Properties

Label 756.3.bk.e.53.2
Level $756$
Weight $3$
Character 756.53
Analytic conductor $20.600$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,3,Mod(53,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 756.bk (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-14,0,0,0,0,0,-88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.5995079856\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 756.53
Dual form 756.3.bk.e.485.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.19615 - 3.00000i) q^{5} +(-3.50000 - 6.06218i) q^{7} +(-2.59808 - 1.50000i) q^{11} -22.0000 q^{13} +(-20.7846 - 12.0000i) q^{17} +(5.00000 + 8.66025i) q^{19} +(-25.9808 + 15.0000i) q^{23} +(5.50000 - 9.52628i) q^{25} +33.0000i q^{29} +(6.50000 - 11.2583i) q^{31} +(-36.3731 - 21.0000i) q^{35} +(5.00000 + 8.66025i) q^{37} +30.0000i q^{41} +56.0000 q^{43} +(-24.5000 + 42.4352i) q^{49} +(-36.3731 - 21.0000i) q^{53} -18.0000 q^{55} +(-85.7365 - 49.5000i) q^{59} +(47.0000 + 81.4064i) q^{61} +(-114.315 + 66.0000i) q^{65} +(38.0000 - 65.8179i) q^{67} -18.0000i q^{71} +(27.5000 - 47.6314i) q^{73} +21.0000i q^{77} +(-41.5000 - 71.8801i) q^{79} -147.000i q^{83} -144.000 q^{85} +(-114.315 + 66.0000i) q^{89} +(77.0000 + 133.368i) q^{91} +(51.9615 + 30.0000i) q^{95} -85.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{7} - 88 q^{13} + 20 q^{19} + 22 q^{25} + 26 q^{31} + 20 q^{37} + 224 q^{43} - 98 q^{49} - 72 q^{55} + 188 q^{61} + 152 q^{67} + 110 q^{73} - 166 q^{79} - 576 q^{85} + 308 q^{91} - 340 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.19615 3.00000i 1.03923 0.600000i 0.119615 0.992820i \(-0.461834\pi\)
0.919615 + 0.392820i \(0.128501\pi\)
\(6\) 0 0
\(7\) −3.50000 6.06218i −0.500000 0.866025i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.59808 1.50000i −0.236189 0.136364i 0.377235 0.926118i \(-0.376875\pi\)
−0.613424 + 0.789754i \(0.710208\pi\)
\(12\) 0 0
\(13\) −22.0000 −1.69231 −0.846154 0.532939i \(-0.821088\pi\)
−0.846154 + 0.532939i \(0.821088\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −20.7846 12.0000i −1.22262 0.705882i −0.257148 0.966372i \(-0.582783\pi\)
−0.965477 + 0.260490i \(0.916116\pi\)
\(18\) 0 0
\(19\) 5.00000 + 8.66025i 0.263158 + 0.455803i 0.967079 0.254475i \(-0.0819026\pi\)
−0.703921 + 0.710278i \(0.748569\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −25.9808 + 15.0000i −1.12960 + 0.652174i −0.943834 0.330420i \(-0.892809\pi\)
−0.185764 + 0.982594i \(0.559476\pi\)
\(24\) 0 0
\(25\) 5.50000 9.52628i 0.220000 0.381051i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 33.0000i 1.13793i 0.822361 + 0.568966i \(0.192656\pi\)
−0.822361 + 0.568966i \(0.807344\pi\)
\(30\) 0 0
\(31\) 6.50000 11.2583i 0.209677 0.363172i −0.741935 0.670471i \(-0.766092\pi\)
0.951613 + 0.307299i \(0.0994253\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −36.3731 21.0000i −1.03923 0.600000i
\(36\) 0 0
\(37\) 5.00000 + 8.66025i 0.135135 + 0.234061i 0.925649 0.378383i \(-0.123520\pi\)
−0.790514 + 0.612444i \(0.790186\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 30.0000i 0.731707i 0.930672 + 0.365854i \(0.119223\pi\)
−0.930672 + 0.365854i \(0.880777\pi\)
\(42\) 0 0
\(43\) 56.0000 1.30233 0.651163 0.758938i \(-0.274282\pi\)
0.651163 + 0.758938i \(0.274282\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) −24.5000 + 42.4352i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −36.3731 21.0000i −0.686284 0.396226i 0.115934 0.993257i \(-0.463014\pi\)
−0.802219 + 0.597030i \(0.796347\pi\)
\(54\) 0 0
\(55\) −18.0000 −0.327273
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −85.7365 49.5000i −1.45316 0.838983i −0.454502 0.890746i \(-0.650183\pi\)
−0.998659 + 0.0517627i \(0.983516\pi\)
\(60\) 0 0
\(61\) 47.0000 + 81.4064i 0.770492 + 1.33453i 0.937294 + 0.348541i \(0.113323\pi\)
−0.166802 + 0.985990i \(0.553344\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −114.315 + 66.0000i −1.75870 + 1.01538i
\(66\) 0 0
\(67\) 38.0000 65.8179i 0.567164 0.982357i −0.429681 0.902981i \(-0.641374\pi\)
0.996845 0.0793762i \(-0.0252928\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 18.0000i 0.253521i −0.991933 0.126761i \(-0.959542\pi\)
0.991933 0.126761i \(-0.0404580\pi\)
\(72\) 0 0
\(73\) 27.5000 47.6314i 0.376712 0.652485i −0.613869 0.789408i \(-0.710388\pi\)
0.990582 + 0.136923i \(0.0437212\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 21.0000i 0.272727i
\(78\) 0 0
\(79\) −41.5000 71.8801i −0.525316 0.909875i −0.999565 0.0294839i \(-0.990614\pi\)
