Properties

Label 756.3.bk.e.53.1
Level $756$
Weight $3$
Character 756.53
Analytic conductor $20.600$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-14,0,0,0,0,0,-88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 756.53
Dual form 756.3.bk.e.485.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.19615 + 3.00000i) q^{5} +(-3.50000 - 6.06218i) q^{7} +(2.59808 + 1.50000i) q^{11} -22.0000 q^{13} +(20.7846 + 12.0000i) q^{17} +(5.00000 + 8.66025i) q^{19} +(25.9808 - 15.0000i) q^{23} +(5.50000 - 9.52628i) q^{25} -33.0000i q^{29} +(6.50000 - 11.2583i) q^{31} +(36.3731 + 21.0000i) q^{35} +(5.00000 + 8.66025i) q^{37} -30.0000i q^{41} +56.0000 q^{43} +(-24.5000 + 42.4352i) q^{49} +(36.3731 + 21.0000i) q^{53} -18.0000 q^{55} +(85.7365 + 49.5000i) q^{59} +(47.0000 + 81.4064i) q^{61} +(114.315 - 66.0000i) q^{65} +(38.0000 - 65.8179i) q^{67} +18.0000i q^{71} +(27.5000 - 47.6314i) q^{73} -21.0000i q^{77} +(-41.5000 - 71.8801i) q^{79} +147.000i q^{83} -144.000 q^{85} +(114.315 - 66.0000i) q^{89} +(77.0000 + 133.368i) q^{91} +(-51.9615 - 30.0000i) q^{95} -85.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{7} - 88 q^{13} + 20 q^{19} + 22 q^{25} + 26 q^{31} + 20 q^{37} + 224 q^{43} - 98 q^{49} - 72 q^{55} + 188 q^{61} + 152 q^{67} + 110 q^{73} - 166 q^{79} - 576 q^{85} + 308 q^{91} - 340 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.19615 + 3.00000i −1.03923 + 0.600000i −0.919615 0.392820i \(-0.871499\pi\)
−0.119615 + 0.992820i \(0.538166\pi\)
\(6\) 0 0
\(7\) −3.50000 6.06218i −0.500000 0.866025i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.59808 + 1.50000i 0.236189 + 0.136364i 0.613424 0.789754i \(-0.289792\pi\)
−0.377235 + 0.926118i \(0.623125\pi\)
\(12\) 0 0
\(13\) −22.0000 −1.69231 −0.846154 0.532939i \(-0.821088\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 20.7846 + 12.0000i 1.22262 + 0.705882i 0.965477 0.260490i \(-0.0838840\pi\)
0.257148 + 0.966372i \(0.417217\pi\)
\(18\) 0 0
\(19\) 5.00000 + 8.66025i 0.263158 + 0.455803i 0.967079 0.254475i \(-0.0819026\pi\)
−0.703921 + 0.710278i \(0.748569\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.9808 15.0000i 1.12960 0.652174i 0.185764 0.982594i \(-0.440524\pi\)
0.943834 + 0.330420i \(0.107191\pi\)
\(24\) 0 0
\(25\) 5.50000 9.52628i 0.220000 0.381051i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 33.0000i 1.13793i −0.822361 0.568966i \(-0.807344\pi\)
0.822361 0.568966i \(-0.192656\pi\)
\(30\) 0 0
\(31\) 6.50000 11.2583i 0.209677 0.363172i −0.741935 0.670471i \(-0.766092\pi\)
0.951613 + 0.307299i \(0.0994253\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 36.3731 + 21.0000i 1.03923 + 0.600000i
\(36\) 0 0
\(37\) 5.00000 + 8.66025i 0.135135 + 0.234061i 0.925649 0.378383i \(-0.123520\pi\)
−0.790514 + 0.612444i \(0.790186\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 30.0000i 0.731707i −0.930672 0.365854i \(-0.880777\pi\)
0.930672 0.365854i \(-0.119223\pi\)
\(42\) 0 0
\(43\) 56.0000 1.30233 0.651163 0.758938i \(-0.274282\pi\)
0.651163 + 0.758938i \(0.274282\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) −24.5000 + 42.4352i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 36.3731 + 21.0000i 0.686284 + 0.396226i 0.802219 0.597030i \(-0.203653\pi\)
−0.115934 + 0.993257i \(0.536986\pi\)
\(54\) 0 0
\(55\) −18.0000 −0.327273
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 85.7365 + 49.5000i 1.45316 + 0.838983i 0.998659 0.0517627i \(-0.0164840\pi\)
0.454502 + 0.890746i \(0.349817\pi\)
\(60\) 0 0
\(61\) 47.0000 + 81.4064i 0.770492 + 1.33453i 0.937294 + 0.348541i \(0.113323\pi\)
−0.166802 + 0.985990i \(0.553344\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 114.315 66.0000i 1.75870 1.01538i
\(66\) 0 0
\(67\) 38.0000 65.8179i 0.567164 0.982357i −0.429681 0.902981i \(-0.641374\pi\)
0.996845 0.0793762i \(-0.0252928\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 18.0000i 0.253521i 0.991933 + 0.126761i \(0.0404580\pi\)
−0.991933 + 0.126761i \(0.959542\pi\)
\(72\) 0 0
\(73\) 27.5000 47.6314i 0.376712 0.652485i −0.613869 0.789408i \(-0.710388\pi\)
0.990582 + 0.136923i \(0.0437212\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 21.0000i 0.272727i
\(78\) 0 0
\(79\) −41.5000 71.8801i −0.525316 0.909875i −0.999565 0.0294839i \(-0.990614\pi\)
0.474249 0.880391i \(-0.342720\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 147.000i 1.77108i 0.464559 + 0.885542i \(0.346213\pi\)
−0.464559 + 0.885542i \(0.653787\pi\)
\(84\) 0 0
\(85\) −144.000 −1.69412
