Properties

Label 756.2.t.e.269.3
Level $756$
Weight $2$
Character 756.269
Analytic conductor $6.037$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(269,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.269"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.t (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.3
Root \(0.385418 + 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 756.269
Dual form 756.2.t.e.593.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.385418 - 0.667563i) q^{5} +(-2.20291 - 1.46533i) q^{7} +(4.68157 + 2.70291i) q^{11} +5.28088i q^{13} +(2.85433 - 4.94385i) q^{17} +(0.535344 - 0.309081i) q^{19} +(5.83782 - 3.37047i) q^{23} +(2.20291 - 3.81555i) q^{25} -8.07606i q^{29} +(0.502688 + 0.290227i) q^{31} +(-0.129163 + 2.03534i) q^{35} +(-4.53803 - 7.86010i) q^{37} +8.59231 q^{41} +3.40581 q^{43} +(-0.385418 - 0.667563i) q^{47} +(2.70560 + 6.45599i) q^{49} +(6.63798 + 3.83244i) q^{53} -4.16699i q^{55} +(-6.89423 + 11.9412i) q^{59} +(-3.57606 + 2.06464i) q^{61} +(3.52532 - 2.03534i) q^{65} +(-6.77628 + 11.7369i) q^{67} -2.25906i q^{71} +(1.96197 + 1.13274i) q^{73} +(-6.35241 - 12.8143i) q^{77} +(4.03534 + 6.98942i) q^{79} +3.85418 q^{83} -4.40044 q^{85} +(-2.59808 - 4.50000i) q^{89} +(7.73825 - 11.6333i) q^{91} +(-0.412662 - 0.238250i) q^{95} -14.0259i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{19} - 24 q^{37} - 12 q^{43} + 18 q^{61} + 54 q^{73} + 24 q^{79} - 12 q^{85} + 42 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.385418 0.667563i −0.172364 0.298543i 0.766882 0.641788i \(-0.221807\pi\)
−0.939246 + 0.343245i \(0.888474\pi\)
\(6\) 0 0
\(7\) −2.20291 1.46533i −0.832620 0.553844i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.68157 + 2.70291i 1.41155 + 0.814957i 0.995534 0.0944018i \(-0.0300938\pi\)
0.416013 + 0.909359i \(0.363427\pi\)
\(12\) 0 0
\(13\) 5.28088i 1.46465i 0.680954 + 0.732326i \(0.261565\pi\)
−0.680954 + 0.732326i \(0.738435\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.85433 4.94385i 0.692277 1.19906i −0.278813 0.960345i \(-0.589941\pi\)
0.971090 0.238713i \(-0.0767256\pi\)
\(18\) 0 0
\(19\) 0.535344 0.309081i 0.122816 0.0709080i −0.437333 0.899300i \(-0.644077\pi\)
0.560150 + 0.828391i \(0.310744\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.83782 3.37047i 1.21727 0.702791i 0.252937 0.967483i \(-0.418603\pi\)
0.964333 + 0.264691i \(0.0852700\pi\)
\(24\) 0 0
\(25\) 2.20291 3.81555i 0.440581 0.763109i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.07606i 1.49969i −0.661615 0.749844i \(-0.730129\pi\)
0.661615 0.749844i \(-0.269871\pi\)
\(30\) 0 0
\(31\) 0.502688 + 0.290227i 0.0902855 + 0.0521264i 0.544463 0.838785i \(-0.316733\pi\)
−0.454177 + 0.890911i \(0.650067\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.129163 + 2.03534i −0.0218326 + 0.344036i
\(36\) 0 0
\(37\) −4.53803 7.86010i −0.746048 1.29219i −0.949704 0.313150i \(-0.898616\pi\)
0.203656 0.979043i \(-0.434718\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.59231 1.34189 0.670947 0.741506i \(-0.265888\pi\)
0.670947 + 0.741506i \(0.265888\pi\)
\(42\) 0 0
\(43\) 3.40581 0.519382 0.259691 0.965692i \(-0.416379\pi\)
0.259691 + 0.965692i \(0.416379\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.385418 0.667563i −0.0562189 0.0973740i 0.836546 0.547896i \(-0.184571\pi\)
−0.892765 + 0.450522i \(0.851238\pi\)
\(48\) 0 0
\(49\) 2.70560 + 6.45599i 0.386514 + 0.922284i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.63798 + 3.83244i 0.911796 + 0.526426i 0.881009 0.473100i \(-0.156865\pi\)
0.0307875 + 0.999526i \(0.490198\pi\)
\(54\) 0 0
\(55\) 4.16699i 0.561877i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.89423 + 11.9412i −0.897552 + 1.55461i −0.0669387 + 0.997757i \(0.521323\pi\)
−0.830614 + 0.556849i \(0.812010\pi\)
\(60\) 0 0
\(61\) −3.57606 + 2.06464i −0.457868 + 0.264350i −0.711147 0.703043i \(-0.751824\pi\)
0.253279 + 0.967393i \(0.418491\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.52532 2.03534i 0.437262 0.252453i
\(66\) 0 0
\(67\) −6.77628 + 11.7369i −0.827855 + 1.43389i 0.0718632 + 0.997414i \(0.477105\pi\)
−0.899718 + 0.436472i \(0.856228\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25906i 0.268101i −0.990974 0.134051i \(-0.957202\pi\)
0.990974 0.134051i \(-0.0427985\pi\)
\(72\) 0 0
\(73\) 1.96197 + 1.13274i 0.229631 + 0.132577i 0.610402 0.792092i \(-0.291008\pi\)
−0.380771 + 0.924669i \(0.624341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.35241 12.8143i −0.723924 1.46033i
\(78\) 0 0
\(79\) 4.03534 + 6.98942i 0.454012 + 0.786371i 0.998631 0.0523123i \(-0.0166591\pi\)
−0.544619 + 0.838683i \(0.683326\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.85418 0.423051 0.211525 0.977373i \(-0.432157\pi\)