0.474249 0.880391i \(-0.342720\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 147.000i 1.77108i −0.464559 0.885542i \(-0.653787\pi\)
0.464559 0.885542i \(-0.346213\pi\)
\(84\) 0 0
\(85\) −144.000 −1.69412
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −114.315 + 66.0000i −1.28444 + 0.741573i −0.977657 0.210206i \(-0.932587\pi\)
−0.306785 + 0.951779i \(0.599253\pi\)
\(90\) 0 0
\(91\) 77.0000 + 133.368i 0.846154 + 1.46558i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 51.9615 + 30.0000i 0.546963 + 0.315789i
\(96\) 0 0
\(97\) −85.0000 −0.876289 −0.438144 0.898905i \(-0.644364\pi\)
−0.438144 + 0.898905i \(0.644364\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.59808 1.50000i −0.0257235 0.0148515i 0.487083 0.873356i \(-0.338061\pi\)
−0.512807 + 0.858504i \(0.671394\pi\)
\(102\) 0 0
\(103\) −61.0000 105.655i −0.592233 1.02578i −0.993931 0.110005i \(-0.964913\pi\)
0.401698 0.915772i \(-0.368420\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 25.9808 15.0000i 0.242811 0.140187i −0.373657 0.927567i \(-0.621896\pi\)
0.616468 + 0.787380i \(0.288563\pi\)
\(108\) 0 0
\(109\) 50.0000 86.6025i 0.458716 0.794519i −0.540178 0.841551i \(-0.681643\pi\)
0.998893 + 0.0470322i \(0.0149763\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 78.0000i 0.690265i −0.938554 0.345133i \(-0.887834\pi\)
0.938554 0.345133i \(-0.112166\pi\)
\(114\) 0 0
\(115\) −90.0000 + 155.885i −0.782609 + 1.35552i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 168.000i 1.41176i
\(120\) 0 0
\(121\) −56.0000 96.9948i −0.462810 0.801610i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 84.0000i 0.672000i
\(126\) 0 0
\(127\) 134.000 1.05512 0.527559 0.849518i \(-0.323107\pi\)
0.527559 + 0.849518i \(0.323107\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −96.1288 + 55.5000i −0.733808 + 0.423664i −0.819814 0.572631i \(-0.805923\pi\)
0.0860058 + 0.996295i \(0.472590\pi\)
\(132\) 0 0
\(133\) 35.0000 60.6218i 0.263158 0.455803i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −150.688 87.0000i −1.09992 0.635036i −0.163717 0.986507i \(-0.552348\pi\)
−0.936199 + 0.351471i \(0.885682\pi\)
\(138\) 0 0
\(139\) −166.000 −1.19424 −0.597122 0.802150i \(-0.703689\pi\)
−0.597122 + 0.802150i \(0.703689\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 57.1577 + 33.0000i 0.399704 + 0.230769i
\(144\) 0 0
\(145\) 99.0000 + 171.473i 0.682759 + 1.18257i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −142.894 + 82.5000i −0.959021 + 0.553691i −0.895872 0.444313i \(-0.853448\pi\)
−0.0631497 + 0.998004i \(0.520115\pi\)
\(150\) 0 0
\(151\) 15.5000 26.8468i 0.102649 0.177793i −0.810126 0.586255i \(-0.800601\pi\)
0.912775 + 0.408462i \(0.133935\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 78.0000i 0.503226i
\(156\) 0 0
\(157\) 59.0000 102.191i 0.375796 0.650898i −0.614650 0.788800i \(-0.710703\pi\)
0.990446 + 0.137902i \(0.0440359\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 181.865 + 105.000i 1.12960 + 0.652174i
\(162\) 0 0
\(163\) 44.0000 + 76.2102i 0.269939 + 0.467547i 0.968846 0.247665i \(-0.0796632\pi\)
−0.698907 + 0.715212i \(0.746330\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 258.000i 1.54491i −0.635069 0.772455i \(-0.719029\pi\)
0.635069 0.772455i \(-0.280971\pi\)
\(168\) 0 0
\(169\) 315.000 1.86391
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 226.033 130.500i 1.30655 0.754335i 0.325029 0.945704i \(-0.394626\pi\)
0.981518 + 0.191369i \(0.0612927\pi\)
\(174\) 0 0
\(175\) −77.0000 −0.440000
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 220.836 + 127.500i 1.23372 + 0.712291i 0.967804 0.251705i \(-0.0809912\pi\)
0.265919 + 0.963995i \(0.414325\pi\)
\(180\) 0 0
\(181\) 44.0000 0.243094 0.121547 0.992586i \(-0.461214\pi\)
0.121547 + 0.992586i \(0.461214\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 51.9615 + 30.0000i 0.280873 + 0.162162i
\(186\) 0 0
\(187\) 36.0000 + 62.3538i 0.192513 + 0.333443i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 155.885 90.0000i 0.816150 0.471204i −0.0329373 0.999457i \(-0.510486\pi\)
0.849087 + 0.528253i \(0.177153\pi\)
\(192\) 0 0
\(193\) −101.500 + 175.803i −0.525907 + 0.910897i 0.473638 + 0.880720i \(0.342941\pi\)
−0.999545 + 0.0301775i \(0.990393\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 81.0000i 0.411168i −0.978640 0.205584i \(-0.934091\pi\)
0.978640 0.205584i \(-0.0659093\pi\)
\(198\) 0 0
\(199\) 21.5000 37.2391i 0.108040 0.187131i −0.806936 0.590639i \(-0.798876\pi\)
0.914976 + 0.403508i \(0.132209\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 200.052 115.500i 0.985477 0.568966i