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 114.315 66.0000i 1.28444 0.741573i 0.306785 0.951779i \(-0.400747\pi\)
0.977657 + 0.210206i \(0.0674134\pi\)
\(90\) 0 0
\(91\) 77.0000 + 133.368i 0.846154 + 1.46558i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −51.9615 30.0000i −0.546963 0.315789i
\(96\) 0 0
\(97\) −85.0000 −0.876289 −0.438144 0.898905i \(-0.644364\pi\)
−0.438144 + 0.898905i \(0.644364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 2.59808 + 1.50000i 0.0257235 + 0.0148515i 0.512807 0.858504i \(-0.328606\pi\)
−0.487083 + 0.873356i \(0.661939\pi\)
\(102\) 0 0
\(103\) −61.0000 105.655i −0.592233 1.02578i −0.993931 0.110005i \(-0.964913\pi\)
0.401698 0.915772i \(-0.368420\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −25.9808 + 15.0000i −0.242811 + 0.140187i −0.616468 0.787380i \(-0.711437\pi\)
0.373657 + 0.927567i \(0.378104\pi\)
\(108\) 0 0
\(109\) 50.0000 86.6025i 0.458716 0.794519i −0.540178 0.841551i \(-0.681643\pi\)
0.998893 + 0.0470322i \(0.0149763\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 78.0000i 0.690265i 0.938554 + 0.345133i \(0.112166\pi\)
−0.938554 + 0.345133i \(0.887834\pi\)
\(114\) 0 0
\(115\) −90.0000 + 155.885i −0.782609 + 1.35552i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 168.000i 1.41176i
\(120\) 0 0
\(121\) −56.0000 96.9948i −0.462810 0.801610i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 84.0000i 0.672000i
\(126\) 0 0
\(127\) 134.000 1.05512 0.527559 0.849518i \(-0.323107\pi\)
0.527559 + 0.849518i \(0.323107\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 96.1288 55.5000i 0.733808 0.423664i −0.0860058 0.996295i \(-0.527410\pi\)
0.819814 + 0.572631i \(0.194077\pi\)
\(132\) 0 0
\(133\) 35.0000 60.6218i 0.263158 0.455803i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 150.688 + 87.0000i 1.09992 + 0.635036i 0.936199 0.351471i \(-0.114318\pi\)
0.163717 + 0.986507i \(0.447652\pi\)
\(138\) 0 0
\(139\) −166.000 −1.19424 −0.597122 0.802150i \(-0.703689\pi\)
−0.597122 + 0.802150i \(0.703689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −57.1577 33.0000i −0.399704 0.230769i
\(144\) 0 0
\(145\) 99.0000 + 171.473i 0.682759 + 1.18257i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 142.894 82.5000i 0.959021 0.553691i 0.0631497 0.998004i \(-0.479885\pi\)
0.895872 + 0.444313i \(0.146552\pi\)
\(150\) 0 0
\(151\) 15.5000 26.8468i 0.102649 0.177793i −0.810126 0.586255i \(-0.800601\pi\)
0.912775 + 0.408462i \(0.133935\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 78.0000i 0.503226i
\(156\) 0 0
\(157\) 59.0000 102.191i 0.375796 0.650898i −0.614650 0.788800i \(-0.710703\pi\)
0.990446 + 0.137902i \(0.0440359\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −181.865 105.000i −1.12960 0.652174i
\(162\) 0 0
\(163\) 44.0000 + 76.2102i 0.269939 + 0.467547i 0.968846 0.247665i \(-0.0796632\pi\)
−0.698907 + 0.715212i \(0.746330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 258.000i 1.54491i 0.635069 + 0.772455i \(0.280971\pi\)
−0.635069 + 0.772455i \(0.719029\pi\)
\(168\) 0 0
\(169\) 315.000 1.86391
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −226.033 + 130.500i −1.30655 + 0.754335i −0.981518 0.191369i \(-0.938707\pi\)
−0.325029 + 0.945704i \(0.605374\pi\)
\(174\) 0 0
\(175\) −77.0000 −0.440000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −220.836 127.500i −1.23372 0.712291i −0.265919 0.963995i \(-0.585675\pi\)
−0.967804 + 0.251705i \(0.919009\pi\)
\(180\) 0 0
\(181\) 44.0000 0.243094 0.121547 0.992586i \(-0.461214\pi\)
0.121547 + 0.992586i \(0.461214\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −51.9615 30.0000i −0.280873 0.162162i
\(186\) 0 0
\(187\) 36.0000 + 62.3538i 0.192513 + 0.333443i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −155.885 + 90.0000i −0.816150 + 0.471204i −0.849087 0.528253i \(-0.822847\pi\)
0.0329373 + 0.999457i \(0.489514\pi\)
\(192\) 0 0
\(193\) −101.500 + 175.803i −0.525907 + 0.910897i 0.473638 + 0.880720i \(0.342941\pi\)
−0.999545 + 0.0301775i \(0.990393\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 81.0000i 0.411168i 0.978640 + 0.205584i \(0.0659093\pi\)
−0.978640 + 0.205584i \(0.934091\pi\)
\(198\) 0 0
\(199\) 21.5000 37.2391i 0.108040 0.187131i −0.806936 0.590639i \(-0.798876\pi\)
0.914976 + 0.403508i \(0.132209\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −200.052 + 115.500i −0.985477 + 0.568966i
\(204\) 0 0
\(205\) 90.0000 + 155.885i 0.439024 + 0.760413i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 30.0000i 0.143541i