0.211525 + 0.977373i \(0.432157\pi\)
\(84\) 0 0
\(85\) −4.40044 −0.477294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.59808 4.50000i −0.275396 0.476999i 0.694839 0.719165i \(-0.255475\pi\)
−0.970235 + 0.242166i \(0.922142\pi\)
\(90\) 0 0
\(91\) 7.73825 11.6333i 0.811189 1.21950i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.412662 0.238250i −0.0423382 0.0244440i
\(96\) 0 0
\(97\) 14.0259i 1.42411i −0.702123 0.712055i \(-0.747765\pi\)
0.702123 0.712055i \(-0.252235\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.35241 + 11.0027i −0.632088 + 1.09481i 0.355036 + 0.934853i \(0.384469\pi\)
−0.987124 + 0.159956i \(0.948865\pi\)
\(102\) 0 0
\(103\) −2.57069 + 1.48419i −0.253297 + 0.146241i −0.621273 0.783594i \(-0.713384\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.26891 2.46466i 0.412691 0.238267i −0.279254 0.960217i \(-0.590087\pi\)
0.691945 + 0.721950i \(0.256754\pi\)
\(108\) 0 0
\(109\) 3.40581 5.89904i 0.326218 0.565026i −0.655540 0.755160i \(-0.727559\pi\)
0.981758 + 0.190134i \(0.0608924\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.32975i 0.595453i −0.954651 0.297726i \(-0.903772\pi\)
0.954651 0.297726i \(-0.0962283\pi\)
\(114\) 0 0
\(115\) −4.50000 2.59808i −0.419627 0.242272i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.5322 + 6.70828i −1.24050 + 0.614947i
\(120\) 0 0
\(121\) 9.11141 + 15.7814i 0.828310 + 1.43467i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.25033 −0.648489
\(126\) 0 0
\(127\) −4.41119 −0.391430 −0.195715 0.980661i \(-0.562703\pi\)
−0.195715 + 0.980661i \(0.562703\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.39600 + 7.61410i 0.384080 + 0.665247i 0.991641 0.129026i \(-0.0411852\pi\)
−0.607561 + 0.794273i \(0.707852\pi\)
\(132\) 0 0
\(133\) −1.63222 0.103581i −0.141531 0.00898160i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.91281 + 2.25906i 0.334294 + 0.193005i 0.657746 0.753240i \(-0.271510\pi\)
−0.323452 + 0.946245i \(0.604843\pi\)
\(138\) 0 0
\(139\) 7.67811i 0.651249i 0.945499 + 0.325624i \(0.105575\pi\)
−0.945499 + 0.325624i \(0.894425\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.2737 + 24.7228i −1.19363 + 2.06743i
\(144\) 0 0
\(145\) −5.39128 + 3.11266i −0.447721 + 0.258492i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.40674 + 4.27628i −0.606784 + 0.350327i −0.771706 0.635980i \(-0.780596\pi\)
0.164922 + 0.986307i \(0.447263\pi\)
\(150\) 0 0
\(151\) 3.53803 6.12805i 0.287921 0.498694i −0.685392 0.728174i \(-0.740369\pi\)
0.973313 + 0.229480i \(0.0737026\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.447435i 0.0359388i
\(156\) 0 0
\(157\) 9.22013 + 5.32324i 0.735846 + 0.424841i 0.820557 0.571565i \(-0.193663\pi\)
−0.0847108 + 0.996406i \(0.526997\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.7990 1.12953i −1.40276 0.0890195i
\(162\) 0 0
\(163\) −7.53534 13.0516i −0.590214 1.02228i −0.994203 0.107517i \(-0.965710\pi\)
0.403990 0.914764i \(-0.367623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −17.3843 −1.34524 −0.672619 0.739989i \(-0.734831\pi\)
−0.672619 + 0.739989i \(0.734831\pi\)
\(168\) 0 0
\(169\) −14.8877 −1.14521
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.87772 17.1087i −0.750989 1.30075i −0.947344 0.320219i \(-0.896244\pi\)
0.196354 0.980533i \(-0.437090\pi\)
\(174\) 0 0
\(175\) −10.4438 + 5.17730i −0.789481 + 0.391367i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.1444 + 8.74363i 1.13195 + 0.653529i 0.944424 0.328731i \(-0.106621\pi\)
0.187522 + 0.982260i \(0.439954\pi\)
\(180\) 0 0
\(181\) 4.11997i 0.306235i 0.988208 + 0.153118i \(0.0489313\pi\)
−0.988208 + 0.153118i \(0.951069\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.49807 + 6.05884i −0.257184 + 0.445455i
\(186\) 0 0
\(187\) 26.7255 15.4300i 1.95436 1.12835i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.4444 + 7.18478i −0.900446 + 0.519873i −0.877345 0.479860i \(-0.840687\pi\)
−0.0231011 + 0.999733i \(0.507354\pi\)
\(192\) 0 0
\(193\) −1.03534 + 1.79327i −0.0745257 + 0.129082i −0.900880 0.434068i \(-0.857078\pi\)
0.826354 + 0.563151i \(0.190411\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.2881i 1.44547i −0.691126 0.722735i \(-0.742885\pi\)
0.691126 0.722735i \(-0.257115\pi\)
\(198\) 0 0
\(199\) 5.42394 + 3.13151i 0.384493 + 0.221987i 0.679771 0.733424i \(-0.262079\pi\)
−0.295279 + 0.955411i \(0.595412\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.8341 + 17.7908i −0.830593 + 1.24867i
\(204\) 0 0
\(205\) −3.31163 5.73591i −0.231294 0.400613i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.34167 0.231148
\(210\) 0 0
\(211\) 3.73556 0.257167 0.128583 0.991699i \(-0.458957\pi\)
