L(s) = 1 | + (−5.19 + 3i)5-s + (−3.5 − 6.06i)7-s + (2.59 + 1.5i)11-s − 22·13-s + (20.7 + 12i)17-s + (5 + 8.66i)19-s + (25.9 − 15i)23-s + (5.5 − 9.52i)25-s − 33i·29-s + (6.5 − 11.2i)31-s + (36.3 + 21i)35-s + (5 + 8.66i)37-s − 30i·41-s + 56·43-s + (−24.5 + 42.4i)49-s + ⋯ |
L(s) = 1 | + (−1.03 + 0.600i)5-s + (−0.5 − 0.866i)7-s + (0.236 + 0.136i)11-s − 1.69·13-s + (1.22 + 0.705i)17-s + (0.263 + 0.455i)19-s + (1.12 − 0.652i)23-s + (0.220 − 0.381i)25-s − 1.13i·29-s + (0.209 − 0.363i)31-s + (1.03 + 0.599i)35-s + (0.135 + 0.234i)37-s − 0.731i·41-s + 1.30·43-s + (−0.499 + 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.197292244\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.197292244\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (3.5 + 6.06i)T \) |
good | 5 | \( 1 + (5.19 - 3i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-2.59 - 1.5i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + 22T + 169T^{2} \) |
| 17 | \( 1 + (-20.7 - 12i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-5 - 8.66i)T + (-180.5 + 312. i)T^{2} \) |
| 23 | \( 1 + (-25.9 + 15i)T + (264.5 - 458. i)T^{2} \) |
| 29 | \( 1 + 33iT - 841T^{2} \) |
| 31 | \( 1 + (-6.5 + 11.2i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-5 - 8.66i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 + 30iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 56T + 1.84e3T^{2} \) |
| 47 | \( 1 + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-36.3 - 21i)T + (1.40e3 + 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-85.7 - 49.5i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-47 - 81.4i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-38 + 65.8i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 18iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (-27.5 + 47.6i)T + (-2.66e3 - 4.61e3i)T^{2} \) |
| 79 | \( 1 + (41.5 + 71.8i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 - 147iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-114. + 66i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 85T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16469635456216194151185057552, −9.512722188135337652529525090064, −8.159109823589827077306920948054, −7.39830054545161679094720566936, −6.99259339785824013411827380047, −5.72634794472314688338524472360, −4.42976791877445013147520523224, −3.67663304632969522971428345637, −2.63200278302785379151226611067, −0.68061876501599533113599740219,
0.74433770896121186224523746675, 2.61541663069903229026800161708, 3.54978316396034327039593527801, 4.91735512113083438358805941135, 5.38283168839889902671806442852, 6.88523595533162597172261581702, 7.53154011161439237999885817397, 8.472827589754962314484725509335, 9.336074561743640795192177918988, 9.883899373472441773791273732821