\(210\) 0 0
\(211\) −316.000 −1.49763 −0.748815 0.662779i \(-0.769377\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −290.985 + 168.000i −1.35342 + 0.781395i
\(216\) 0 0
\(217\) −91.0000 −0.419355
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −457.261 264.000i −2.06906 1.19457i
\(222\) 0 0
\(223\) 275.000 1.23318 0.616592 0.787283i \(-0.288513\pi\)
0.616592 + 0.787283i \(0.288513\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.1865 + 10.5000i 0.0801169 + 0.0462555i 0.539523 0.841971i \(-0.318604\pi\)
−0.459406 + 0.888226i \(0.651938\pi\)
\(228\) 0 0
\(229\) −124.000 214.774i −0.541485 0.937879i −0.998819 0.0485842i \(-0.984529\pi\)
0.457334 0.889295i \(-0.348804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 394.908 228.000i 1.69488 0.978541i 0.744415 0.667718i \(-0.232729\pi\)
0.950468 0.310823i \(-0.100605\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000i 0.100418i 0.998739 + 0.0502092i \(0.0159888\pi\)
−0.998739 + 0.0502092i \(0.984011\pi\)
\(240\) 0 0
\(241\) 168.500 291.851i 0.699170 1.21100i −0.269584 0.962977i \(-0.586886\pi\)
0.968755 0.248021i \(-0.0797803\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 294.000i 1.20000i
\(246\) 0 0
\(247\) −110.000 190.526i −0.445344 0.771359i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 405.000i 1.61355i 0.590862 + 0.806773i \(0.298788\pi\)
−0.590862 + 0.806773i \(0.701212\pi\)
\(252\) 0 0
\(253\) 90.0000 0.355731
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −176.669 + 102.000i −0.687429 + 0.396887i −0.802648 0.596453i \(-0.796576\pi\)
0.115219 + 0.993340i \(0.463243\pi\)
\(258\) 0 0
\(259\) 35.0000 60.6218i 0.135135 0.234061i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −114.315 66.0000i −0.434659 0.250951i 0.266670 0.963788i \(-0.414076\pi\)
−0.701330 + 0.712837i \(0.747410\pi\)
\(264\) 0 0
\(265\) −252.000 −0.950943
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 215.640 + 124.500i 0.801637 + 0.462825i 0.844043 0.536275i \(-0.180169\pi\)
−0.0424063 + 0.999100i \(0.513502\pi\)
\(270\) 0 0
\(271\) 17.0000 + 29.4449i 0.0627306 + 0.108653i 0.895685 0.444689i \(-0.146686\pi\)
−0.832954 + 0.553342i \(0.813352\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 28.5788 16.5000i 0.103923 0.0600000i
\(276\) 0 0
\(277\) −154.000 + 266.736i −0.555957 + 0.962945i 0.441872 + 0.897078i \(0.354315\pi\)
−0.997828 + 0.0658670i \(0.979019\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 528.000i 1.87900i −0.342544 0.939502i \(-0.611289\pi\)
0.342544 0.939502i \(-0.388711\pi\)
\(282\) 0 0
\(283\) −115.000 + 199.186i −0.406360 + 0.703837i −0.994479 0.104938i \(-0.966536\pi\)
0.588118 + 0.808775i \(0.299869\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −181.865 + 105.000i −0.633677 + 0.365854i
\(288\) 0 0
\(289\) 143.500 + 248.549i 0.496540 + 0.860032i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 291.000i 0.993174i −0.867987 0.496587i \(-0.834586\pi\)
0.867987 0.496587i \(-0.165414\pi\)
\(294\) 0 0
\(295\) −594.000 −2.01356
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −571.577 + 330.000i −1.91163 + 1.10368i
\(300\) 0 0
\(301\) −196.000 339.482i −0.651163 1.12785i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −488.438 282.000i −1.60144 0.924590i
\(306\) 0 0
\(307\) 296.000 0.964169 0.482085 0.876125i \(-0.339880\pi\)
0.482085 + 0.876125i \(0.339880\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 124.708 + 72.0000i 0.400989 + 0.231511i 0.686911 0.726742i \(-0.258966\pi\)
−0.285921 + 0.958253i \(0.592300\pi\)
\(312\) 0 0
\(313\) −253.000 438.209i −0.808307 1.40003i −0.914036 0.405633i \(-0.867051\pi\)
0.105729 0.994395i \(-0.466282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 54.5596 31.5000i 0.172112 0.0993691i −0.411469 0.911424i \(-0.634984\pi\)
0.583581 + 0.812055i \(0.301651\pi\)
\(318\) 0 0
\(319\) 49.5000 85.7365i 0.155172 0.268767i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 240.000i 0.743034i
\(324\) 0 0
\(325\) −121.000 + 209.578i −0.372308 + 0.644856i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 170.000 + 294.449i 0.513595 + 0.889573i 0.999876 + 0.0157701i \(0.00502000\pi\)
−0.486280 + 0.873803i \(0.661647\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 456.000i 1.36119i
\(336\) 0 0
\(337\) 95.0000 0.281899 0.140950 0.990017i \(-0.454984\pi\)
0.140950 + 0.990017i \(0.454984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 33.7750 19.5000i 0.0990469 0.0571848i
\(342\) 0 0
