Properties

Label 756.3.bk
Level $756$
Weight $3$
Character orbit 756.bk
Rep. character $\chi_{756}(53,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $42$
Newform subspaces $7$
Sturm bound $432$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(432\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(756, [\chi])\).

Total New Old
Modular forms 612 42 570
Cusp forms 540 42 498
Eisenstein series 72 0 72

Trace form

\( 42 q - 5 q^{7} - 20 q^{13} + 45 q^{19} + 115 q^{25} - 35 q^{31} - 30 q^{37} + 78 q^{43} - 33 q^{49} - 232 q^{55} - 47 q^{61} + 110 q^{67} + 113 q^{73} + 82 q^{79} + 164 q^{85} + 280 q^{91} + 470 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
756.3.bk.a 756.bk 21.h $2$ $20.600$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.3.bk.a \(0\) \(0\) \(0\) \(2\) $\mathrm{U}(1)[D_{6}]$ \(q+(-3+8\zeta_{6})q^{7}-q^{13}+(-26+26\zeta_{6})q^{19}+\cdots\)
756.3.bk.b 756.bk 21.h $2$ $20.600$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.3.bk.b \(0\) \(0\) \(0\) \(2\) $\mathrm{U}(1)[D_{6}]$ \(q+(5-8\zeta_{6})q^{7}+23q^{13}+(-26+26\zeta_{6})q^{19}+\cdots\)
756.3.bk.c 756.bk 21.h $2$ $20.600$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 756.3.bk.c \(0\) \(0\) \(0\) \(11\) $\mathrm{U}(1)[D_{6}]$ \(q+(8-5\zeta_{6})q^{7}-22q^{13}+(37-37\zeta_{6})q^{19}+\cdots\)
756.3.bk.d 756.bk 21.h $4$ $20.600$ \(\Q(\sqrt{-3}, \sqrt{-5})\) None 756.3.bk.d \(0\) \(0\) \(0\) \(-28\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{5}-7q^{7}+(\beta _{1}-\beta _{3})q^{11}+3q^{13}+\cdots\)
756.3.bk.e 756.bk 21.h $4$ $20.600$ \(\Q(\zeta_{12})\) None 756.3.bk.e \(0\) \(0\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{6}]$ \(q+2\beta_1 q^{5}+(7\beta_{2}-7)q^{7}+(\beta_{3}-\beta_1)q^{11}+\cdots\)
756.3.bk.f 756.bk 21.h $12$ $20.600$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 756.3.bk.f \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{4}q^{5}-\beta _{6}q^{7}+(-\beta _{5}+\beta _{10})q^{11}+\cdots\)
756.3.bk.g 756.bk 21.h $16$ $20.600$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 756.3.bk.g \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{7}-\beta _{9})q^{5}+(\beta _{3}-2\beta _{4})q^{7}+(-\beta _{5}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(756, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)