\(204\) 0 0
\(205\) 90.0000 + 155.885i 0.439024 + 0.760413i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 30.0000i 0.143541i
\(210\) 0 0
\(211\) −316.000 −1.49763 −0.748815 0.662779i \(-0.769377\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 290.985 168.000i 1.35342 0.781395i
\(216\) 0 0
\(217\) −91.0000 −0.419355
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 457.261 + 264.000i 2.06906 + 1.19457i
\(222\) 0 0
\(223\) 275.000 1.23318 0.616592 0.787283i \(-0.288513\pi\)
0.616592 + 0.787283i \(0.288513\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.1865 10.5000i −0.0801169 0.0462555i 0.459406 0.888226i \(-0.348062\pi\)
−0.539523 + 0.841971i \(0.681396\pi\)
\(228\) 0 0
\(229\) −124.000 214.774i −0.541485 0.937879i −0.998819 0.0485842i \(-0.984529\pi\)
0.457334 0.889295i \(-0.348804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −394.908 + 228.000i −1.69488 + 0.978541i −0.744415 + 0.667718i \(0.767271\pi\)
−0.950468 + 0.310823i \(0.899395\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.0000i 0.100418i −0.998739 0.0502092i \(-0.984011\pi\)
0.998739 0.0502092i \(-0.0159888\pi\)
\(240\) 0 0
\(241\) 168.500 291.851i 0.699170 1.21100i −0.269584 0.962977i \(-0.586886\pi\)
0.968755 0.248021i \(-0.0797803\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 294.000i 1.20000i
\(246\) 0 0
\(247\) −110.000 190.526i −0.445344 0.771359i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 405.000i 1.61355i −0.590862 0.806773i \(-0.701212\pi\)
0.590862 0.806773i \(-0.298788\pi\)
\(252\) 0 0
\(253\) 90.0000 0.355731
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 176.669 102.000i 0.687429 0.396887i −0.115219 0.993340i \(-0.536757\pi\)
0.802648 + 0.596453i \(0.203424\pi\)
\(258\) 0 0
\(259\) 35.0000 60.6218i 0.135135 0.234061i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 114.315 + 66.0000i 0.434659 + 0.250951i 0.701330 0.712837i \(-0.252590\pi\)
−0.266670 + 0.963788i \(0.585924\pi\)
\(264\) 0 0
\(265\) −252.000 −0.950943
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −215.640 124.500i −0.801637 0.462825i 0.0424063 0.999100i \(-0.486498\pi\)
−0.844043 + 0.536275i \(0.819831\pi\)
\(270\) 0 0
\(271\) 17.0000 + 29.4449i 0.0627306 + 0.108653i 0.895685 0.444689i \(-0.146686\pi\)
−0.832954 + 0.553342i \(0.813352\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −28.5788 + 16.5000i −0.103923 + 0.0600000i
\(276\) 0 0
\(277\) −154.000 + 266.736i −0.555957 + 0.962945i 0.441872 + 0.897078i \(0.354315\pi\)
−0.997828 + 0.0658670i \(0.979019\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 528.000i 1.87900i 0.342544 + 0.939502i \(0.388711\pi\)
−0.342544 + 0.939502i \(0.611289\pi\)
\(282\) 0 0
\(283\) −115.000 + 199.186i −0.406360 + 0.703837i −0.994479 0.104938i \(-0.966536\pi\)
0.588118 + 0.808775i \(0.299869\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 181.865 105.000i 0.633677 0.365854i
\(288\) 0 0
\(289\) 143.500 + 248.549i 0.496540 + 0.860032i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 291.000i 0.993174i 0.867987 + 0.496587i \(0.165414\pi\)
−0.867987 + 0.496587i \(0.834586\pi\)
\(294\) 0 0
\(295\) −594.000 −2.01356
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 571.577 330.000i 1.91163 1.10368i
\(300\) 0 0
\(301\) −196.000 339.482i −0.651163 1.12785i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 488.438 + 282.000i 1.60144 + 0.924590i
\(306\) 0 0
\(307\) 296.000 0.964169 0.482085 0.876125i \(-0.339880\pi\)
0.482085 + 0.876125i \(0.339880\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −124.708 72.0000i −0.400989 0.231511i 0.285921 0.958253i \(-0.407700\pi\)
−0.686911 + 0.726742i \(0.741034\pi\)
\(312\) 0 0
\(313\) −253.000 438.209i −0.808307 1.40003i −0.914036 0.405633i \(-0.867051\pi\)
0.105729 0.994395i \(-0.466282\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −54.5596 + 31.5000i −0.172112 + 0.0993691i −0.583581 0.812055i \(-0.698349\pi\)
0.411469 + 0.911424i \(0.365016\pi\)
\(318\) 0 0
\(319\) 49.5000 85.7365i 0.155172 0.268767i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 240.000i 0.743034i
\(324\) 0 0
\(325\) −121.000 + 209.578i −0.372308 + 0.644856i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 170.000 + 294.449i 0.513595 + 0.889573i 0.999876 + 0.0157701i \(0.00502000\pi\)
−0.486280 + 0.873803i \(0.661647\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 456.000i 1.36119i
\(336\) 0 0
\(337\) 95.0000 0.281899 0.140950 0.990017i \(-0.454984\pi\)
