Properties

Label 2268.2.bm.i.1025.4
Level $2268$
Weight $2$
Character 2268.1025
Analytic conductor $18.110$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(593,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{9} \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.4
Root \(1.56052 + 0.900969i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1025
Dual form 2268.2.bm.i.593.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.770835 q^{5} +(-0.167563 + 2.64044i) q^{7} -5.40581i q^{11} +(-4.57338 - 2.64044i) q^{13} +(2.85433 - 4.94385i) q^{17} +(0.535344 - 0.309081i) q^{19} +6.74094i q^{23} -4.40581 q^{25} +(-6.99408 + 4.03803i) q^{29} +(-0.502688 + 0.290227i) q^{31} +(-0.129163 + 2.03534i) q^{35} +(-4.53803 - 7.86010i) q^{37} +(-4.29615 + 7.44116i) q^{41} +(-1.70291 - 2.94952i) q^{43} +(-0.385418 + 0.667563i) q^{47} +(-6.94385 - 0.884879i) q^{49} +(6.63798 + 3.83244i) q^{53} -4.16699i q^{55} +(-6.89423 - 11.9412i) q^{59} +(3.57606 + 2.06464i) q^{61} +(-3.52532 - 2.03534i) q^{65} +(-6.77628 - 11.7369i) q^{67} -2.25906i q^{71} +(1.96197 + 1.13274i) q^{73} +(14.2737 + 0.905813i) q^{77} +(4.03534 - 6.98942i) q^{79} +(-1.92709 - 3.33781i) q^{83} +(2.20022 - 3.81089i) q^{85} +(-2.59808 - 4.50000i) q^{89} +(7.73825 - 11.6333i) q^{91} +(0.412662 - 0.238250i) q^{95} +(-12.1468 + 7.01293i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 18 q^{19} - 24 q^{37} + 6 q^{43} - 18 q^{61} + 54 q^{73} + 24 q^{79} + 6 q^{85} + 42 q^{91} - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.770835 0.344728 0.172364 0.985033i \(-0.444859\pi\)
0.172364 + 0.985033i \(0.444859\pi\)
\(6\) 0 0
\(7\) −0.167563 + 2.64044i −0.0633328 + 0.997992i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.40581i 1.62991i −0.579521 0.814957i \(-0.696760\pi\)
0.579521 0.814957i \(-0.303240\pi\)
\(12\) 0 0
\(13\) −4.57338 2.64044i −1.26843 0.732326i −0.293736 0.955887i \(-0.594899\pi\)
−0.974690 + 0.223560i \(0.928232\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.85433 4.94385i 0.692277 1.19906i −0.278813 0.960345i \(-0.589941\pi\)
0.971090 0.238713i \(-0.0767256\pi\)
\(18\) 0 0
\(19\) 0.535344 0.309081i 0.122816 0.0709080i −0.437333 0.899300i \(-0.644077\pi\)
0.560150 + 0.828391i \(0.310744\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.74094i 1.40558i 0.711396 + 0.702791i \(0.248063\pi\)
−0.711396 + 0.702791i \(0.751937\pi\)
\(24\) 0 0
\(25\) −4.40581 −0.881163
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.99408 + 4.03803i −1.29877 + 0.749844i −0.980191 0.198053i \(-0.936538\pi\)
−0.318576 + 0.947897i \(0.603205\pi\)
\(30\) 0 0
\(31\) −0.502688 + 0.290227i −0.0902855 + 0.0521264i −0.544463 0.838785i \(-0.683267\pi\)
0.454177 + 0.890911i \(0.349933\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.129163 + 2.03534i −0.0218326 + 0.344036i
\(36\) 0 0
\(37\) −4.53803 7.86010i −0.746048 1.29219i −0.949704 0.313150i \(-0.898616\pi\)
0.203656 0.979043i \(-0.434718\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.29615 + 7.44116i −0.670947 + 1.16211i 0.306690 + 0.951810i \(0.400779\pi\)
−0.977636 + 0.210304i \(0.932555\pi\)
\(42\) 0 0
\(43\) −1.70291 2.94952i −0.259691 0.449798i 0.706468 0.707745i \(-0.250287\pi\)
−0.966159 + 0.257947i \(0.916954\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.385418 + 0.667563i −0.0562189 + 0.0973740i −0.892765 0.450522i \(-0.851238\pi\)
0.836546 + 0.547896i \(0.184571\pi\)
\(48\) 0 0
\(49\) −6.94385 0.884879i −0.991978 0.126411i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.63798 + 3.83244i 0.911796 + 0.526426i 0.881009 0.473100i \(-0.156865\pi\)
0.0307875 + 0.999526i \(0.490198\pi\)
\(54\) 0 0