\(343\) 343.000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −194.856 112.500i −0.561544 0.324207i 0.192221 0.981352i \(-0.438431\pi\)
−0.753765 + 0.657144i \(0.771764\pi\)
\(348\) 0 0
\(349\) 608.000 1.74212 0.871060 0.491176i \(-0.163433\pi\)
0.871060 + 0.491176i \(0.163433\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −161.081 93.0000i −0.456319 0.263456i 0.254176 0.967158i \(-0.418196\pi\)
−0.710495 + 0.703702i \(0.751529\pi\)
\(354\) 0 0
\(355\) −54.0000 93.5307i −0.152113 0.263467i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 285.788 165.000i 0.796068 0.459610i −0.0460265 0.998940i \(-0.514656\pi\)
0.842094 + 0.539330i \(0.181323\pi\)
\(360\) 0 0
\(361\) 130.500 226.033i 0.361496 0.626129i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 330.000i 0.904110i
\(366\) 0 0
\(367\) −163.000 + 282.324i −0.444142 + 0.769276i −0.997992 0.0633403i \(-0.979825\pi\)
0.553850 + 0.832616i \(0.313158\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 294.000i 0.792453i
\(372\) 0 0
\(373\) 20.0000 + 34.6410i 0.0536193 + 0.0928714i 0.891589 0.452845i \(-0.149591\pi\)
−0.837970 + 0.545716i \(0.816258\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 726.000i 1.92573i
\(378\) 0 0
\(379\) 224.000 0.591029 0.295515 0.955338i \(-0.404509\pi\)
0.295515 + 0.955338i \(0.404509\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 88.3346 51.0000i 0.230639 0.133159i −0.380228 0.924893i \(-0.624154\pi\)
0.610867 + 0.791734i \(0.290821\pi\)
\(384\) 0 0
\(385\) 63.0000 + 109.119i 0.163636 + 0.283426i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 127.306 + 73.5000i 0.327264 + 0.188946i 0.654626 0.755953i \(-0.272826\pi\)
−0.327362 + 0.944899i \(0.606160\pi\)
\(390\) 0 0
\(391\) 720.000 1.84143
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 431.281 + 249.000i 1.09185 + 0.630380i
\(396\) 0 0
\(397\) 248.000 + 429.549i 0.624685 + 1.08199i 0.988602 + 0.150555i \(0.0481060\pi\)
−0.363917 + 0.931432i \(0.618561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 571.577 330.000i 1.42538 0.822943i 0.428627 0.903482i \(-0.358997\pi\)
0.996751 + 0.0805389i \(0.0256641\pi\)
\(402\) 0 0
\(403\) −143.000 + 247.683i −0.354839 + 0.614599i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30.0000i 0.0737101i
\(408\) 0 0
\(409\) −205.000 + 355.070i −0.501222 + 0.868143i 0.498777 + 0.866731i \(0.333783\pi\)
−0.999999 + 0.00141219i \(0.999550\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 693.000i 1.67797i
\(414\) 0 0
\(415\) −441.000 763.834i −1.06265 1.84056i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 330.000i 0.787589i 0.919198 + 0.393795i \(0.128838\pi\)
−0.919198 + 0.393795i \(0.871162\pi\)
\(420\) 0 0
\(421\) −232.000 −0.551069 −0.275534 0.961291i \(-0.588855\pi\)
−0.275534 + 0.961291i \(0.588855\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 228.631 132.000i 0.537955 0.310588i
\(426\) 0 0
\(427\) 329.000 569.845i 0.770492 1.33453i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −25.9808 15.0000i −0.0602802 0.0348028i 0.469557 0.882902i \(-0.344414\pi\)
−0.529837 + 0.848099i \(0.677747\pi\)
\(432\) 0 0
\(433\) −649.000 −1.49885 −0.749423 0.662092i \(-0.769669\pi\)
−0.749423 + 0.662092i \(0.769669\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 259.808 + 150.000i 0.594525 + 0.343249i
\(438\) 0 0
\(439\) −20.5000 35.5070i −0.0466970 0.0808816i 0.841732 0.539895i \(-0.181536\pi\)
−0.888429 + 0.459014i \(0.848203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 724.863 418.500i 1.63626 0.944695i 0.654155 0.756360i \(-0.273024\pi\)
0.982105 0.188335i \(-0.0603091\pi\)
\(444\) 0 0
\(445\) −396.000 + 685.892i −0.889888 + 1.54133i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 108.000i 0.240535i 0.992742 + 0.120267i \(0.0383752\pi\)
−0.992742 + 0.120267i \(0.961625\pi\)
\(450\) 0 0
\(451\) 45.0000 77.9423i 0.0997783 0.172821i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −800.207 462.000i −1.75870 1.01538i
\(456\) 0 0
\(457\) 107.000 + 185.329i 0.234136 + 0.405535i 0.959021 0.283335i \(-0.0914407\pi\)
−0.724885 + 0.688869i \(0.758107\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 363.000i 0.787419i 0.919235 + 0.393709i \(0.128808\pi\)
−0.919235 + 0.393709i \(0.871192\pi\)
\(462\) 0 0
\(463\) 491.000 1.06048 0.530238 0.847849i \(-0.322103\pi\)
0.530238 + 0.847849i \(0.322103\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 262.406 151.500i 0.561897 0.324411i −0.192010 0.981393i \(-0.561501\pi\)
0.753906 + 0.656982i \(0.228167\pi\)