0.140950 + 0.990017i \(0.454984\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −33.7750 + 19.5000i −0.0990469 + 0.0571848i
\(342\) 0 0
\(343\) 343.000 1.00000
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 194.856 + 112.500i 0.561544 + 0.324207i 0.753765 0.657144i \(-0.228236\pi\)
−0.192221 + 0.981352i \(0.561569\pi\)
\(348\) 0 0
\(349\) 608.000 1.74212 0.871060 0.491176i \(-0.163433\pi\)
0.871060 + 0.491176i \(0.163433\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 161.081 + 93.0000i 0.456319 + 0.263456i 0.710495 0.703702i \(-0.248471\pi\)
−0.254176 + 0.967158i \(0.581804\pi\)
\(354\) 0 0
\(355\) −54.0000 93.5307i −0.152113 0.263467i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −285.788 + 165.000i −0.796068 + 0.459610i −0.842094 0.539330i \(-0.818677\pi\)
0.0460265 + 0.998940i \(0.485344\pi\)
\(360\) 0 0
\(361\) 130.500 226.033i 0.361496 0.626129i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 330.000i 0.904110i
\(366\) 0 0
\(367\) −163.000 + 282.324i −0.444142 + 0.769276i −0.997992 0.0633403i \(-0.979825\pi\)
0.553850 + 0.832616i \(0.313158\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 294.000i 0.792453i
\(372\) 0 0
\(373\) 20.0000 + 34.6410i 0.0536193 + 0.0928714i 0.891589 0.452845i \(-0.149591\pi\)
−0.837970 + 0.545716i \(0.816258\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 726.000i 1.92573i
\(378\) 0 0
\(379\) 224.000 0.591029 0.295515 0.955338i \(-0.404509\pi\)
0.295515 + 0.955338i \(0.404509\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −88.3346 + 51.0000i −0.230639 + 0.133159i −0.610867 0.791734i \(-0.709179\pi\)
0.380228 + 0.924893i \(0.375846\pi\)
\(384\) 0 0
\(385\) 63.0000 + 109.119i 0.163636 + 0.283426i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −127.306 73.5000i −0.327264 0.188946i 0.327362 0.944899i \(-0.393840\pi\)
−0.654626 + 0.755953i \(0.727174\pi\)
\(390\) 0 0
\(391\) 720.000 1.84143
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −431.281 249.000i −1.09185 0.630380i
\(396\) 0 0
\(397\) 248.000 + 429.549i 0.624685 + 1.08199i 0.988602 + 0.150555i \(0.0481060\pi\)
−0.363917 + 0.931432i \(0.618561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −571.577 + 330.000i −1.42538 + 0.822943i −0.996751 0.0805389i \(-0.974336\pi\)
−0.428627 + 0.903482i \(0.641003\pi\)
\(402\) 0 0
\(403\) −143.000 + 247.683i −0.354839 + 0.614599i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30.0000i 0.0737101i
\(408\) 0 0
\(409\) −205.000 + 355.070i −0.501222 + 0.868143i 0.498777 + 0.866731i \(0.333783\pi\)
−0.999999 + 0.00141219i \(0.999550\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 693.000i 1.67797i
\(414\) 0 0
\(415\) −441.000 763.834i −1.06265 1.84056i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 330.000i 0.787589i −0.919198 0.393795i \(-0.871162\pi\)
0.919198 0.393795i \(-0.128838\pi\)
\(420\) 0 0
\(421\) −232.000 −0.551069 −0.275534 0.961291i \(-0.588855\pi\)
−0.275534 + 0.961291i \(0.588855\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −228.631 + 132.000i −0.537955 + 0.310588i
\(426\) 0 0
\(427\) 329.000 569.845i 0.770492 1.33453i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.9808 + 15.0000i 0.0602802 + 0.0348028i 0.529837 0.848099i \(-0.322253\pi\)
−0.469557 + 0.882902i \(0.655586\pi\)
\(432\) 0 0
\(433\) −649.000 −1.49885 −0.749423 0.662092i \(-0.769669\pi\)
−0.749423 + 0.662092i \(0.769669\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −259.808 150.000i −0.594525 0.343249i
\(438\) 0 0
\(439\) −20.5000 35.5070i −0.0466970 0.0808816i 0.841732 0.539895i \(-0.181536\pi\)
−0.888429 + 0.459014i \(0.848203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −724.863 + 418.500i −1.63626 + 0.944695i −0.654155 + 0.756360i \(0.726976\pi\)
−0.982105 + 0.188335i \(0.939691\pi\)
\(444\) 0 0
\(445\) −396.000 + 685.892i −0.889888 + 1.54133i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 108.000i 0.240535i −0.992742 0.120267i \(-0.961625\pi\)
0.992742 0.120267i \(-0.0383752\pi\)
\(450\) 0 0
\(451\) 45.0000 77.9423i 0.0997783 0.172821i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 800.207 + 462.000i 1.75870 + 1.01538i
\(456\) 0 0
\(457\) 107.000 + 185.329i 0.234136 + 0.405535i 0.959021 0.283335i \(-0.0914407\pi\)
−0.724885 + 0.688869i \(0.758107\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 363.000i 0.787419i −0.919235 0.393709i \(-0.871192\pi\)
0.919235 0.393709i \(-0.128808\pi\)
\(462\) 0 0
\(463\) 491.000 1.06048 0.530238 0.847849i \(-0.322103\pi\)
