Properties

Label 2-756-21.11-c2-0-20
Degree $2$
Conductor $756$
Sign $-0.997 - 0.0633i$
Analytic cond. $20.5995$
Root an. cond. $4.53866$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (5.19 − 3i)5-s + (−3.5 − 6.06i)7-s + (−2.59 − 1.5i)11-s − 22·13-s + (−20.7 − 12i)17-s + (5 + 8.66i)19-s + (−25.9 + 15i)23-s + (5.5 − 9.52i)25-s + 33i·29-s + (6.5 − 11.2i)31-s + (−36.3 − 21i)35-s + (5 + 8.66i)37-s + 30i·41-s + 56·43-s + (−24.5 + 42.4i)49-s + ⋯
L(s)  = 1  + (1.03 − 0.600i)5-s + (−0.5 − 0.866i)7-s + (−0.236 − 0.136i)11-s − 1.69·13-s + (−1.22 − 0.705i)17-s + (0.263 + 0.455i)19-s + (−1.12 + 0.652i)23-s + (0.220 − 0.381i)25-s + 1.13i·29-s + (0.209 − 0.363i)31-s + (−1.03 − 0.599i)35-s + (0.135 + 0.234i)37-s + 0.731i·41-s + 1.30·43-s + (−0.499 + 0.866i)49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.997 - 0.0633i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(756\)    =    \(2^{2} \cdot 3^{3} \cdot 7\)
Sign: $-0.997 - 0.0633i$
Analytic conductor: \(20.5995\)
Root analytic conductor: \(4.53866\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{756} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 756,\ (\ :1),\ -0.997 - 0.0633i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.4693117253\)
\(L(\frac12)\) \(\approx\) \(0.4693117253\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (3.5 + 6.06i)T \)
good5 \( 1 + (-5.19 + 3i)T + (12.5 - 21.6i)T^{2} \)
11 \( 1 + (2.59 + 1.5i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + 22T + 169T^{2} \)
17 \( 1 + (20.7 + 12i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (-5 - 8.66i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (25.9 - 15i)T + (264.5 - 458. i)T^{2} \)
29 \( 1 - 33iT - 841T^{2} \)
31 \( 1 + (-6.5 + 11.2i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-5 - 8.66i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 - 30iT - 1.68e3T^{2} \)
43 \( 1 - 56T + 1.84e3T^{2} \)
47 \( 1 + (1.10e3 - 1.91e3i)T^{2} \)
53 \( 1 + (36.3 + 21i)T + (1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (85.7 + 49.5i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-47 - 81.4i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-38 + 65.8i)T + (-2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + 18iT - 5.04e3T^{2} \)
73 \( 1 + (-27.5 + 47.6i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (41.5 + 71.8i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + 147iT - 6.88e3T^{2} \)
89 \( 1 + (114. - 66i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 85T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.657765808279198648779914938304, −9.196665271373130453980366769776, −7.86986045716002037241097299399, −7.10823172523815618241243563649, −6.13868080720662940039987734090, −5.15356285676626124793402528171, −4.35085021142025201504763565105, −2.89777301827828677023054571814, −1.73052250387358553602277616939, −0.14325642354106966165098811189, 2.32503713474118063772007082654, 2.49445162020082555137753706006, 4.25571909906297655962343257664, 5.39265965990306307362080069035, 6.20773514390019345156462865702, 6.89528601860067423520271406538, 8.018465956497466294272103624646, 9.105592681951385648992890427181, 9.770252658739141316768253847016, 10.33999754857988484016681729004

Graph of the $Z$-function along the critical line