915942\pi\)
\(198\) 0 0
\(199\) 97.1497 + 168.268i 0.488189 + 0.845569i 0.999908 0.0135845i \(-0.00432421\pi\)
−0.511718 + 0.859153i \(0.670991\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −48.4721 174.625i −0.238779 0.860222i
\(204\) 0 0
\(205\) −1.87544 + 3.24836i −0.00914850 + 0.0158457i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 346.473i 1.65777i
\(210\) 0 0
\(211\) 62.0446 0.294050 0.147025 0.989133i \(-0.453030\pi\)
0.147025 + 0.989133i \(0.453030\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.46052 4.30733i −0.0347001 0.0200341i
\(216\) 0 0
\(217\) 49.1214 + 48.2487i 0.226366 + 0.222344i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −30.7894 + 17.7762i −0.139318 + 0.0804355i
\(222\) 0 0
\(223\) 180.161 0.807899 0.403949 0.914781i \(-0.367637\pi\)
0.403949 + 0.914781i \(0.367637\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −390.063 + 225.203i −1.71834 + 0.992083i −0.796378 + 0.604799i \(0.793254\pi\)
−0.921960 + 0.387285i \(0.873413\pi\)
\(228\) 0 0
\(229\) 100.935 174.825i 0.440765 0.763428i −0.556981 0.830525i \(-0.688040\pi\)
0.997746 + 0.0670971i \(0.0213737\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −198.611 114.668i −0.852408 0.492138i 0.00905441 0.999959i \(-0.497118\pi\)
−0.861463 + 0.507821i \(0.830451\pi\)
\(234\) 0 0
\(235\) −3.11512 5.39555i −0.0132558 0.0229598i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 80.7464i 0.337851i 0.985629 + 0.168925i \(0.0540297\pi\)
−0.985629 + 0.168925i \(0.945970\pi\)
\(240\) 0 0
\(241\) −5.63130 9.75370i −0.0233664 0.0404718i 0.854106 0.520099i \(-0.174105\pi\)
−0.877472 + 0.479628i \(0.840772\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.2841 + 0.184361i −0.0419760 + 0.000752492i
\(246\) 0 0
\(247\) 69.2962 120.025i 0.280551 0.485929i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 323.254i 1.28786i 0.765083 + 0.643932i \(0.222698\pi\)
−0.765083 + 0.643932i \(0.777302\pi\)
\(252\) 0 0
\(253\) 70.2647 0.277726
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 235.895 + 136.194i 0.917878 + 0.529937i 0.882957 0.469453i \(-0.155549\pi\)
0.0349203 + 0.999390i \(0.488882\pi\)
\(258\) 0 0
\(259\) −10.9526 + 42.3917i −0.0422880 + 0.163675i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −147.756 + 85.3071i −0.561811 + 0.324362i −0.753872 0.657021i \(-0.771816\pi\)
0.192061 + 0.981383i \(0.438483\pi\)
\(264\) 0 0
\(265\) −16.8356 −0.0635305
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −196.531 + 113.467i −0.730599 + 0.421812i −0.818641 0.574305i \(-0.805272\pi\)
0.0880422 + 0.996117i \(0.471939\pi\)
\(270\) 0 0
\(271\) −150.201 + 260.156i −0.554249 + 0.959987i 0.443713 + 0.896169i \(0.353661\pi\)
−0.997962 + 0.0638179i \(0.979672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −410.919 237.244i −1.49425 0.862705i
\(276\) 0 0
\(277\) −60.2976 104.439i −0.217681 0.377034i 0.736418 0.676527i \(-0.236516\pi\)
−0.954099 + 0.299493i \(0.903183\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 174.327i 0.620381i 0.950674 + 0.310191i \(0.100393\pi\)
−0.950674 + 0.310191i \(0.899607\pi\)
\(282\) 0 0
\(283\) −80.3886 139.237i −0.284059 0.492004i 0.688322 0.725405i \(-0.258348\pi\)
−0.972380 + 0.233401i \(0.925014\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −33.4548 120.524i −0.116567 0.419944i
\(288\) 0 0
\(289\) −133.574 + 231.357i −0.462193 + 0.800542i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 169.668i 0.579071i 0.957167 + 0.289536i \(0.0935009\pi\)
−0.957167 + 0.289536i \(0.906499\pi\)