0.530238 + 0.847849i \(0.322103\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −262.406 + 151.500i −0.561897 + 0.324411i −0.753906 0.656982i \(-0.771833\pi\)
0.192010 + 0.981393i \(0.438499\pi\)
\(468\) 0 0
\(469\) −532.000 −1.13433
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −145.492 84.0000i −0.307595 0.177590i
\(474\) 0 0
\(475\) 110.000 0.231579
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −41.5692 24.0000i −0.0867833 0.0501044i 0.455980 0.889990i \(-0.349289\pi\)
−0.542764 + 0.839885i \(0.682622\pi\)
\(480\) 0 0
\(481\) −110.000 190.526i −0.228690 0.396103i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −441.673 + 255.000i −0.910666 + 0.525773i
\(486\) 0 0
\(487\) 9.50000 16.4545i 0.0195072 0.0337874i −0.856107 0.516799i \(-0.827124\pi\)
0.875614 + 0.483011i \(0.160457\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 330.000i 0.672098i −0.941845 0.336049i \(-0.890909\pi\)
0.941845 0.336049i \(-0.109091\pi\)
\(492\) 0 0
\(493\) 396.000 685.892i 0.803245 1.39126i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −109.119 + 63.0000i −0.219556 + 0.126761i
\(498\) 0 0
\(499\) 74.0000 + 128.172i 0.148297 + 0.256857i 0.930598 0.366043i \(-0.119288\pi\)
−0.782301 + 0.622900i \(0.785954\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 828.000i 1.64612i 0.567952 + 0.823062i \(0.307736\pi\)
−0.567952 + 0.823062i \(0.692264\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.0356436
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −688.490 + 397.500i −1.35263 + 0.780943i −0.988618 0.150450i \(-0.951928\pi\)
−0.364015 + 0.931393i \(0.618594\pi\)
\(510\) 0 0
\(511\) −385.000 −0.753425
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −633.931 366.000i −1.23093 0.710680i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 57.1577 + 33.0000i 0.109708 + 0.0633397i 0.553850 0.832617i \(-0.313158\pi\)
−0.444142 + 0.895956i \(0.646491\pi\)
\(522\) 0 0
\(523\) −121.000 209.578i −0.231358 0.400723i 0.726850 0.686796i \(-0.240983\pi\)
−0.958208 + 0.286073i \(0.907650\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −270.200 + 156.000i −0.512713 + 0.296015i
\(528\) 0 0
\(529\) 185.500 321.295i 0.350662 0.607364i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 660.000i 1.23827i
\(534\) 0 0
\(535\) 90.0000 155.885i 0.168224 0.291373i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 127.306 73.5000i 0.236189 0.136364i
\(540\) 0 0
\(541\) 176.000 + 304.841i 0.325323 + 0.563477i 0.981578 0.191063i \(-0.0611935\pi\)
−0.656254 + 0.754540i \(0.727860\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 600.000i 1.10092i
\(546\) 0 0
\(547\) −778.000 −1.42230 −0.711152 0.703039i \(-0.751826\pi\)
−0.711152 + 0.703039i \(0.751826\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −285.788 + 165.000i −0.518672 + 0.299456i
\(552\) 0 0
\(553\) −290.500 + 503.161i −0.525316 + 0.909875i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 314.367 + 181.500i 0.564394 + 0.325853i 0.754907 0.655832i \(-0.227682\pi\)
−0.190513 + 0.981685i \(0.561015\pi\)
\(558\) 0 0
\(559\) −1232.00 −2.20394
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −950.896 549.000i −1.68898 0.975133i −0.955300 0.295638i \(-0.904468\pi\)
−0.733680 0.679495i \(-0.762199\pi\)
\(564\) 0 0
\(565\) −234.000 405.300i −0.414159 0.717345i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −685.892 + 396.000i −1.20543 + 0.695958i −0.961758 0.273899i \(-0.911687\pi\)
−0.243676 + 0.969857i \(0.578353\pi\)
\(570\) 0 0
\(571\) 200.000 346.410i 0.350263 0.606673i −0.636033 0.771662i \(-0.719426\pi\)
0.986295 + 0.164989i \(0.0527590\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 330.000i 0.573913i
\(576\) 0 0
\(577\) 270.500 468.520i 0.468804 0.811993i −0.530560 0.847647i \(-0.678018\pi\)
0.999364 + 0.0356548i \(0.0113517\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −891.140 + 514.500i −1.53380 + 0.885542i
\(582\) 0 0
\(583\) 63.0000 + 109.119i 0.108062 + 0.187168i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1002.00i 1.70698i −0.521105 0.853492i \(-0.674480\pi\)
0.521105 0.853492i \(-0.325520\pi\)
\(588\) 0 0
\(589\) 130.000 0.220713
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 244.219 141.000i 0.411837 0.237774i −0.279742 0.960075i \(-0.590249\pi\)
0.691579 + 0.722301i \(0.256916\pi\)
\(594\) 0 0
\(595\) 504.000 + 872.954i 0.847059 + 1.46715i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 452.065 + 261.000i 0.754700 + 0.435726i 0.827390 0.561628i \(-0.189825\pi\)
−0.0726897 + 0.997355i \(0.523158\pi\)
\(600\) 0 0
\(601\) 110.000 0.183028 0.0915141 0.995804i \(-0.470829\pi\)