0.128583 + 0.991699i \(0.458957\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.31266 2.27359i −0.0895227 0.155058i
\(216\) 0 0
\(217\) −0.682096 1.37595i −0.0463037 0.0934056i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 26.1079 + 15.0734i 1.75620 + 1.01394i
\(222\) 0 0
\(223\) 15.8426i 1.06090i 0.847716 + 0.530451i \(0.177977\pi\)
−0.847716 + 0.530451i \(0.822023\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.95640 + 3.38859i −0.129851 + 0.224909i −0.923619 0.383312i \(-0.874783\pi\)
0.793768 + 0.608221i \(0.208117\pi\)
\(228\) 0 0
\(229\) 4.39397 2.53686i 0.290362 0.167640i −0.347743 0.937590i \(-0.613052\pi\)
0.638105 + 0.769949i \(0.279719\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.56891 0.905813i 0.102783 0.0593418i −0.447727 0.894170i \(-0.647766\pi\)
0.550510 + 0.834828i \(0.314433\pi\)
\(234\) 0 0
\(235\) −0.297093 + 0.514581i −0.0193802 + 0.0335676i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.58881i 0.555564i −0.960644 0.277782i \(-0.910401\pi\)
0.960644 0.277782i \(-0.0895993\pi\)
\(240\) 0 0
\(241\) −20.6521 11.9235i −1.33032 0.768061i −0.344972 0.938613i \(-0.612112\pi\)
−0.985349 + 0.170552i \(0.945445\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.26699 4.29440i 0.208720 0.274359i
\(246\) 0 0
\(247\) 1.63222 + 2.82709i 0.103856 + 0.179883i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.25033 0.457637 0.228818 0.973469i \(-0.426514\pi\)
0.228818 + 0.973469i \(0.426514\pi\)
\(252\) 0 0
\(253\) 36.4403 2.29098
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.2737 24.7228i −0.890370 1.54217i −0.839432 0.543465i \(-0.817112\pi\)
−0.0509387 0.998702i \(-0.516221\pi\)
\(258\) 0 0
\(259\) −1.52081 + 23.9648i −0.0944986 + 1.48910i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.95640 + 1.12953i 0.120637 + 0.0696498i 0.559104 0.829097i \(-0.311145\pi\)
−0.438467 + 0.898747i \(0.644478\pi\)
\(264\) 0 0
\(265\) 5.90835i 0.362947i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.33605 + 14.4385i −0.508258 + 0.880329i 0.491696 + 0.870767i \(0.336377\pi\)
−0.999954 + 0.00956210i \(0.996956\pi\)
\(270\) 0 0
\(271\) −27.2528 + 15.7344i −1.65549 + 0.955797i −0.680730 + 0.732534i \(0.738337\pi\)
−0.974758 + 0.223263i \(0.928329\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.6261 11.9085i 1.24380 0.718110i
\(276\) 0 0
\(277\) −9.51991 + 16.4890i −0.571996 + 0.990726i 0.424365 + 0.905491i \(0.360497\pi\)
−0.996361 + 0.0852348i \(0.972836\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.59956i 0.453352i −0.973970 0.226676i \(-0.927214\pi\)
0.973970 0.226676i \(-0.0727858\pi\)
\(282\) 0 0
\(283\) −26.8315 15.4912i −1.59497 0.920856i −0.992436 0.122762i \(-0.960825\pi\)
−0.602533 0.798094i \(-0.705842\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.9281 12.5906i −1.11729 0.743199i
\(288\) 0 0
\(289\) −7.79440 13.5003i −0.458494 0.794136i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.93783 −0.288471 −0.144235 0.989543i \(-0.546072\pi\)
−0.144235 + 0.989543i \(0.546072\pi\)
\(294\) 0 0
\(295\) 10.6286 0.618823
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.7990 + 30.8288i 1.02935 + 1.78288i
\(300\) 0 0
\(301\) −7.50269 4.99065i −0.432448 0.287656i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.75656 + 1.59150i 0.157840 + 0.0911289i
\(306\) 0 0
\(307\) 7.95736i 0.454151i 0.973877 + 0.227075i \(0.0729164\pi\)
−0.973877 + 0.227075i \(0.927084\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.93783 8.55257i 0.279998 0.484971i −0.691386 0.722486i \(-0.742999\pi\)
0.971384 + 0.237514i \(0.0763327\pi\)
\(312\) 0 0
\(313\) 14.5707 8.41239i 0.823584 0.475496i −0.0280668 0.999606i \(-0.508935\pi\)
0.851651 + 0.524110i \(0.175602\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.4515 12.3850i 1.20483 0.695611i 0.243208 0.969974i \(-0.421800\pi\)
0.961626 + 0.274363i \(0.0884671\pi\)
\(318\) 0 0
\(319\) 21.8288 37.8087i 1.22218 2.11688i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.52888i 0.196352i
\(324\) 0 0
\(325\) 20.1494 + 11.6333i 1.11769 + 0.645299i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.129163 + 2.03534i −0.00712100 + 0.112212i
\(330\) 0 0
\(331\) 9.00269 + 15.5931i 0.494833 + 0.857075i 0.999982 0.00595666i \(-0.00189608\pi\)
−0.505150 + 0.863032i \(0.668563\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.4468 0.570769
\(336\) 0 0
\(337\) 5.21744 0.284212 0.142106 0.989851i \(-0.454613\pi\)
0.142106 + 0.989851i \(0.454613\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.56891 + 2.71744i 0.0849615 + 0.147158i
\(342\) 0 0
\(343\) 3.50000 18.1865i 0.188982 0.981981i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.1013 + 8.14138i 0.756996 + 0.437052i 0.828216 0.560409i \(-0.189356\pi\)