\(294\) 0 0
\(295\) −16.8135 −0.0569948
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −24.3409 14.0533i −0.0814079 0.0470008i
\(300\) 0 0
\(301\) 276.807 76.8358i 0.919626 0.255268i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.6489 6.14813i 0.0349144 0.0201578i
\(306\) 0 0
\(307\) −466.100 −1.51824 −0.759120 0.650950i \(-0.774371\pi\)
−0.759120 + 0.650950i \(0.774371\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −499.817 + 288.569i −1.60713 + 0.927876i −0.617119 + 0.786870i \(0.711700\pi\)
−0.990009 + 0.141006i \(0.954966\pi\)
\(312\) 0 0
\(313\) −237.831 + 411.936i −0.759845 + 1.31609i 0.183085 + 0.983097i \(0.441392\pi\)
−0.942929 + 0.332993i \(0.891942\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −154.787 89.3665i −0.488288 0.281913i 0.235576 0.971856i \(-0.424302\pi\)
−0.723864 + 0.689943i \(0.757636\pi\)
\(318\) 0 0
\(319\) −246.120 426.293i −0.771537 1.33634i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 85.1859i 0.263733i
\(324\) 0 0
\(325\) 94.8997 + 164.371i 0.291999 + 0.505757i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 201.155 + 51.9716i 0.611413 + 0.157968i
\(330\) 0 0
\(331\) 29.0733 50.3565i 0.0878348 0.152134i −0.818761 0.574135i \(-0.805339\pi\)
0.906596 + 0.422000i \(0.138672\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 19.0621i 0.0569017i
\(336\) 0 0
\(337\) 321.818 0.954948 0.477474 0.878646i \(-0.341552\pi\)
0.477474 + 0.878646i \(0.341552\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 161.961 + 93.5085i 0.474960 + 0.274218i
\(342\) 0 0
\(343\) 235.930 248.970i 0.687841 0.725861i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 232.474 134.219i 0.669953 0.386798i −0.126106 0.992017i \(-0.540248\pi\)
0.796059 + 0.605219i \(0.206915\pi\)
\(348\) 0 0
\(349\) −9.87359 −0.0282911 −0.0141455 0.999900i \(-0.504503\pi\)
−0.0141455 + 0.999900i \(0.504503\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 237.031 136.850i 0.671476 0.387677i −0.125160 0.992137i \(-0.539944\pi\)
0.796636 + 0.604460i \(0.206611\pi\)
\(354\) 0 0
\(355\) −9.26067 + 16.0399i −0.0260864 + 0.0451829i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −247.509 142.899i −0.689440 0.398048i 0.113962 0.993485i \(-0.463646\pi\)
−0.803402 + 0.595437i \(0.796979\pi\)
\(360\) 0 0
\(361\) 14.4622 + 25.0493i 0.0400616 + 0.0693887i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.19908i 0.0115043i
\(366\) 0 0
\(367\) 139.261 + 241.207i 0.379457 + 0.657239i 0.990983 0.133985i \(-0.0427775\pi\)
−0.611526 + 0.791224i \(0.709444\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 393.408 400.524i 1.06040 1.07958i
\(372\) 0 0
\(373\) 118.591 205.405i 0.317937 0.550684i −0.662120 0.749398i \(-0.730343\pi\)
0.980058 + 0.198714i \(0.0636765\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 196.901i 0.522283i
\(378\) 0 0
\(379\) 472.380 1.24639 0.623193 0.782068i \(-0.285835\pi\)
0.623193 + 0.782068i \(0.285835\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 358.666 + 207.076i 0.936465 + 0.540668i 0.888850 0.458197i \(-0.151505\pi\)
0.0476147 + 0.998866i \(0.484838\pi\)
\(384\) 0 0
\(385\) −26.9198 + 7.47236i −0.0699216 + 0.0194087i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 614.253 354.639i 1.57906 0.911669i 0.584066 0.811706i \(-0.301461\pi\)
0.994991 0.0999627i \(-0.0318724\pi\)
\(390\) 0 0
\(391\) 17.2757 0.0441833
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 11.7001 6.75508i 0.0296206 0.0171015i
\(396\) 0 0