0.0915141 + 0.995804i \(0.470829\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −581.969 336.000i −0.961932 0.555372i
\(606\) 0 0
\(607\) 492.500 + 853.035i 0.811367 + 1.40533i 0.911907 + 0.410396i \(0.134610\pi\)
−0.100540 + 0.994933i \(0.532057\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 242.000 419.156i 0.394780 0.683779i −0.598293 0.801277i \(-0.704154\pi\)
0.993073 + 0.117499i \(0.0374876\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 366.000i 0.593193i −0.955003 0.296596i \(-0.904148\pi\)
0.955003 0.296596i \(-0.0958516\pi\)
\(618\) 0 0
\(619\) −181.000 + 313.501i −0.292407 + 0.506464i −0.974378 0.224915i \(-0.927790\pi\)
0.681971 + 0.731379i \(0.261123\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 800.207 + 462.000i 1.28444 + 0.741573i
\(624\) 0 0
\(625\) 389.500 + 674.634i 0.623200 + 1.07941i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 240.000i 0.381558i
\(630\) 0 0
\(631\) 425.000 0.673534 0.336767 0.941588i \(-0.390667\pi\)
0.336767 + 0.941588i \(0.390667\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 696.284 402.000i 1.09651 0.633071i
\(636\) 0 0
\(637\) 539.000 933.575i 0.846154 1.46558i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 940.504 + 543.000i 1.46724 + 0.847114i 0.999328 0.0366588i \(-0.0116715\pi\)
0.467916 + 0.883773i \(0.345005\pi\)
\(642\) 0 0
\(643\) 302.000 0.469673 0.234837 0.972035i \(-0.424544\pi\)
0.234837 + 0.972035i \(0.424544\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.19615 3.00000i −0.00803115 0.00463679i 0.495979 0.868334i \(-0.334809\pi\)
−0.504010 + 0.863698i \(0.668143\pi\)
\(648\) 0 0
\(649\) 148.500 + 257.210i 0.228814 + 0.396317i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −400.104 + 231.000i −0.612716 + 0.353752i −0.774028 0.633152i \(-0.781761\pi\)
0.161311 + 0.986904i \(0.448428\pi\)
\(654\) 0 0
\(655\) −333.000 + 576.773i −0.508397 + 0.880569i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 645.000i 0.978756i 0.872072 + 0.489378i \(0.162776\pi\)
−0.872072 + 0.489378i \(0.837224\pi\)
\(660\) 0 0
\(661\) 128.000 221.703i 0.193646 0.335405i −0.752810 0.658238i \(-0.771302\pi\)
0.946456 + 0.322833i \(0.104635\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 420.000i 0.631579i
\(666\) 0 0
\(667\) −495.000 857.365i −0.742129 1.28541i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 282.000i 0.420268i
\(672\) 0 0
\(673\) 1010.00 1.50074 0.750371 0.661016i \(-0.229875\pi\)
0.750371 + 0.661016i \(0.229875\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 833.982 481.500i 1.23188 0.711226i 0.264458 0.964397i \(-0.414807\pi\)
0.967421 + 0.253171i \(0.0814736\pi\)
\(678\) 0 0
\(679\) 297.500 + 515.285i 0.438144 + 0.758888i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −885.944 511.500i −1.29714 0.748902i −0.317228 0.948349i \(-0.602752\pi\)
−0.979909 + 0.199448i \(0.936085\pi\)
\(684\) 0 0
\(685\) −1044.00 −1.52409
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 800.207 + 462.000i 1.16140 + 0.670537i
\(690\) 0 0
\(691\) −73.0000 126.440i −0.105644 0.182981i 0.808357 0.588692i \(-0.200357\pi\)
−0.914001 + 0.405712i \(0.867024\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −862.561 + 498.000i −1.24110 + 0.716547i
\(696\) 0 0
\(697\) 360.000 623.538i 0.516499 0.894603i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 162.000i 0.231098i 0.993302 + 0.115549i \(0.0368628\pi\)
−0.993302 + 0.115549i \(0.963137\pi\)
\(702\) 0 0
\(703\) −50.0000 + 86.6025i −0.0711238 + 0.123190i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 21.0000i 0.0297030i
\(708\) 0 0
\(709\) −196.000 339.482i −0.276446 0.478818i 0.694053 0.719924i \(-0.255823\pi\)
−0.970499 + 0.241106i \(0.922490\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 390.000i 0.546985i
\(714\) 0 0
\(715\) 396.000 0.553846
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −98.7269 + 57.0000i −0.137311 + 0.0792768i −0.567082 0.823661i \(-0.691928\pi\)
0.429771 + 0.902938i \(0.358594\pi\)
\(720\) 0 0
\(721\) −427.000 + 739.586i −0.592233 + 1.02578i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 314.367 + 181.500i 0.433610 + 0.250345i
\(726\) 0 0
\(727\) −430.000 −0.591472 −0.295736 0.955270i \(-0.595565\pi\)
−0.295736 + 0.955270i \(0.595565\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1163.94 672.000i −1.59225 0.919289i
\(732\) 0 0
\(733\) 578.000 + 1001.13i 0.788540 + 1.36579i 0.926861 + 0.375404i \(0.122496\pi\)
−0.138321 + 0.990387i \(0.544171\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −197.454 + 114.000i −0.267916 + 0.154681i