−0.0712201 + 0.997461i \(0.522689\pi\)
\(348\) 0 0
\(349\) 17.4052i 0.931681i −0.884869 0.465840i \(-0.845752\pi\)
0.884869 0.465840i \(-0.154248\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.9447 + 25.8850i −0.795427 + 1.37772i 0.127141 + 0.991885i \(0.459420\pi\)
−0.922568 + 0.385835i \(0.873913\pi\)
\(354\) 0 0
\(355\) −1.50807 + 0.870682i −0.0800398 + 0.0462110i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.2700 11.7029i 1.06981 0.617656i 0.141681 0.989912i \(-0.454749\pi\)
0.928130 + 0.372257i \(0.121416\pi\)
\(360\) 0 0
\(361\) −9.30894 + 16.1236i −0.489944 + 0.848608i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.74632i 0.0914063i
\(366\) 0 0
\(367\) 17.3696 + 10.0283i 0.906684 + 0.523474i 0.879363 0.476152i \(-0.157969\pi\)
0.0273213 + 0.999627i \(0.491302\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.00704 18.1694i −0.467622 0.943306i
\(372\) 0 0
\(373\) 3.99462 + 6.91889i 0.206834 + 0.358247i 0.950715 0.310065i \(-0.100351\pi\)
−0.743882 + 0.668311i \(0.767017\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.6487 2.19652
\(378\) 0 0
\(379\) −34.5816 −1.77634 −0.888170 0.459516i \(-0.848023\pi\)
−0.888170 + 0.459516i \(0.848023\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.01058 6.94653i −0.204931 0.354951i 0.745180 0.666864i \(-0.232364\pi\)
−0.950111 + 0.311913i \(0.899030\pi\)
\(384\) 0 0
\(385\) −6.10603 + 9.17949i −0.311192 + 0.467830i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.9446 + 9.20560i 0.808421 + 0.466742i 0.846407 0.532536i \(-0.178761\pi\)
−0.0379861 + 0.999278i \(0.512094\pi\)
\(390\) 0 0
\(391\) 38.4817i 1.94610i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.11058 5.38769i 0.156511 0.271084i
\(396\) 0 0
\(397\) −21.9973 + 12.7002i −1.10401 + 0.637402i −0.937272 0.348598i \(-0.886658\pi\)
−0.166741 + 0.986001i \(0.553324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.43813 + 4.29440i −0.371442 + 0.214452i −0.674088 0.738651i \(-0.735463\pi\)
0.302646 + 0.953103i \(0.402130\pi\)
\(402\) 0 0
\(403\) −1.53266 + 2.65464i −0.0763470 + 0.132237i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 49.0635i 2.43199i
\(408\) 0 0
\(409\) −3.04072 1.75556i −0.150354 0.0868069i 0.422936 0.906160i \(-0.361000\pi\)
−0.573290 + 0.819353i \(0.694333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 32.6851 16.2029i 1.60833 0.797293i
\(414\) 0 0
\(415\) −1.48547 2.57290i −0.0729187 0.126299i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 29.5725 1.44471 0.722355 0.691523i \(-0.243060\pi\)
0.722355 + 0.691523i \(0.243060\pi\)
\(420\) 0 0
\(421\) −23.0344 −1.12263 −0.561315 0.827602i \(-0.689704\pi\)
−0.561315 + 0.827602i \(0.689704\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.5756 21.7817i −0.610008 1.05657i
\(426\) 0 0
\(427\) 10.9031 + 0.691914i 0.527639 + 0.0334841i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.2386 11.6848i −0.974861 0.562836i −0.0741463 0.997247i \(-0.523623\pi\)
−0.900715 + 0.434411i \(0.856957\pi\)
\(432\) 0 0
\(433\) 37.9199i 1.82231i 0.412059 + 0.911157i \(0.364810\pi\)
−0.412059 + 0.911157i \(0.635190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.08350 3.60872i 0.0996671 0.172628i
\(438\) 0 0
\(439\) −2.71744 + 1.56891i −0.129696 + 0.0748802i −0.563444 0.826154i \(-0.690524\pi\)
0.433748 + 0.901034i \(0.357191\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 20.9822 12.1141i 0.996896 0.575558i 0.0895675 0.995981i \(-0.471452\pi\)
0.907328 + 0.420423i \(0.138118\pi\)
\(444\) 0 0
\(445\) −2.00269 + 3.46876i −0.0949365 + 0.164435i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.1812i 1.18837i 0.804327 + 0.594187i \(0.202526\pi\)
−0.804327 + 0.594187i \(0.797474\pi\)
\(450\) 0 0
\(451\) 40.2255 + 23.2242i 1.89415 + 1.09359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.7484 0.682096i −0.503893 0.0319771i
\(456\) 0 0
\(457\) 13.1060 + 22.7003i 0.613074 + 1.06188i 0.990719 + 0.135925i \(0.0434007\pi\)
−0.377645 + 0.925951i \(0.623266\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.80000 −0.0838342 −0.0419171 0.999121i \(-0.513347\pi\)
−0.0419171 + 0.999121i \(0.513347\pi\)
\(462\) 0 0
\(463\) −20.4456 −0.950189 −0.475095 0.879935i \(-0.657586\pi\)
−0.475095 + 0.879935i \(0.657586\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.25271 + 9.09797i 0.243067 + 0.421004i 0.961586 0.274503i \(-0.0885133\pi\)
−0.718520 + 0.695507i \(0.755180\pi\)
\(468\) 0 0
\(469\) 32.1259 15.9257i 1.48344 0.735381i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.9446 + 9.20560i 0.733132 + 0.423274i
\(474\) 0 0