\(397\) 125.857 217.990i 0.317019 0.549093i −0.662845 0.748756i \(-0.730651\pi\)
0.979865 + 0.199663i \(0.0639847\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −496.267 286.520i −1.23757 0.714514i −0.268977 0.963147i \(-0.586685\pi\)
−0.968598 + 0.248633i \(0.920019\pi\)
\(402\) 0 0
\(403\) −37.4042 64.7860i −0.0928144 0.160759i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 118.923i 0.292194i
\(408\) 0 0
\(409\) 58.5577 + 101.425i 0.143173 + 0.247983i 0.928690 0.370858i \(-0.120936\pi\)
−0.785517 + 0.618840i \(0.787603\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 392.891 399.997i 0.951310 0.968516i
\(414\) 0 0
\(415\) −3.91505 + 6.78107i −0.00943386 + 0.0163399i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30.5477i 0.0729062i 0.999335 + 0.0364531i \(0.0116059\pi\)
−0.999335 + 0.0364531i \(0.988394\pi\)
\(420\) 0 0
\(421\) −402.732 −0.956608 −0.478304 0.878194i \(-0.658748\pi\)
−0.478304 + 0.878194i \(0.658748\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −101.031 58.3301i −0.237719 0.137247i
\(426\) 0 0
\(427\) −102.573 + 397.008i −0.240218 + 0.929760i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 330.346 190.725i 0.766464 0.442518i −0.0651475 0.997876i \(-0.520752\pi\)
0.831612 + 0.555357i \(0.187418\pi\)
\(432\) 0 0
\(433\) −177.293 −0.409453 −0.204727 0.978819i \(-0.565631\pi\)
−0.204727 + 0.978819i \(0.565631\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −58.3224 + 33.6724i −0.133461 + 0.0770536i
\(438\) 0 0
\(439\) −31.5890 + 54.7138i −0.0719567 + 0.124633i −0.899759 0.436388i \(-0.856258\pi\)
0.827802 + 0.561020i \(0.189591\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −285.537 164.855i −0.644553 0.372133i 0.141813 0.989893i \(-0.454707\pi\)
−0.786366 + 0.617761i \(0.788040\pi\)
\(444\) 0 0
\(445\) −14.9785 25.9435i −0.0336596 0.0583001i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 335.346i 0.746872i 0.927656 + 0.373436i \(0.121820\pi\)
−0.927656 + 0.373436i \(0.878180\pi\)
\(450\) 0 0
\(451\) −169.869 294.222i −0.376650 0.652377i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.8200 + 2.79552i 0.0237802 + 0.00614401i
\(456\) 0 0
\(457\) −62.0641 + 107.498i −0.135808 + 0.235226i −0.925906 0.377755i \(-0.876696\pi\)
0.790098 + 0.612981i \(0.210030\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 776.337i 1.68403i 0.539456 + 0.842014i \(0.318630\pi\)
−0.539456 + 0.842014i \(0.681370\pi\)
\(462\) 0 0
\(463\) −595.677 −1.28656 −0.643280 0.765631i \(-0.722427\pi\)
−0.643280 + 0.765631i \(0.722427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −595.122 343.594i −1.27435 0.735747i −0.298548 0.954395i \(-0.596502\pi\)
−0.975804 + 0.218647i \(0.929836\pi\)
\(468\) 0 0
\(469\) −453.493 445.436i −0.966936 0.949757i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 675.740 390.139i 1.42863 0.824817i
\(474\) 0 0
\(475\) 454.771 0.957412
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −38.0835 + 21.9875i −0.0795062 + 0.0459029i −0.539226 0.842161i \(-0.681283\pi\)
0.459720 + 0.888064i \(0.347950\pi\)
\(480\) 0 0
\(481\) 23.7852 41.1971i 0.0494494 0.0856488i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.11126 + 4.68304i 0.0167242 + 0.00965575i
\(486\) 0 0
\(487\) 400.853 + 694.298i 0.823107 + 1.42566i 0.903357 + 0.428889i \(0.141095\pi\)
−0.0802496 + 0.996775i \(0.525572\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 949.361i 1.93353i −0.255676 0.966763i \(-0.582298\pi\)
0.255676 0.966763i \(-0.417702\pi\)
\(492\) 0 0