\(468\) 0 0
\(469\) −532.000 −1.13433
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 145.492 + 84.0000i 0.307595 + 0.177590i
\(474\) 0 0
\(475\) 110.000 0.231579
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 41.5692 + 24.0000i 0.0867833 + 0.0501044i 0.542764 0.839885i \(-0.317378\pi\)
−0.455980 + 0.889990i \(0.650711\pi\)
\(480\) 0 0
\(481\) −110.000 190.526i −0.228690 0.396103i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 441.673 255.000i 0.910666 0.525773i
\(486\) 0 0
\(487\) 9.50000 16.4545i 0.0195072 0.0337874i −0.856107 0.516799i \(-0.827124\pi\)
0.875614 + 0.483011i \(0.160457\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 330.000i 0.672098i 0.941845 + 0.336049i \(0.109091\pi\)
−0.941845 + 0.336049i \(0.890909\pi\)
\(492\) 0 0
\(493\) 396.000 685.892i 0.803245 1.39126i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 109.119 63.0000i 0.219556 0.126761i
\(498\) 0 0
\(499\) 74.0000 + 128.172i 0.148297 + 0.256857i 0.930598 0.366043i \(-0.119288\pi\)
−0.782301 + 0.622900i \(0.785954\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 828.000i 1.64612i −0.567952 0.823062i \(-0.692264\pi\)
0.567952 0.823062i \(-0.307736\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.0356436
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 688.490 397.500i 1.35263 0.780943i 0.364015 0.931393i \(-0.381406\pi\)
0.988618 + 0.150450i \(0.0480722\pi\)
\(510\) 0 0
\(511\) −385.000 −0.753425
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 633.931 + 366.000i 1.23093 + 0.710680i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −57.1577 33.0000i −0.109708 0.0633397i 0.444142 0.895956i \(-0.353509\pi\)
−0.553850 + 0.832617i \(0.686842\pi\)
\(522\) 0 0
\(523\) −121.000 209.578i −0.231358 0.400723i 0.726850 0.686796i \(-0.240983\pi\)
−0.958208 + 0.286073i \(0.907650\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 270.200 156.000i 0.512713 0.296015i
\(528\) 0 0
\(529\) 185.500 321.295i 0.350662 0.607364i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 660.000i 1.23827i
\(534\) 0 0
\(535\) 90.0000 155.885i 0.168224 0.291373i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −127.306 + 73.5000i −0.236189 + 0.136364i
\(540\) 0 0
\(541\) 176.000 + 304.841i 0.325323 + 0.563477i 0.981578 0.191063i \(-0.0611935\pi\)
−0.656254 + 0.754540i \(0.727860\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 600.000i 1.10092i
\(546\) 0 0
\(547\) −778.000 −1.42230 −0.711152 0.703039i \(-0.751826\pi\)
−0.711152 + 0.703039i \(0.751826\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 285.788 165.000i 0.518672 0.299456i
\(552\) 0 0
\(553\) −290.500 + 503.161i −0.525316 + 0.909875i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −314.367 181.500i −0.564394 0.325853i 0.190513 0.981685i \(-0.438985\pi\)
−0.754907 + 0.655832i \(0.772318\pi\)
\(558\) 0 0
\(559\) −1232.00 −2.20394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 950.896 + 549.000i 1.68898 + 0.975133i 0.955300 + 0.295638i \(0.0955324\pi\)
0.733680 + 0.679495i \(0.237801\pi\)
\(564\) 0 0
\(565\) −234.000 405.300i −0.414159 0.717345i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 685.892 396.000i 1.20543 0.695958i 0.243676 0.969857i \(-0.421647\pi\)
0.961758 + 0.273899i \(0.0883134\pi\)
\(570\) 0 0
\(571\) 200.000 346.410i 0.350263 0.606673i −0.636033 0.771662i \(-0.719426\pi\)
0.986295 + 0.164989i \(0.0527590\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 330.000i 0.573913i
\(576\) 0 0
\(577\) 270.500 468.520i 0.468804 0.811993i −0.530560 0.847647i \(-0.678018\pi\)
0.999364 + 0.0356548i \(0.0113517\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 891.140 514.500i 1.53380 0.885542i
\(582\) 0 0
\(583\) 63.0000 + 109.119i 0.108062 + 0.187168i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1002.00i 1.70698i 0.521105 + 0.853492i \(0.325520\pi\)
−0.521105 + 0.853492i \(0.674480\pi\)
\(588\) 0 0
\(589\) 130.000 0.220713
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −244.219 + 141.000i −0.411837 + 0.237774i −0.691579 0.722301i \(-0.743084\pi\)
0.279742 + 0.960075i \(0.409751\pi\)
\(594\) 0 0
\(595\) 504.000 + 872.954i 0.847059 + 1.46715i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −452.065 261.000i −0.754700 0.435726i 0.0726897 0.997355i \(-0.476842\pi\)
−0.827390 + 0.561628i \(0.810175\pi\)
\(600\) 0 0
\(601\) 110.000 0.183028 0.0915141 0.995804i \(-0.470829\pi\)
0.0915141 + 0.995804i \(0.470829\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 581.969 + 336.000i 0.961932 + 0.555372i