\(738\) 0 0
\(739\) 473.000 819.260i 0.640054 1.10861i −0.345366 0.938468i \(-0.612245\pi\)
0.985420 0.170138i \(-0.0544214\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1452.00i 1.95424i 0.212690 + 0.977120i \(0.431778\pi\)
−0.212690 + 0.977120i \(0.568222\pi\)
\(744\) 0 0
\(745\) −495.000 + 857.365i −0.664430 + 1.15083i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −181.865 105.000i −0.242811 0.140187i
\(750\) 0 0
\(751\) 281.000 + 486.706i 0.374168 + 0.648078i 0.990202 0.139642i \(-0.0445951\pi\)
−0.616034 + 0.787719i \(0.711262\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 186.000i 0.246358i
\(756\) 0 0
\(757\) −970.000 −1.28137 −0.640687 0.767802i \(-0.721350\pi\)
−0.640687 + 0.767802i \(0.721350\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 659.911 381.000i 0.867163 0.500657i 0.000758839 1.00000i \(-0.499758\pi\)
0.866405 + 0.499343i \(0.166425\pi\)
\(762\) 0 0
\(763\) −700.000 −0.917431
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1886.20 + 1089.00i 2.45920 + 1.41982i
\(768\) 0 0
\(769\) 887.000 1.15345 0.576723 0.816940i \(-0.304331\pi\)
0.576723 + 0.816940i \(0.304331\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −67.5500 39.0000i −0.0873868 0.0504528i 0.455670 0.890149i \(-0.349400\pi\)
−0.543057 + 0.839696i \(0.682733\pi\)
\(774\) 0 0
\(775\) −71.5000 123.842i −0.0922581 0.159796i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −259.808 + 150.000i −0.333514 + 0.192555i
\(780\) 0 0
\(781\) −27.0000 + 46.7654i −0.0345711 + 0.0598788i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 708.000i 0.901911i
\(786\) 0 0
\(787\) 320.000 554.256i 0.406607 0.704265i −0.587900 0.808934i \(-0.700045\pi\)
0.994507 + 0.104669i \(0.0333784\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −472.850 + 273.000i −0.597787 + 0.345133i
\(792\) 0 0
\(793\) −1034.00 1790.94i −1.30391 2.25844i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 915.000i 1.14806i −0.818836 0.574028i \(-0.805380\pi\)
0.818836 0.574028i \(-0.194620\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −142.894 + 82.5000i −0.177950 + 0.102740i
\(804\) 0 0
\(805\) 1260.00 1.56522
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 275.396 + 159.000i 0.340415 + 0.196539i 0.660456 0.750865i \(-0.270363\pi\)
−0.320040 + 0.947404i \(0.603696\pi\)
\(810\) 0 0
\(811\) −1078.00 −1.32922 −0.664612 0.747189i \(-0.731403\pi\)
−0.664612 + 0.747189i \(0.731403\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 457.261 + 264.000i 0.561057 + 0.323926i
\(816\) 0 0
\(817\) 280.000 + 484.974i 0.342717 + 0.593604i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1332.81 769.500i 1.62340 0.937272i 0.637401 0.770532i \(-0.280009\pi\)
0.986001 0.166739i \(-0.0533239\pi\)
\(822\) 0 0
\(823\) −188.500 + 326.492i −0.229040 + 0.396709i −0.957524 0.288354i \(-0.906892\pi\)
0.728484 + 0.685063i \(0.240225\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 297.000i 0.359129i −0.983746 0.179565i \(-0.942531\pi\)
0.983746 0.179565i \(-0.0574689\pi\)
\(828\) 0 0
\(829\) −22.0000 + 38.1051i −0.0265380 + 0.0459652i −0.878989 0.476841i \(-0.841782\pi\)
0.852451 + 0.522806i \(0.175115\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1018.45 588.000i 1.22262 0.705882i
\(834\) 0 0
\(835\) −774.000 1340.61i −0.926946 1.60552i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 978.000i 1.16567i 0.812589 + 0.582837i \(0.198057\pi\)
−0.812589 + 0.582837i \(0.801943\pi\)
\(840\) 0 0
\(841\) −248.000 −0.294887
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1636.79 945.000i 1.93703 1.11834i
\(846\) 0 0
\(847\) −392.000 + 678.964i −0.462810 + 0.801610i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −259.808 150.000i −0.305297 0.176263i
\(852\) 0 0
\(853\) −160.000 −0.187573 −0.0937866 0.995592i \(-0.529897\pi\)
−0.0937866 + 0.995592i \(0.529897\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1018.45 + 588.000i 1.18838 + 0.686114i 0.957939 0.286971i \(-0.0926483\pi\)
0.230446 + 0.973085i \(0.425982\pi\)
\(858\) 0 0
\(859\) −598.000 1035.77i −0.696158 1.20578i −0.969789 0.243947i \(-0.921558\pi\)
0.273630 0.961835i \(-0.411776\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1070.41 618.000i 1.24033 0.716107i 0.271171 0.962531i \(-0.412589\pi\)
0.969162 + 0.246425i \(0.0792558\pi\)
\(864\) 0 0
\(865\) 783.000 1356.20i 0.905202 1.56786i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 249.000i 0.286536i
\(870\) 0 0