\(493\) −60.5126 104.811i −0.122744 0.212598i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −165.195 595.130i −0.332385 1.19744i
\(498\) 0 0
\(499\) −289.433 + 501.313i −0.580026 + 1.00463i 0.415450 + 0.909616i \(0.363624\pi\)
−0.995476 + 0.0950181i \(0.969709\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 439.255i 0.873271i 0.899639 + 0.436635i \(0.143830\pi\)
−0.899639 + 0.436635i \(0.856170\pi\)
\(504\) 0 0
\(505\) −4.45297 −0.00881776
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 762.229 + 440.073i 1.49750 + 0.864584i 0.999996 0.00287592i \(-0.000915436\pi\)
0.497507 + 0.867460i \(0.334249\pi\)
\(510\) 0 0
\(511\) 99.8974 + 98.1226i 0.195494 + 0.192021i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −22.8146 + 13.1720i −0.0443003 + 0.0255768i
\(516\) 0 0
\(517\) 564.307 1.09150
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 860.620 496.879i 1.65186 0.953703i 0.675556 0.737308i \(-0.263903\pi\)
0.976306 0.216395i \(-0.0694298\pi\)
\(522\) 0 0
\(523\) 389.830 675.205i 0.745372 1.29102i −0.204649 0.978836i \(-0.565605\pi\)
0.950021 0.312187i \(-0.101062\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.8207 + 22.9905i 0.0755612 + 0.0436253i
\(528\) 0 0
\(529\) −257.671 446.300i −0.487091 0.843667i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 135.898i 0.254969i
\(534\) 0 0
\(535\) 11.4023 + 19.7493i 0.0213127 + 0.0369146i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 451.283 815.042i 0.837260 1.51214i
\(540\) 0 0
\(541\) 13.3902 23.1924i 0.0247507 0.0428695i −0.853385 0.521282i \(-0.825454\pi\)
0.878135 + 0.478412i \(0.158787\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 37.2705i 0.0683863i
\(546\) 0 0
\(547\) 359.940 0.658025 0.329013 0.944326i \(-0.393284\pi\)
0.329013 + 0.944326i \(0.393284\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 408.578 + 235.893i 0.741522 + 0.428118i
\(552\) 0 0
\(553\) −112.699 + 436.201i −0.203796 + 0.788790i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 315.324 182.052i 0.566111 0.326845i −0.189483 0.981884i \(-0.560681\pi\)
0.755595 + 0.655039i \(0.227348\pi\)
\(558\) 0 0
\(559\) −312.118 −0.558350
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 61.4640 35.4863i 0.109172 0.0630307i −0.444420 0.895819i \(-0.646590\pi\)
0.553592 + 0.832788i \(0.313257\pi\)
\(564\) 0 0
\(565\) 15.7614 27.2995i 0.0278963 0.0483178i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −239.749 138.419i −0.421351 0.243267i 0.274304 0.961643i \(-0.411552\pi\)
−0.695655 + 0.718376i \(0.744886\pi\)
\(570\) 0 0
\(571\) 347.610 + 602.078i 0.608773 + 1.05443i 0.991443 + 0.130541i \(0.0416715\pi\)
−0.382669 + 0.923885i \(0.624995\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 92.2274i 0.160395i
\(576\) 0 0
\(577\) −81.1614 140.576i −0.140661 0.243632i 0.787085 0.616845i \(-0.211589\pi\)
−0.927746 + 0.373213i \(0.878256\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −69.8382 251.598i −0.120203 0.433043i
\(582\) 0 0
\(583\) 762.445 1320.59i 1.30780 2.26517i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 544.350i 0.927342i −0.886007 0.463671i \(-0.846532\pi\)
0.886007 0.463671i \(-0.153468\pi\)
\(588\) 0 0
\(589\) −179.245 −0.304322
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 269.171 + 155.406i 0.453914 + 0.262067i 0.709482 0.704724i \(-0.248929\pi\)
−0.255568 + 0.966791i \(0.582262\pi\)
\(594\) 0 0
\(595\) −6.61866 + 1.83720i −0.0111238 + 0.00308773i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 646.818 373.440i 1.07983 0.623439i 0.148979 0.988840i \(-0.452401\pi\)