\(475\) 2.72351i 0.124963i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2.98349 5.16756i 0.136319 0.236112i −0.789781 0.613388i \(-0.789806\pi\)
0.926101 + 0.377276i \(0.123139\pi\)
\(480\) 0 0
\(481\) 41.5083 23.9648i 1.89261 1.09270i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.36314 + 5.40581i −0.425158 + 0.245465i
\(486\) 0 0
\(487\) −12.0199 + 20.8191i −0.544674 + 0.943403i 0.453953 + 0.891026i \(0.350013\pi\)
−0.998627 + 0.0523777i \(0.983320\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.5579i 0.972896i −0.873709 0.486448i \(-0.838292\pi\)
0.873709 0.486448i \(-0.161708\pi\)
\(492\) 0 0
\(493\) −39.9268 23.0518i −1.79821 1.03820i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −3.31028 + 4.97650i −0.148486 + 0.223227i
\(498\) 0 0
\(499\) −14.4257 24.9861i −0.645784 1.11853i −0.984120 0.177505i \(-0.943197\pi\)
0.338336 0.941025i \(-0.390136\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.7805 −0.926555 −0.463278 0.886213i \(-0.653327\pi\)
−0.463278 + 0.886213i \(0.653327\pi\)
\(504\) 0 0
\(505\) 9.79331 0.435797
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.7027 + 22.0018i 0.563039 + 0.975212i 0.997229 + 0.0743909i \(0.0237012\pi\)
−0.434190 + 0.900821i \(0.642965\pi\)
\(510\) 0 0
\(511\) −2.66219 5.37026i −0.117768 0.237566i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.98158 + 1.14406i 0.0873187 + 0.0504135i
\(516\) 0 0
\(517\) 4.16699i 0.183264i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.02709 1.77897i 0.0449976 0.0779381i −0.842649 0.538463i \(-0.819005\pi\)
0.887647 + 0.460524i \(0.152339\pi\)
\(522\) 0 0
\(523\) −9.81790 + 5.66837i −0.429307 + 0.247860i −0.699051 0.715071i \(-0.746394\pi\)
0.269744 + 0.962932i \(0.413061\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.86968 1.65681i 0.125005 0.0721717i
\(528\) 0 0
\(529\) 11.2201 19.4338i 0.487832 0.844949i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 45.3749i 1.96541i
\(534\) 0 0
\(535\) −3.29063 1.89984i −0.142266 0.0821374i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.78349 + 37.5371i −0.206040 + 1.61684i
\(540\) 0 0
\(541\) −9.39128 16.2662i −0.403763 0.699337i 0.590414 0.807101i \(-0.298965\pi\)
−0.994177 + 0.107763i \(0.965631\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5.25064 −0.224913
\(546\) 0 0
\(547\) −6.91856 −0.295816 −0.147908 0.989001i \(-0.547254\pi\)
−0.147908 + 0.989001i \(0.547254\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.49616 4.32347i −0.106340 0.184186i
\(552\) 0 0
\(553\) 1.35235 21.3102i 0.0575076 0.906200i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.00704 + 5.20022i 0.381641 + 0.220340i 0.678532 0.734571i \(-0.262617\pi\)
−0.296891 + 0.954911i \(0.595950\pi\)
\(558\) 0 0
\(559\) 17.9857i 0.760714i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.01074 + 5.21475i −0.126887 + 0.219776i −0.922469 0.386071i \(-0.873832\pi\)
0.795582 + 0.605846i \(0.207165\pi\)
\(564\) 0 0
\(565\) −4.22550 + 2.43960i −0.177768 + 0.102635i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.4208 + 14.6767i −1.06570 + 0.615280i −0.927002 0.375055i \(-0.877624\pi\)
−0.138694 + 0.990335i \(0.544290\pi\)
\(570\) 0 0
\(571\) −8.61410 + 14.9201i −0.360489 + 0.624385i −0.988041 0.154189i \(-0.950723\pi\)
0.627553 + 0.778574i \(0.284057\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6993i 1.23855i
\(576\) 0 0
\(577\) 1.85594 + 1.07153i 0.0772636 + 0.0446082i 0.538134 0.842859i \(-0.319129\pi\)
−0.460870 + 0.887467i \(0.652463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −8.49039 5.64765i −0.352241 0.234304i
\(582\) 0 0
\(583\) 20.7174 + 35.8837i 0.858029 + 1.48615i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −17.5840 −0.725769 −0.362885 0.931834i \(-0.618208\pi\)
−0.362885 + 0.931834i \(0.618208\pi\)
\(588\) 0 0
\(589\) 0.358815 0.0147847
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1469 21.0391i −0.498815 0.863973i 0.501184 0.865341i \(-0.332898\pi\)
−0.999999 + 0.00136757i \(0.999565\pi\)
\(594\) 0 0
\(595\) 9.69375 + 6.44811i 0.397405 + 0.264347i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −32.7458 18.9058i −1.33796 0.772471i −0.351454 0.936205i \(-0.614313\pi\)
−0.986504 + 0.163735i \(0.947646\pi\)
\(600\) 0 0
\(601\) 2.90227i 0.118386i 0.998247 + 0.0591931i \(0.0188528\pi\)
−0.998247 + 0.0591931i \(0.981147\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.02339 12.1649i 0.285542 0.494572i
\(606\) 0 0
\(607\) 9.67403 5.58530i 0.392657 0.226701i −0.290654 0.956828i \(-0.593873\pi\)
0.683311 + 0.730128i \(0.260539\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.52532 2.03534i 0.142619 0.0823412i
\(612\) 0 0
\(613\) −8.12953 + 14.0808i −0.328349 + 0.568717i −0.982184 0.187920i \(-0.939825\pi\)