\(871\) −836.000 + 1447.99i −0.959816 + 1.66245i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 509.223 294.000i 0.581969 0.336000i
\(876\) 0 0
\(877\) −49.0000 84.8705i −0.0558723 0.0967736i 0.836736 0.547606i \(-0.184461\pi\)
−0.892609 + 0.450832i \(0.851127\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1170.00i 1.32804i −0.747716 0.664018i \(-0.768850\pi\)
0.747716 0.664018i \(-0.231150\pi\)
\(882\) 0 0
\(883\) 242.000 0.274066 0.137033 0.990567i \(-0.456243\pi\)
0.137033 + 0.990567i \(0.456243\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 488.438 282.000i 0.550663 0.317926i −0.198726 0.980055i \(-0.563680\pi\)
0.749389 + 0.662129i \(0.230347\pi\)
\(888\) 0 0
\(889\) −469.000 812.332i −0.527559 0.913759i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1530.00 1.70950
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 371.525 + 214.500i 0.413265 + 0.238598i
\(900\) 0 0
\(901\) 504.000 + 872.954i 0.559378 + 0.968872i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 228.631 132.000i 0.252631 0.145856i
\(906\) 0 0
\(907\) −244.000 + 422.620i −0.269019 + 0.465954i −0.968609 0.248590i \(-0.920033\pi\)
0.699590 + 0.714545i \(0.253366\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 462.000i 0.507135i −0.967318 0.253568i \(-0.918396\pi\)
0.967318 0.253568i \(-0.0816040\pi\)
\(912\) 0 0
\(913\) −220.500 + 381.917i −0.241512 + 0.418310i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 672.902 + 388.500i 0.733808 + 0.423664i
\(918\) 0 0
\(919\) 783.500 + 1357.06i 0.852557 + 1.47667i 0.878893 + 0.477019i \(0.158283\pi\)
−0.0263358 + 0.999653i \(0.508384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 396.000i 0.429036i
\(924\) 0 0
\(925\) 110.000 0.118919
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −701.481 + 405.000i −0.755092 + 0.435953i −0.827531 0.561420i \(-0.810255\pi\)
0.0724387 + 0.997373i \(0.476922\pi\)
\(930\) 0 0
\(931\) −490.000 −0.526316
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 374.123 + 216.000i 0.400132 + 0.231016i
\(936\) 0 0
\(937\) −1630.00 −1.73959 −0.869797 0.493409i \(-0.835750\pi\)
−0.869797 + 0.493409i \(0.835750\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 335.152 + 193.500i 0.356166 + 0.205632i 0.667397 0.744702i \(-0.267408\pi\)
−0.311232 + 0.950334i \(0.600742\pi\)
\(942\) 0 0
\(943\) −450.000 779.423i −0.477200 0.826535i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 724.863 418.500i 0.765431 0.441922i −0.0658112 0.997832i \(-0.520964\pi\)
0.831242 + 0.555910i \(0.187630\pi\)
\(948\) 0 0
\(949\) −605.000 + 1047.89i −0.637513 + 1.10421i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1242.00i 1.30325i −0.758540 0.651626i \(-0.774087\pi\)
0.758540 0.651626i \(-0.225913\pi\)
\(954\) 0 0
\(955\) 540.000 935.307i 0.565445 0.979380i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1218.00i 1.27007i
\(960\) 0 0
\(961\) 396.000 + 685.892i 0.412071 + 0.713727i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1218.00i 1.26218i
\(966\) 0 0
\(967\) 122.000 0.126163 0.0630817 0.998008i \(-0.479907\pi\)
0.0630817 + 0.998008i \(0.479907\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1408.16 + 813.000i −1.45021 + 0.837281i −0.998493 0.0548784i \(-0.982523\pi\)
−0.451720 + 0.892160i \(0.649190\pi\)
\(972\) 0 0
\(973\) 581.000 + 1006.32i 0.597122 + 1.03425i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −919.719 531.000i −0.941371 0.543501i −0.0509808 0.998700i \(-0.516235\pi\)
−0.890390 + 0.455199i \(0.849568\pi\)
\(978\) 0 0
\(979\) 396.000 0.404494
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 129.904 + 75.0000i 0.132150 + 0.0762970i 0.564618 0.825353i \(-0.309024\pi\)
−0.432467 + 0.901650i \(0.642357\pi\)
\(984\) 0 0
\(985\) −243.000 420.888i −0.246701 0.427298i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1454.92 + 840.000i −1.47110 + 0.849343i
\(990\) 0 0
\(991\) 869.000 1505.15i 0.876892 1.51882i 0.0221585 0.999754i \(-0.492946\pi\)
0.854734 0.519067i \(-0.173721\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 258.000i 0.259296i
\(996\) 0 0
\(997\) 944.000 1635.06i 0.946841 1.63998i 0.194817 0.980840i \(-0.437589\pi\)
0.752024 0.659136i \(-0.229078\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.3.bk.e.53.2 yes 4
3.2 odd 2 inner 756.3.bk.e.53.1 4
7.2 even 3 inner 756.3.bk.e.485.1 yes 4
21.2 odd 6 inner 756.3.bk.e.485.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.3.bk.e.53.1 4 3.2 odd 2 inner
756.3.bk.e.53.2 yes 4 1.1 even 1 trivial
756.3.bk.e.485.1 yes 4 7.2 even 3 inner
756.3.bk.e.485.2 yes 4 21.2 odd 6 inner