0.930850 + 0.365401i \(0.119068\pi\)
\(600\) 0 0
\(601\) 452.880 0.753544 0.376772 0.926306i \(-0.377034\pi\)
0.376772 + 0.926306i \(0.377034\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −43.7197 + 25.2416i −0.0722640 + 0.0417217i
\(606\) 0 0
\(607\) −450.859 + 780.910i −0.742766 + 1.28651i 0.208466 + 0.978030i \(0.433153\pi\)
−0.951231 + 0.308478i \(0.900180\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −195.486 112.864i −0.319944 0.184720i
\(612\) 0 0
\(613\) 423.312 + 733.198i 0.690558 + 1.19608i 0.971655 + 0.236403i \(0.0759685\pi\)
−0.281097 + 0.959679i \(0.590698\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.96933i 0.00967477i 0.999988 + 0.00483739i \(0.00153979\pi\)
−0.999988 + 0.00483739i \(0.998460\pi\)
\(618\) 0 0
\(619\) −387.612 671.364i −0.626191 1.08459i −0.988309 0.152463i \(-0.951280\pi\)
0.362118 0.932132i \(-0.382054\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 967.217 + 249.896i 1.55252 + 0.401117i
\(624\) 0 0
\(625\) −310.849 + 538.406i −0.497358 + 0.861449i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.2391i 0.0464851i
\(630\) 0 0
\(631\) −619.610 −0.981950 −0.490975 0.871174i \(-0.663359\pi\)
−0.490975 + 0.871174i \(0.663359\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.5291 + 10.6978i 0.0291797 + 0.0168469i
\(636\) 0 0
\(637\) −319.345 + 192.087i −0.501326 + 0.301549i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 581.796 335.900i 0.907638 0.524025i 0.0279676 0.999609i \(-0.491096\pi\)
0.879670 + 0.475584i \(0.157763\pi\)
\(642\) 0 0
\(643\) −1042.23 −1.62088 −0.810441 0.585820i \(-0.800772\pi\)
−0.810441 + 0.585820i \(0.800772\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −791.505 + 456.976i −1.22335 + 0.706300i −0.965630 0.259921i \(-0.916303\pi\)
−0.257717 + 0.966220i \(0.582970\pi\)
\(648\) 0 0
\(649\) 761.443 1318.86i 1.17326 2.03214i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −792.106 457.322i −1.21303 0.700341i −0.249608 0.968347i \(-0.580302\pi\)
−0.963417 + 0.268006i \(0.913635\pi\)
\(654\) 0 0
\(655\) 25.6234 + 44.3811i 0.0391198 + 0.0677574i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 201.561i 0.305858i −0.988237 0.152929i \(-0.951129\pi\)
0.988237 0.152929i \(-0.0488706\pi\)
\(660\) 0 0
\(661\) 333.315 + 577.319i 0.504259 + 0.873402i 0.999988 + 0.00492495i \(0.00156767\pi\)
−0.495729 + 0.868477i \(0.665099\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18.7635 19.1029i 0.0282158 0.0287262i
\(666\) 0 0
\(667\) 47.8390 82.8596i 0.0717227 0.124227i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1113.74i 1.65982i
\(672\) 0 0
\(673\) −369.069 −0.548394 −0.274197 0.961674i \(-0.588412\pi\)
−0.274197 + 0.961674i \(0.588412\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −266.790 154.031i −0.394077 0.227521i 0.289848 0.957073i \(-0.406395\pi\)
−0.683925 + 0.729552i \(0.739729\pi\)
\(678\) 0 0
\(679\) −300.952 + 83.5378i −0.443228 + 0.123031i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 105.264 60.7745i 0.154121 0.0889817i −0.420956 0.907081i \(-0.638305\pi\)
0.575077 + 0.818099i \(0.304972\pi\)
\(684\) 0 0
\(685\) −26.4685 −0.0386402
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −528.249 + 304.985i −0.766690 + 0.442649i
\(690\) 0 0
\(691\) 86.0268 149.003i 0.124496 0.215634i −0.797040 0.603927i \(-0.793602\pi\)
0.921536 + 0.388293i \(0.126935\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −32.0531 18.5059i −0.0461196 0.0266272i
\(696\) 0 0