\(606\) 0 0
\(607\) 492.500 + 853.035i 0.811367 + 1.40533i 0.911907 + 0.410396i \(0.134610\pi\)
−0.100540 + 0.994933i \(0.532057\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 242.000 419.156i 0.394780 0.683779i −0.598293 0.801277i \(-0.704154\pi\)
0.993073 + 0.117499i \(0.0374876\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 366.000i 0.593193i 0.955003 + 0.296596i \(0.0958516\pi\)
−0.955003 + 0.296596i \(0.904148\pi\)
\(618\) 0 0
\(619\) −181.000 + 313.501i −0.292407 + 0.506464i −0.974378 0.224915i \(-0.927790\pi\)
0.681971 + 0.731379i \(0.261123\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −800.207 462.000i −1.28444 0.741573i
\(624\) 0 0
\(625\) 389.500 + 674.634i 0.623200 + 1.07941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 240.000i 0.381558i
\(630\) 0 0
\(631\) 425.000 0.673534 0.336767 0.941588i \(-0.390667\pi\)
0.336767 + 0.941588i \(0.390667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −696.284 + 402.000i −1.09651 + 0.633071i
\(636\) 0 0
\(637\) 539.000 933.575i 0.846154 1.46558i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −940.504 543.000i −1.46724 0.847114i −0.467916 0.883773i \(-0.654995\pi\)
−0.999328 + 0.0366588i \(0.988329\pi\)
\(642\) 0 0
\(643\) 302.000 0.469673 0.234837 0.972035i \(-0.424544\pi\)
0.234837 + 0.972035i \(0.424544\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.19615 + 3.00000i 0.00803115 + 0.00463679i 0.504010 0.863698i \(-0.331857\pi\)
−0.495979 + 0.868334i \(0.665191\pi\)
\(648\) 0 0
\(649\) 148.500 + 257.210i 0.228814 + 0.396317i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 400.104 231.000i 0.612716 0.353752i −0.161311 0.986904i \(-0.551572\pi\)
0.774028 + 0.633152i \(0.218239\pi\)
\(654\) 0 0
\(655\) −333.000 + 576.773i −0.508397 + 0.880569i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 645.000i 0.978756i −0.872072 0.489378i \(-0.837224\pi\)
0.872072 0.489378i \(-0.162776\pi\)
\(660\) 0 0
\(661\) 128.000 221.703i 0.193646 0.335405i −0.752810 0.658238i \(-0.771302\pi\)
0.946456 + 0.322833i \(0.104635\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 420.000i 0.631579i
\(666\) 0 0
\(667\) −495.000 857.365i −0.742129 1.28541i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 282.000i 0.420268i
\(672\) 0 0
\(673\) 1010.00 1.50074 0.750371 0.661016i \(-0.229875\pi\)
0.750371 + 0.661016i \(0.229875\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −833.982 + 481.500i −1.23188 + 0.711226i −0.967421 0.253171i \(-0.918526\pi\)
−0.264458 + 0.964397i \(0.585193\pi\)
\(678\) 0 0
\(679\) 297.500 + 515.285i 0.438144 + 0.758888i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 885.944 + 511.500i 1.29714 + 0.748902i 0.979909 0.199448i \(-0.0639147\pi\)
0.317228 + 0.948349i \(0.397248\pi\)
\(684\) 0 0
\(685\) −1044.00 −1.52409
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −800.207 462.000i −1.16140 0.670537i
\(690\) 0 0
\(691\) −73.0000 126.440i −0.105644 0.182981i 0.808357 0.588692i \(-0.200357\pi\)
−0.914001 + 0.405712i \(0.867024\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 862.561 498.000i 1.24110 0.716547i
\(696\) 0 0
\(697\) 360.000 623.538i 0.516499 0.894603i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 162.000i 0.231098i −0.993302 0.115549i \(-0.963137\pi\)
0.993302 0.115549i \(-0.0368628\pi\)
\(702\) 0 0
\(703\) −50.0000 + 86.6025i −0.0711238 + 0.123190i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.0000i 0.0297030i
\(708\) 0 0
\(709\) −196.000 339.482i −0.276446 0.478818i 0.694053 0.719924i \(-0.255823\pi\)
−0.970499 + 0.241106i \(0.922490\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 390.000i 0.546985i
\(714\) 0 0
\(715\) 396.000 0.553846
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 98.7269 57.0000i 0.137311 0.0792768i −0.429771 0.902938i \(-0.641406\pi\)
0.567082 + 0.823661i \(0.308072\pi\)
\(720\) 0 0
\(721\) −427.000 + 739.586i −0.592233 + 1.02578i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −314.367 181.500i −0.433610 0.250345i
\(726\) 0 0
\(727\) −430.000 −0.591472 −0.295736 0.955270i \(-0.595565\pi\)
−0.295736 + 0.955270i \(0.595565\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1163.94 + 672.000i 1.59225 + 0.919289i
\(732\) 0 0
\(733\) 578.000 + 1001.13i 0.788540 + 1.36579i 0.926861 + 0.375404i \(0.122496\pi\)
−0.138321 + 0.990387i \(0.544171\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 197.454 114.000i 0.267916 0.154681i
\(738\) 0 0