\(55\) 4.16699i 0.561877i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.89423 11.9412i −0.897552 1.55461i −0.830614 0.556849i \(-0.812010\pi\)
−0.0669387 0.997757i \(-0.521323\pi\)
\(60\) 0 0
\(61\) 3.57606 + 2.06464i 0.457868 + 0.264350i 0.711147 0.703043i \(-0.248176\pi\)
−0.253279 + 0.967393i \(0.581509\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.52532 2.03534i −0.437262 0.252453i
\(66\) 0 0
\(67\) −6.77628 11.7369i −0.827855 1.43389i −0.899718 0.436472i \(-0.856228\pi\)
0.0718632 0.997414i \(-0.477105\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.25906i 0.268101i −0.990974 0.134051i \(-0.957202\pi\)
0.990974 0.134051i \(-0.0427985\pi\)
\(72\) 0 0
\(73\) 1.96197 + 1.13274i 0.229631 + 0.132577i 0.610402 0.792092i \(-0.291008\pi\)
−0.380771 + 0.924669i \(0.624341\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.2737 + 0.905813i 1.62664 + 0.103227i
\(78\) 0 0
\(79\) 4.03534 6.98942i 0.454012 0.786371i −0.544619 0.838683i \(-0.683326\pi\)
0.998631 + 0.0523123i \(0.0166591\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.92709 3.33781i −0.211525 0.366373i 0.740667 0.671873i \(-0.234510\pi\)
−0.952192 + 0.305500i \(0.901176\pi\)
\(84\) 0 0
\(85\) 2.20022 3.81089i 0.238647 0.413349i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.59808 4.50000i −0.275396 0.476999i 0.694839 0.719165i \(-0.255475\pi\)
−0.970235 + 0.242166i \(0.922142\pi\)
\(90\) 0 0
\(91\) 7.73825 11.6333i 0.811189 1.21950i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.412662 0.238250i 0.0423382 0.0244440i
\(96\) 0 0
\(97\) −12.1468 + 7.01293i −1.23332 + 0.712055i −0.967720 0.252029i \(-0.918902\pi\)
−0.265596 + 0.964084i \(0.585569\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.7048 1.26418 0.632088 0.774897i \(-0.282198\pi\)
0.632088 + 0.774897i \(0.282198\pi\)
\(102\) 0 0
\(103\) 2.96837i 0.292483i −0.989249 0.146241i \(-0.953282\pi\)
0.989249 0.146241i \(-0.0467176\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.26891 2.46466i 0.412691 0.238267i −0.279254 0.960217i \(-0.590087\pi\)
0.691945 + 0.721950i \(0.256754\pi\)
\(108\) 0 0
\(109\) 3.40581 5.89904i 0.326218 0.565026i −0.655540 0.755160i \(-0.727559\pi\)
0.981758 + 0.190134i \(0.0608924\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.48172 + 3.16487i 0.515677 + 0.297726i 0.735164 0.677889i \(-0.237105\pi\)
−0.219487 + 0.975615i \(0.570438\pi\)
\(114\) 0 0
\(115\) 5.19615i 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.5756 + 8.36509i 1.15281 + 0.766827i
\(120\) 0 0
\(121\) −18.2228 −1.65662
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.25033 −0.648489
\(126\) 0 0
\(127\) −4.41119 −0.391430 −0.195715 0.980661i \(-0.562703\pi\)
−0.195715 + 0.980661i \(0.562703\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.79200 −0.768161 −0.384080 0.923300i \(-0.625481\pi\)
−0.384080 + 0.923300i \(0.625481\pi\)
\(132\) 0 0
\(133\) 0.726406 + 1.46533i 0.0629874 + 0.127061i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.51812i 0.386009i −0.981198 0.193005i \(-0.938177\pi\)
0.981198 0.193005i \(-0.0618232\pi\)
\(138\) 0 0
\(139\) −6.64944 3.83906i −0.563998 0.325624i 0.190750 0.981639i \(-0.438908\pi\)
−0.754749 + 0.656014i \(0.772241\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.2737 + 24.7228i −1.19363 + 2.06743i
\(144\) 0 0
\(145\) −5.39128 + 3.11266i −0.447721 + 0.258492i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.55257i 0.700653i −0.936628 0.350327i \(-0.886071\pi\)
0.936628 0.350327i \(-0.113929\pi\)
\(150\) 0 0
\(151\) −7.07606 −0.575842 −0.287921 0.957654i \(-0.592964\pi\)
−0.287921 + 0.957654i \(0.592964\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.387490 + 0.223717i −0.0311239 + 0.0179694i