\(697\) −41.7650 72.3390i −0.0599210 0.103786i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 602.280i 0.859173i 0.903026 + 0.429587i \(0.141341\pi\)
−0.903026 + 0.429587i \(0.858659\pi\)
\(702\) 0 0
\(703\) −56.9906 98.7107i −0.0810678 0.140413i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 104.055 105.938i 0.147179 0.149841i
\(708\) 0 0
\(709\) −417.436 + 723.020i −0.588767 + 1.01977i 0.405627 + 0.914039i \(0.367053\pi\)
−0.994394 + 0.105736i \(0.966280\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 36.3509i 0.0509831i
\(714\) 0 0
\(715\) 30.3538 0.0424528
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 774.168 + 446.966i 1.07673 + 0.621650i 0.930012 0.367529i \(-0.119796\pi\)
0.146717 + 0.989179i \(0.453129\pi\)
\(720\) 0 0
\(721\) 219.758 850.567i 0.304796 1.17970i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −559.540 + 323.050i −0.771779 + 0.445587i
\(726\) 0 0
\(727\) 862.131 1.18587 0.592937 0.805249i \(-0.297968\pi\)
0.592937 + 0.805249i \(0.297968\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 166.141 95.9217i 0.227279 0.131220i
\(732\) 0 0
\(733\) −658.287 + 1140.19i −0.898072 + 1.55551i −0.0681159 + 0.997677i \(0.521699\pi\)
−0.829956 + 0.557829i \(0.811635\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1495.24 863.279i −2.02882 1.17134i
\(738\) 0 0
\(739\) −318.373 551.438i −0.430816 0.746195i 0.566128 0.824317i \(-0.308441\pi\)
−0.996944 + 0.0781223i \(0.975108\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 720.253i 0.969385i 0.874685 + 0.484692i \(0.161068\pi\)
−0.874685 + 0.484692i \(0.838932\pi\)
\(744\) 0 0
\(745\) −2.59411 4.49313i −0.00348203 0.00603105i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −736.287 190.232i −0.983027 0.253981i
\(750\) 0 0
\(751\) 114.613 198.515i 0.152614 0.264335i −0.779574 0.626310i \(-0.784564\pi\)
0.932188 + 0.361976i \(0.117898\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 21.4224i 0.0283740i
\(756\) 0 0
\(757\) 1207.52 1.59514 0.797570 0.603226i \(-0.206118\pi\)
0.797570 + 0.603226i \(0.206118\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −417.256 240.903i −0.548300 0.316561i 0.200136 0.979768i \(-0.435862\pi\)
−0.748436 + 0.663207i \(0.769195\pi\)
\(762\) 0 0
\(763\) 886.678 + 870.925i 1.16209 + 1.14145i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −527.555 + 304.584i −0.687816 + 0.397111i
\(768\) 0 0
\(769\) 1187.92 1.54475 0.772377 0.635165i \(-0.219068\pi\)
0.772377 + 0.635165i \(0.219068\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −912.742 + 526.972i −1.18078 + 0.681723i −0.956195 0.292732i \(-0.905436\pi\)
−0.224584 + 0.974455i \(0.572102\pi\)
\(774\) 0 0
\(775\) 122.736 212.586i 0.158370 0.274304i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 281.995 + 162.810i 0.361997 + 0.208999i
\(780\) 0 0
\(781\) −838.789 1452.83i −1.07399 1.86021i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.6992i 0.0556677i
\(786\) 0 0
\(787\) 198.710 + 344.175i 0.252490 + 0.437325i 0.964211 0.265137i \(-0.0854172\pi\)
−0.711721 + 0.702462i \(0.752084\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 281.158 + 1012.89i 0.355446 + 1.28052i
\(792\) 0 0
\(793\) 222.753 385.820i 0.280899 0.486532i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 538.927i 0.676194i −0.941111 0.338097i \(-0.890217\pi\)
0.941111 0.338097i \(-0.109783\pi\)
\(798\) 0 0
\(799\) 138.744 0.173647
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 329.378 + 190.167i 0.410185 + 0.236820i
\(804\) 0 0