\(739\) 473.000 819.260i 0.640054 1.10861i −0.345366 0.938468i \(-0.612245\pi\)
0.985420 0.170138i \(-0.0544214\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1452.00i 1.95424i −0.212690 0.977120i \(-0.568222\pi\)
0.212690 0.977120i \(-0.431778\pi\)
\(744\) 0 0
\(745\) −495.000 + 857.365i −0.664430 + 1.15083i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 181.865 + 105.000i 0.242811 + 0.140187i
\(750\) 0 0
\(751\) 281.000 + 486.706i 0.374168 + 0.648078i 0.990202 0.139642i \(-0.0445951\pi\)
−0.616034 + 0.787719i \(0.711262\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 186.000i 0.246358i
\(756\) 0 0
\(757\) −970.000 −1.28137 −0.640687 0.767802i \(-0.721350\pi\)
−0.640687 + 0.767802i \(0.721350\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −659.911 + 381.000i −0.867163 + 0.500657i −0.866405 0.499343i \(-0.833575\pi\)
−0.000758839 1.00000i \(0.500242\pi\)
\(762\) 0 0
\(763\) −700.000 −0.917431
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1886.20 1089.00i −2.45920 1.41982i
\(768\) 0 0
\(769\) 887.000 1.15345 0.576723 0.816940i \(-0.304331\pi\)
0.576723 + 0.816940i \(0.304331\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 67.5500 + 39.0000i 0.0873868 + 0.0504528i 0.543057 0.839696i \(-0.317267\pi\)
−0.455670 + 0.890149i \(0.650600\pi\)
\(774\) 0 0
\(775\) −71.5000 123.842i −0.0922581 0.159796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 259.808 150.000i 0.333514 0.192555i
\(780\) 0 0
\(781\) −27.0000 + 46.7654i −0.0345711 + 0.0598788i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 708.000i 0.901911i
\(786\) 0 0
\(787\) 320.000 554.256i 0.406607 0.704265i −0.587900 0.808934i \(-0.700045\pi\)
0.994507 + 0.104669i \(0.0333784\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 472.850 273.000i 0.597787 0.345133i
\(792\) 0 0
\(793\) −1034.00 1790.94i −1.30391 2.25844i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 915.000i 1.14806i 0.818836 + 0.574028i \(0.194620\pi\)
−0.818836 + 0.574028i \(0.805380\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 142.894 82.5000i 0.177950 0.102740i
\(804\) 0 0
\(805\) 1260.00 1.56522
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −275.396 159.000i −0.340415 0.196539i 0.320040 0.947404i \(-0.396304\pi\)
−0.660456 + 0.750865i \(0.729637\pi\)
\(810\) 0 0
\(811\) −1078.00 −1.32922 −0.664612 0.747189i \(-0.731403\pi\)
−0.664612 + 0.747189i \(0.731403\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −457.261 264.000i −0.561057 0.323926i
\(816\) 0 0
\(817\) 280.000 + 484.974i 0.342717 + 0.593604i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1332.81 + 769.500i −1.62340 + 0.937272i −0.637401 + 0.770532i \(0.719991\pi\)
−0.986001 + 0.166739i \(0.946676\pi\)
\(822\) 0 0
\(823\) −188.500 + 326.492i −0.229040 + 0.396709i −0.957524 0.288354i \(-0.906892\pi\)
0.728484 + 0.685063i \(0.240225\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 297.000i 0.359129i 0.983746 + 0.179565i \(0.0574689\pi\)
−0.983746 + 0.179565i \(0.942531\pi\)
\(828\) 0 0
\(829\) −22.0000 + 38.1051i −0.0265380 + 0.0459652i −0.878989 0.476841i \(-0.841782\pi\)
0.852451 + 0.522806i \(0.175115\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1018.45 + 588.000i −1.22262 + 0.705882i
\(834\) 0 0
\(835\) −774.000 1340.61i −0.926946 1.60552i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 978.000i 1.16567i −0.812589 0.582837i \(-0.801943\pi\)
0.812589 0.582837i \(-0.198057\pi\)
\(840\) 0 0
\(841\) −248.000 −0.294887
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1636.79 + 945.000i −1.93703 + 1.11834i
\(846\) 0 0
\(847\) −392.000 + 678.964i −0.462810 + 0.801610i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 259.808 + 150.000i 0.305297 + 0.176263i
\(852\) 0 0
\(853\) −160.000 −0.187573 −0.0937866 0.995592i \(-0.529897\pi\)
−0.0937866 + 0.995592i \(0.529897\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1018.45 588.000i −1.18838 0.686114i −0.230446 0.973085i \(-0.574018\pi\)
−0.957939 + 0.286971i \(0.907352\pi\)
\(858\) 0 0
\(859\) −598.000 1035.77i −0.696158 1.20578i −0.969789 0.243947i \(-0.921558\pi\)
0.273630 0.961835i \(-0.411776\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1070.41 + 618.000i −1.24033 + 0.716107i −0.969162 0.246425i \(-0.920744\pi\)
−0.271171 + 0.962531i \(0.587411\pi\)
\(864\) 0 0
\(865\) 783.000 1356.20i 0.905202 1.56786i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 249.000i 0.286536i
\(870\) 0 0