0.653836 + 0.756637i \(0.273159\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.34050i 0.215001i −0.994205 0.107500i \(-0.965715\pi\)
0.994205 0.107500i \(-0.0342846\pi\)
\(618\) 0 0
\(619\) 18.3669 + 10.6041i 0.738227 + 0.426216i 0.821424 0.570317i \(-0.193180\pi\)
−0.0831972 + 0.996533i \(0.526513\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.870682 + 13.7201i −0.0348831 + 0.549685i
\(624\) 0 0
\(625\) −8.22013 14.2377i −0.328805 0.569507i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −51.8122 −2.06589
\(630\) 0 0
\(631\) 44.7338 1.78082 0.890411 0.455157i \(-0.150417\pi\)
0.890411 + 0.455157i \(0.150417\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.70015 + 2.94475i 0.0674684 + 0.116859i
\(636\) 0 0
\(637\) −34.0933 + 14.2879i −1.35083 + 0.566108i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.6508 + 13.6548i 0.934152 + 0.539333i 0.888122 0.459607i \(-0.152010\pi\)
0.0460296 + 0.998940i \(0.485343\pi\)
\(642\) 0 0
\(643\) 35.7298i 1.40905i −0.709681 0.704524i \(-0.751161\pi\)
0.709681 0.704524i \(-0.248839\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.4537 35.4268i 0.804117 1.39277i −0.112768 0.993621i \(-0.535972\pi\)
0.916885 0.399150i \(-0.130695\pi\)
\(648\) 0 0
\(649\) −64.5517 + 37.2689i −2.53387 + 1.46293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.5825 + 13.0380i −0.883723 + 0.510218i −0.871884 0.489712i \(-0.837102\pi\)
−0.0118388 + 0.999930i \(0.503768\pi\)
\(654\) 0 0
\(655\) 3.38859 5.86921i 0.132403 0.229329i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.8568i 1.59156i 0.605589 + 0.795778i \(0.292938\pi\)
−0.605589 + 0.795778i \(0.707062\pi\)
\(660\) 0 0
\(661\) −6.28544 3.62890i −0.244475 0.141148i 0.372757 0.927929i \(-0.378413\pi\)
−0.617232 + 0.786781i \(0.711746\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.559939 + 1.12953i 0.0217135 + 0.0438013i
\(666\) 0 0
\(667\) −27.2201 47.1466i −1.05397 1.82553i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.3221 −0.861736
\(672\) 0 0
\(673\) 35.2465 1.35865 0.679326 0.733836i \(-0.262272\pi\)
0.679326 + 0.733836i \(0.262272\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.48172 9.49462i −0.210680 0.364908i 0.741248 0.671232i \(-0.234234\pi\)
−0.951927 + 0.306324i \(0.900901\pi\)
\(678\) 0 0
\(679\) −20.5526 + 30.8977i −0.788735 + 1.18574i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.70628 + 4.44922i 0.294873 + 0.170245i 0.640137 0.768261i \(-0.278877\pi\)
−0.345265 + 0.938505i \(0.612211\pi\)
\(684\) 0 0
\(685\) 3.48273i 0.133068i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −20.2386 + 35.0544i −0.771031 + 1.33546i
\(690\) 0 0
\(691\) 7.27987 4.20304i 0.276939 0.159891i −0.355098 0.934829i \(-0.615552\pi\)
0.632037 + 0.774938i \(0.282219\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.12562 2.95928i 0.194426 0.112252i
\(696\) 0 0
\(697\) 24.5253 42.4790i 0.928961 1.60901i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3351i 1.07020i 0.844788 + 0.535101i \(0.179727\pi\)
−0.844788 + 0.535101i \(0.820273\pi\)
\(702\) 0 0
\(703\) −4.85881 2.80524i −0.183254 0.105802i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 30.1164 14.9295i 1.13264 0.561482i
\(708\) 0 0
\(709\) 12.0434 + 20.8598i 0.452300 + 0.783406i 0.998528 0.0542300i \(-0.0172704\pi\)
−0.546229 + 0.837636i \(0.683937\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.91281 0.146536
\(714\) 0 0
\(715\) 22.0054 0.822954
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.57083 + 4.45281i 0.0958759 + 0.166062i 0.909974 0.414666i \(-0.136101\pi\)
−0.814098 + 0.580728i \(0.802768\pi\)
\(720\) 0 0
\(721\) 7.83781 + 0.497389i 0.291895 + 0.0185237i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −30.8146 17.7908i −1.14443 0.660734i
\(726\) 0 0
\(727\) 6.91889i 0.256607i 0.991735 + 0.128304i \(0.0409532\pi\)
−0.991735 + 0.128304i \(0.959047\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.72132 16.8378i 0.359556 0.622769i
\(732\) 0 0
\(733\) 14.8940 8.59904i 0.550121 0.317613i −0.199050 0.979989i \(-0.563785\pi\)
0.749171 + 0.662377i \(0.230452\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.4473 + 36.6313i −2.33711 + 1.34933i
\(738\) 0 0
\(739\) 10.6114 18.3795i 0.390347 0.676101i −0.602148 0.798384i \(-0.705688\pi\)
0.992495 + 0.122284i \(0.0390217\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.7047i 1.23651i 0.785979 + 0.618253i \(0.212159\pi\)
−0.785979 + 0.618253i \(0.787841\pi\)
\(744\) 0 0
\(745\) 5.70937 + 3.29631i 0.209175 + 0.120767i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.0156 0.825969i −0.475578 0.0301803i
\(750\) 0 0
\(751\) −2.41119 4.17630i −0.0879856 0.152395i 0.818674 0.574259i \(-0.194710\pi\)