\(805\) −3.87407 3.80524i −0.00481251 0.00472701i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −105.177 + 60.7238i −0.130008 + 0.0750603i −0.563594 0.826052i \(-0.690582\pi\)
0.433585 + 0.901113i \(0.357248\pi\)
\(810\) 0 0
\(811\) −1552.10 −1.91381 −0.956904 0.290405i \(-0.906210\pi\)
−0.956904 + 0.290405i \(0.906210\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 36.7834 21.2369i 0.0451330 0.0260576i
\(816\) 0 0
\(817\) −373.926 + 647.659i −0.457682 + 0.792729i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −275.818 159.243i −0.335953 0.193963i 0.322528 0.946560i \(-0.395467\pi\)
−0.658481 + 0.752597i \(0.728801\pi\)
\(822\) 0 0
\(823\) 35.2055 + 60.9778i 0.0427771 + 0.0740921i 0.886621 0.462496i \(-0.153046\pi\)
−0.843844 + 0.536588i \(0.819713\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 848.986i 1.02659i −0.858214 0.513293i \(-0.828425\pi\)
0.858214 0.513293i \(-0.171575\pi\)
\(828\) 0 0
\(829\) 362.558 + 627.968i 0.437343 + 0.757501i 0.997484 0.0708969i \(-0.0225861\pi\)
−0.560140 + 0.828398i \(0.689253\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 110.955 200.391i 0.133199 0.240565i
\(834\) 0 0
\(835\) 28.8409 49.9539i 0.0345400 0.0598250i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1406.16i 1.67600i 0.545674 + 0.837998i \(0.316274\pi\)
−0.545674 + 0.837998i \(0.683726\pi\)
\(840\) 0 0
\(841\) 170.726 0.203003
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 20.2075 + 11.6668i 0.0239142 + 0.0138069i
\(846\) 0 0
\(847\) 421.122 1629.94i 0.497192 1.92437i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −20.0185 + 11.5577i −0.0235235 + 0.0135813i
\(852\) 0 0
\(853\) −1076.57 −1.26210 −0.631051 0.775742i \(-0.717376\pi\)
−0.631051 + 0.775742i \(0.717376\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1068.50 + 616.900i −1.24679 + 0.719837i −0.970469 0.241227i \(-0.922450\pi\)
−0.276325 + 0.961064i \(0.589117\pi\)
\(858\) 0 0
\(859\) −538.904 + 933.409i −0.627362 + 1.08662i 0.360717 + 0.932675i \(0.382532\pi\)
−0.988079 + 0.153947i \(0.950801\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 986.156 + 569.358i 1.14271 + 0.659742i 0.947100 0.320940i \(-0.103999\pi\)
0.195608 + 0.980682i \(0.437332\pi\)
\(864\) 0 0
\(865\) −12.2143 21.1557i −0.0141205 0.0244575i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1223.69i 1.40816i
\(870\) 0 0
\(871\) 345.319 + 598.110i 0.396463 + 0.686694i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.6333 + 70.7307i 0.0224381 + 0.0808351i
\(876\) 0 0
\(877\) −232.103 + 402.015i −0.264656 + 0.458398i −0.967473 0.252972i \(-0.918592\pi\)
0.702817 + 0.711370i \(0.251925\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 343.027i 0.389361i 0.980867 + 0.194680i \(0.0623669\pi\)
−0.980867 + 0.194680i \(0.937633\pi\)
\(882\) 0 0
\(883\) 821.673 0.930547 0.465274 0.885167i \(-0.345956\pi\)
0.465274 + 0.885167i \(0.345956\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1002.29 578.670i −1.12997 0.652390i −0.186045 0.982541i \(-0.559567\pi\)
−0.943928 + 0.330151i \(0.892900\pi\)
\(888\) 0 0
\(889\) −687.485 + 190.831i −0.773324 + 0.214658i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −468.396 + 270.429i −0.524520 + 0.302832i
\(894\) 0 0
\(895\) −5.61967 −0.00627896
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 220.540 127.329i 0.245317 0.141634i
\(900\) 0 0
\(901\) 187.459 324.689i 0.208057 0.360365i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 19.0962 + 11.0252i 0.0211008 + 0.0121825i
\(906\) 0 0
\(907\) −404.722 700.998i −0.446220 0.772876i 0.551916 0.833900i \(-0.313897\pi\)