\(871\) −836.000 + 1447.99i −0.959816 + 1.66245i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −509.223 + 294.000i −0.581969 + 0.336000i
\(876\) 0 0
\(877\) −49.0000 84.8705i −0.0558723 0.0967736i 0.836736 0.547606i \(-0.184461\pi\)
−0.892609 + 0.450832i \(0.851127\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1170.00i 1.32804i 0.747716 + 0.664018i \(0.231150\pi\)
−0.747716 + 0.664018i \(0.768850\pi\)
\(882\) 0 0
\(883\) 242.000 0.274066 0.137033 0.990567i \(-0.456243\pi\)
0.137033 + 0.990567i \(0.456243\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −488.438 + 282.000i −0.550663 + 0.317926i −0.749389 0.662129i \(-0.769653\pi\)
0.198726 + 0.980055i \(0.436320\pi\)
\(888\) 0 0
\(889\) −469.000 812.332i −0.527559 0.913759i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1530.00 1.70950
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −371.525 214.500i −0.413265 0.238598i
\(900\) 0 0
\(901\) 504.000 + 872.954i 0.559378 + 0.968872i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −228.631 + 132.000i −0.252631 + 0.145856i
\(906\) 0 0
\(907\) −244.000 + 422.620i −0.269019 + 0.465954i −0.968609 0.248590i \(-0.920033\pi\)
0.699590 + 0.714545i \(0.253366\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 462.000i 0.507135i 0.967318 + 0.253568i \(0.0816040\pi\)
−0.967318 + 0.253568i \(0.918396\pi\)
\(912\) 0 0
\(913\) −220.500 + 381.917i −0.241512 + 0.418310i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −672.902 388.500i −0.733808 0.423664i
\(918\) 0 0
\(919\) 783.500 + 1357.06i 0.852557 + 1.47667i 0.878893 + 0.477019i \(0.158283\pi\)
−0.0263358 + 0.999653i \(0.508384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 396.000i 0.429036i
\(924\) 0 0
\(925\) 110.000 0.118919
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 701.481 405.000i 0.755092 0.435953i −0.0724387 0.997373i \(-0.523078\pi\)
0.827531 + 0.561420i \(0.189745\pi\)
\(930\) 0 0
\(931\) −490.000 −0.526316
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −374.123 216.000i −0.400132 0.231016i
\(936\) 0 0
\(937\) −1630.00 −1.73959 −0.869797 0.493409i \(-0.835750\pi\)
−0.869797 + 0.493409i \(0.835750\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −335.152 193.500i −0.356166 0.205632i 0.311232 0.950334i \(-0.399258\pi\)
−0.667397 + 0.744702i \(0.732592\pi\)
\(942\) 0 0
\(943\) −450.000 779.423i −0.477200 0.826535i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −724.863 + 418.500i −0.765431 + 0.441922i −0.831242 0.555910i \(-0.812370\pi\)
0.0658112 + 0.997832i \(0.479036\pi\)
\(948\) 0 0
\(949\) −605.000 + 1047.89i −0.637513 + 1.10421i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1242.00i 1.30325i 0.758540 + 0.651626i \(0.225913\pi\)
−0.758540 + 0.651626i \(0.774087\pi\)
\(954\) 0 0
\(955\) 540.000 935.307i 0.565445 0.979380i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1218.00i 1.27007i
\(960\) 0 0
\(961\) 396.000 + 685.892i 0.412071 + 0.713727i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1218.00i 1.26218i
\(966\) 0 0
\(967\) 122.000 0.126163 0.0630817 0.998008i \(-0.479907\pi\)
0.0630817 + 0.998008i \(0.479907\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1408.16 813.000i 1.45021 0.837281i 0.451720 0.892160i \(-0.350810\pi\)
0.998493 + 0.0548784i \(0.0174771\pi\)
\(972\) 0 0
\(973\) 581.000 + 1006.32i 0.597122 + 1.03425i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 919.719 + 531.000i 0.941371 + 0.543501i 0.890390 0.455199i \(-0.150432\pi\)
0.0509808 + 0.998700i \(0.483765\pi\)
\(978\) 0 0
\(979\) 396.000 0.404494
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −129.904 75.0000i −0.132150 0.0762970i 0.432467 0.901650i \(-0.357643\pi\)
−0.564618 + 0.825353i \(0.690976\pi\)
\(984\) 0 0
\(985\) −243.000 420.888i −0.246701 0.427298i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1454.92 840.000i 1.47110 0.849343i
\(990\) 0 0
\(991\) 869.000 1505.15i 0.876892 1.51882i 0.0221585 0.999754i \(-0.492946\pi\)
0.854734 0.519067i \(-0.173721\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 258.000i 0.259296i
\(996\) 0 0
\(997\) 944.000 1635.06i 0.946841 1.63998i 0.194817 0.980840i \(-0.437589\pi\)
0.752024 0.659136i \(-0.229078\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.e.53.1 4
3.2 odd 2 inner 756.3.bk.e.53.2 yes 4
7.2 even 3 inner 756.3.bk.e.485.2 yes 4
21.2 odd 6 inner 756.3.bk.e.485.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.e.53.1 4 1.1 even 1 trivial
756.3.bk.e.53.2 yes 4 3.2 odd 2 inner
756.3.bk.e.485.1 yes 4 21.2 odd 6 inner
756.3.bk.e.485.2 yes 4 7.2 even 3 inner