−0.906660 + 0.421863i \(0.861376\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.45448 −0.198509
\(756\) 0 0
\(757\) −7.30426 −0.265478 −0.132739 0.991151i \(-0.542377\pi\)
−0.132739 + 0.991151i \(0.542377\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.91925 + 13.7165i 0.287072 + 0.497224i 0.973110 0.230342i \(-0.0739846\pi\)
−0.686037 + 0.727566i \(0.740651\pi\)
\(762\) 0 0
\(763\) −16.1468 + 8.00439i −0.584552 + 0.289778i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −63.0598 36.4076i −2.27696 1.31460i
\(768\) 0 0
\(769\) 47.3208i 1.70643i 0.521559 + 0.853215i \(0.325351\pi\)
−0.521559 + 0.853215i \(0.674649\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.5173 + 18.2165i −0.378282 + 0.655203i −0.990812 0.135244i \(-0.956818\pi\)
0.612531 + 0.790447i \(0.290152\pi\)
\(774\) 0 0
\(775\) 2.21475 1.27869i 0.0795562 0.0459318i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.59984 2.65572i 0.164806 0.0951510i
\(780\) 0 0
\(781\) 6.10603 10.5760i 0.218491 0.378437i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.20669i 0.292909i
\(786\) 0 0
\(787\) −33.7881 19.5076i −1.20442 0.695370i −0.242883 0.970056i \(-0.578093\pi\)
−0.961534 + 0.274685i \(0.911426\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.27519 + 13.9438i −0.329788 + 0.495786i
\(792\) 0 0
\(793\) −10.9031 18.8848i −0.387181 0.670618i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 31.6853 1.12235 0.561175 0.827697i \(-0.310349\pi\)
0.561175 + 0.827697i \(0.310349\pi\)
\(798\) 0 0
\(799\) −4.40044 −0.155676
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.12340 + 10.6060i 0.216090 + 0.374279i
\(804\) 0 0
\(805\) 6.10603 + 12.3173i 0.215209 + 0.434128i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.93123 1.11500i −0.0678985 0.0392012i 0.465666 0.884960i \(-0.345815\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(810\) 0 0
\(811\) 55.3535i 1.94373i 0.235548 + 0.971863i \(0.424312\pi\)
−0.235548 + 0.971863i \(0.575688\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.80851 + 10.0606i −0.203463 + 0.352409i
\(816\) 0 0
\(817\) 1.82328 1.05267i 0.0637885 0.0368283i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −39.8216 + 22.9910i −1.38978 + 0.802393i −0.993291 0.115645i \(-0.963107\pi\)
−0.396494 + 0.918037i \(0.629773\pi\)
\(822\) 0 0
\(823\) −21.1494 + 36.6319i −0.737223 + 1.27691i 0.216518 + 0.976279i \(0.430530\pi\)
−0.953741 + 0.300629i \(0.902803\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.1105i 0.734084i −0.930204 0.367042i \(-0.880370\pi\)
0.930204 0.367042i \(-0.119630\pi\)
\(828\) 0 0
\(829\) 47.3615 + 27.3442i 1.64493 + 0.949703i 0.979043 + 0.203652i \(0.0652812\pi\)
0.665890 + 0.746050i \(0.268052\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 39.6401 + 5.05147i 1.37345 + 0.175023i
\(834\) 0 0
\(835\) 6.70022 + 11.6051i 0.231871 + 0.401612i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.3651 −1.49713 −0.748564 0.663062i \(-0.769256\pi\)
−0.748564 + 0.663062i \(0.769256\pi\)
\(840\) 0 0
\(841\) −36.2228 −1.24906
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.73798 + 9.93847i 0.197392 + 0.341894i
\(846\) 0 0
\(847\) 3.05347 48.1163i 0.104918 1.65329i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −52.9845 30.5906i −1.81628 1.04863i
\(852\) 0 0
\(853\) 26.5989i 0.910730i −0.890305 0.455365i \(-0.849509\pi\)
0.890305 0.455365i \(-0.150491\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.8155 25.6613i 0.506090 0.876573i −0.493886 0.869527i \(-0.664424\pi\)
0.999975 0.00704593i \(-0.00224281\pi\)
\(858\) 0 0
\(859\) 4.19285 2.42074i 0.143058 0.0825947i −0.426763 0.904364i \(-0.640346\pi\)
0.569821 + 0.821769i \(0.307013\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.0258 10.9846i 0.647647 0.373919i −0.139907 0.990165i \(-0.544680\pi\)
0.787554 + 0.616246i \(0.211347\pi\)
\(864\) 0 0
\(865\) −7.61410 + 13.1880i −0.258887 + 0.448406i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 43.6286i 1.48000i
\(870\) 0 0
\(871\) −61.9810 35.7847i −2.10015 1.21252i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 15.9718 + 10.6242i 0.539945 + 0.359162i
\(876\) 0 0
\(877\) 21.2989 + 36.8907i 0.719212 + 1.24571i 0.961312 + 0.275461i \(0.0888304\pi\)
−0.242100 + 0.970251i \(0.577836\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.2523 1.38982 0.694912 0.719095i \(-0.255443\pi\)
0.694912 + 0.719095i \(0.255443\pi\)
\(882\) 0 0
\(883\) 4.21206 0.141747 0.0708736 0.997485i \(-0.477421\pi\)
0.0708736 + 0.997485i \(0.477421\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.79585 3.11051i −0.0602988 0.104441i 0.834300 0.551310i \(-0.185872\pi\)
−0.894599 + 0.446870i \(0.852539\pi\)
\(888\) 0 0