−0.998136 + 0.0610237i \(0.980563\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 278.914i 0.306162i 0.988214 + 0.153081i \(0.0489196\pi\)
−0.988214 + 0.153081i \(0.951080\pi\)
\(912\) 0 0
\(913\) −354.608 614.199i −0.388398 0.672726i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1654.60 427.492i −1.80436 0.466186i
\(918\) 0 0
\(919\) −523.336 + 906.445i −0.569463 + 0.986338i 0.427156 + 0.904178i \(0.359515\pi\)
−0.996619 + 0.0821605i \(0.973818\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 671.046i 0.727028i
\(924\) 0 0
\(925\) 156.095 0.168751
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 154.140 + 88.9926i 0.165920 + 0.0957939i 0.580661 0.814146i \(-0.302794\pi\)
−0.414741 + 0.909940i \(0.636128\pi\)
\(930\) 0 0
\(931\) 16.0046 + 892.781i 0.0171908 + 0.958948i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.1574 + 9.32848i −0.0172806 + 0.00997699i
\(936\) 0 0
\(937\) −1333.75 −1.42343 −0.711713 0.702470i \(-0.752080\pi\)
−0.711713 + 0.702470i \(0.752080\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 842.430 486.377i 0.895250 0.516873i 0.0195937 0.999808i \(-0.493763\pi\)
0.875656 + 0.482935i \(0.160429\pi\)
\(942\) 0 0
\(943\) 33.0179 57.1886i 0.0350136 0.0606454i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −849.798 490.631i −0.897358 0.518090i −0.0210156 0.999779i \(-0.506690\pi\)
−0.876342 + 0.481690i \(0.840023\pi\)
\(948\) 0 0
\(949\) −76.0684 131.754i −0.0801564 0.138835i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 294.776i 0.309314i −0.987968 0.154657i \(-0.950573\pi\)
0.987968 0.154657i \(-0.0494272\pi\)
\(954\) 0 0
\(955\) 32.8661 + 56.9258i 0.0344148 + 0.0596082i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 618.508 629.695i 0.644951 0.656616i
\(960\) 0 0
\(961\) 432.124 748.461i 0.449661 0.778835i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.53968i 0.00470433i
\(966\) 0 0
\(967\) −1314.45 −1.35930 −0.679651 0.733535i \(-0.737869\pi\)
−0.679651 + 0.733535i \(0.737869\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.1535 + 25.4920i 0.0454722 + 0.0262534i 0.522564 0.852600i \(-0.324976\pi\)
−0.477092 + 0.878854i \(0.658309\pi\)
\(972\) 0 0
\(973\) 1189.27 330.115i 1.22227 0.339275i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1392.84 + 804.159i −1.42563 + 0.823090i −0.996772 0.0802800i \(-0.974419\pi\)
−0.428862 + 0.903370i \(0.641085\pi\)
\(978\) 0 0
\(979\) 2713.37 2.77157
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −863.213 + 498.376i −0.878142 + 0.506995i −0.870045 0.492972i \(-0.835911\pi\)
−0.00809650 + 0.999967i \(0.502577\pi\)
\(984\) 0 0
\(985\) 10.7939 18.6956i 0.0109583 0.0189803i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 131.345 + 75.8322i 0.132806 + 0.0766756i
\(990\) 0 0
\(991\) 438.637 + 759.741i 0.442620 + 0.766641i 0.997883 0.0650341i \(-0.0207156\pi\)
−0.555263 + 0.831675i \(0.687382\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 40.7861i 0.0409910i
\(996\) 0 0
\(997\) −860.736 1490.84i −0.863326 1.49533i −0.868699 0.495340i \(-0.835044\pi\)
0.00537302 0.999986i \(-0.498290\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.g.485.4 yes 16
3.2 odd 2 inner 756.3.bk.g.485.5 yes 16
7.4 even 3 inner 756.3.bk.g.53.5 yes 16
21.11 odd 6 inner 756.3.bk.g.53.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.g.53.4 16 21.11 odd 6 inner
756.3.bk.g.53.5 yes 16 7.4 even 3 inner
756.3.bk.g.485.4 yes 16 1.1 even 1 trivial
756.3.bk.g.485.5 yes 16 3.2 odd 2 inner