\(889\) 9.71744 + 6.46386i 0.325912 + 0.216791i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.412662 0.238250i −0.0138092 0.00797275i
\(894\) 0 0
\(895\) 13.4798i 0.450580i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.34389 4.05974i 0.0781733 0.135400i
\(900\) 0 0
\(901\) 37.8940 21.8781i 1.26243 0.728865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.75034 1.58791i 0.0914244 0.0527839i
\(906\) 0 0
\(907\) −2.92394 + 5.06440i −0.0970877 + 0.168161i −0.910478 0.413558i \(-0.864286\pi\)
0.813390 + 0.581718i \(0.197619\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.59956i 0.251785i 0.992044 + 0.125892i \(0.0401794\pi\)
−0.992044 + 0.125892i \(0.959821\pi\)
\(912\) 0 0
\(913\) 18.0436 + 10.4175i 0.597156 + 0.344768i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.47321 23.2148i 0.0486498 0.766619i
\(918\) 0 0
\(919\) −13.3062 23.0471i −0.438933 0.760254i 0.558675 0.829387i \(-0.311310\pi\)
−0.997607 + 0.0691331i \(0.977977\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.9298 0.392675
\(924\) 0 0
\(925\) −39.9874 −1.31478
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.2056 + 45.3895i 0.859779 + 1.48918i 0.872140 + 0.489257i \(0.162732\pi\)
−0.0123610 + 0.999924i \(0.503935\pi\)
\(930\) 0 0
\(931\) 3.44385 + 2.61992i 0.112867 + 0.0858646i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20.6010 11.8940i −0.673723 0.388974i
\(936\) 0 0
\(937\) 49.0719i 1.60311i −0.597922 0.801554i \(-0.704007\pi\)
0.597922 0.801554i \(-0.295993\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.7319 23.7843i 0.447647 0.775348i −0.550585 0.834779i \(-0.685595\pi\)
0.998232 + 0.0594314i \(0.0189287\pi\)
\(942\) 0 0
\(943\) 50.1604 28.9601i 1.63345 0.943071i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 51.0532 29.4756i 1.65901 0.957828i 0.685833 0.727759i \(-0.259438\pi\)
0.973174 0.230069i \(-0.0738953\pi\)
\(948\) 0 0
\(949\) −5.98188 + 10.3609i −0.194180 + 0.336330i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.6649i 0.539828i 0.962884 + 0.269914i \(0.0869953\pi\)
−0.962884 + 0.269914i \(0.913005\pi\)
\(954\) 0 0
\(955\) 9.59259 + 5.53828i 0.310409 + 0.179215i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.30927 10.7101i −0.171445 0.345846i
\(960\) 0 0
\(961\) −15.3315 26.5550i −0.494566 0.856613i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.59616 0.0513822
\(966\) 0 0
\(967\) 23.3459 0.750753 0.375376 0.926872i \(-0.377513\pi\)
0.375376 + 0.926872i \(0.377513\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.66507 + 13.2763i 0.245984 + 0.426056i 0.962408 0.271609i \(-0.0875557\pi\)
−0.716424 + 0.697665i \(0.754222\pi\)
\(972\) 0 0
\(973\) 11.2510 16.9142i 0.360690 0.542243i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −17.1008 9.87316i −0.547103 0.315870i 0.200849 0.979622i \(-0.435630\pi\)
−0.747953 + 0.663752i \(0.768963\pi\)
\(978\) 0 0
\(979\) 28.0894i 0.897742i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.4194 19.7790i 0.364222 0.630851i −0.624429 0.781082i \(-0.714668\pi\)
0.988651 + 0.150230i \(0.0480016\pi\)
\(984\) 0 0
\(985\) −13.5436 + 7.81940i −0.431535 + 0.249147i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19.8825 11.4792i 0.632228 0.365017i
\(990\) 0 0
\(991\) −3.92125 + 6.79180i −0.124563 + 0.215749i −0.921562 0.388232i \(-0.873086\pi\)
0.796999 + 0.603980i \(0.206419\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.82776i 0.153050i
\(996\) 0 0
\(997\) 0.608720 + 0.351445i 0.0192783 + 0.0111304i 0.509608 0.860407i \(-0.329790\pi\)
−0.490330 + 0.871537i \(0.663124\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.t.e.269.3 12
3.2 odd 2 inner 756.2.t.e.269.4 yes 12
7.3 odd 6 5292.2.f.e.2645.5 12
7.4 even 3 5292.2.f.e.2645.7 12
7.5 odd 6 inner 756.2.t.e.593.4 yes 12
9.2 odd 6 2268.2.bm.i.1025.3 12
9.4 even 3 2268.2.w.i.269.3 12
9.5 odd 6 2268.2.w.i.269.4 12
9.7 even 3 2268.2.bm.i.1025.4 12
21.5 even 6 inner 756.2.t.e.593.3 yes 12
21.11 odd 6 5292.2.f.e.2645.6 12
21.17 even 6 5292.2.f.e.2645.8 12
63.5 even 6 2268.2.bm.i.593.4 12
63.40 odd 6 2268.2.bm.i.593.3 12
63.47 even 6 2268.2.w.i.1349.3 12
63.61 odd 6 2268.2.w.i.1349.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.3 12 1.1 even 1 trivial
756.2.t.e.269.4 yes 12 3.2 odd 2 inner
756.2.t.e.593.3 yes 12 21.5 even 6 inner
756.2.t.e.593.4 yes 12 7.5 odd 6 inner
2268.2.w.i.269.3 12 9.4 even 3
2268.2.w.i.269.4 12 9.5 odd 6
2268.2.w.i.1349.3 12 63.47 even 6
2268.2.w.i.1349.4 12 63.61 odd 6
2268.2.bm.i.593.3 12 63.40 odd 6
2268.2.bm.i.593.4 12 63.5 even 6
2268.2.bm.i.1025.3 12 9.2 odd 6
2268.2.bm.i.1025.4 12 9.7 even 3
5292.2.f.e.2645.5 12 7.3 odd 6
5292.2.f.e.2645.6 12 21.11 odd 6
5292.2.f.e.2645.7 12 7.4 even 3
5292.2.f.e.2645.8 12 21.17 even 6