\(156\) 0 0
\(157\) −9.22013 + 5.32324i −0.735846 + 0.424841i −0.820557 0.571565i \(-0.806337\pi\)
0.0847108 + 0.996406i \(0.473003\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.7990 1.12953i −1.40276 0.0890195i
\(162\) 0 0
\(163\) −7.53534 13.0516i −0.590214 1.02228i −0.994203 0.107517i \(-0.965710\pi\)
0.403990 0.914764i \(-0.367623\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.69215 15.0553i 0.672619 1.16501i −0.304540 0.952500i \(-0.598503\pi\)
0.977159 0.212511i \(-0.0681641\pi\)
\(168\) 0 0
\(169\) 7.44385 + 12.8931i 0.572603 + 0.991778i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.87772 + 17.1087i −0.750989 + 1.30075i 0.196354 + 0.980533i \(0.437090\pi\)
−0.947344 + 0.320219i \(0.896244\pi\)
\(174\) 0 0
\(175\) 0.738250 11.6333i 0.0558065 0.879394i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.1444 + 8.74363i 1.13195 + 0.653529i 0.944424 0.328731i \(-0.106621\pi\)
0.187522 + 0.982260i \(0.439954\pi\)
\(180\) 0 0
\(181\) 4.11997i 0.306235i 0.988208 + 0.153118i \(0.0489313\pi\)
−0.988208 + 0.153118i \(0.951069\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.49807 6.05884i −0.257184 0.445455i
\(186\) 0 0
\(187\) −26.7255 15.4300i −1.95436 1.12835i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.4444 + 7.18478i 0.900446 + 0.519873i 0.877345 0.479860i \(-0.159313\pi\)
0.0231011 + 0.999733i \(0.492646\pi\)
\(192\) 0 0
\(193\) −1.03534 1.79327i −0.0745257 0.129082i 0.826354 0.563151i \(-0.190411\pi\)
−0.900880 + 0.434068i \(0.857078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 20.2881i 1.44547i −0.691126 0.722735i \(-0.742885\pi\)
0.691126 0.722735i \(-0.257115\pi\)
\(198\) 0 0
\(199\) 5.42394 + 3.13151i 0.384493 + 0.221987i 0.679771 0.733424i \(-0.262079\pi\)
−0.295279 + 0.955411i \(0.595412\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −9.49023 19.1441i −0.666084 1.34365i
\(204\) 0 0
\(205\) −3.31163 + 5.73591i −0.231294 + 0.400613i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.67083 2.89397i −0.115574 0.200180i
\(210\) 0 0
\(211\) −1.86778 + 3.23509i −0.128583 + 0.222713i −0.923128 0.384493i \(-0.874376\pi\)
0.794545 + 0.607206i \(0.207710\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.31266 2.27359i −0.0895227 0.155058i
\(216\) 0 0
\(217\) −0.682096 1.37595i −0.0463037 0.0934056i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −26.1079 + 15.0734i −1.75620 + 1.01394i
\(222\) 0 0
\(223\) 13.7201 7.92132i 0.918768 0.530451i 0.0355260 0.999369i \(-0.488689\pi\)
0.883242 + 0.468918i \(0.155356\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.91281 0.259702 0.129851 0.991534i \(-0.458550\pi\)
0.129851 + 0.991534i \(0.458550\pi\)
\(228\) 0 0
\(229\) 5.07372i 0.335281i 0.985848 + 0.167640i \(0.0536147\pi\)
−0.985848 + 0.167640i \(0.946385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.56891 0.905813i 0.102783 0.0593418i −0.447727 0.894170i \(-0.647766\pi\)
0.550510 + 0.834828i \(0.314433\pi\)
\(234\) 0 0
\(235\) −0.297093 + 0.514581i −0.0193802 + 0.0335676i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.43813 + 4.29440i 0.481132 + 0.277782i 0.720888 0.693051i \(-0.243734\pi\)
−0.239756 + 0.970833i \(0.577067\pi\)
\(240\) 0 0
\(241\) 23.8470i 1.53612i 0.640377 + 0.768061i \(0.278778\pi\)
−0.640377 + 0.768061i \(0.721222\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.35256 0.682096i −0.341963 0.0435775i
\(246\) 0 0
\(247\) −3.26444 −0.207711
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.25033 0.457637 0.228818 0.973469i \(-0.426514\pi\)
0.228818 + 0.973469i \(0.426514\pi\)
\(252\) 0 0
\(253\) 36.4403 2.29098
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.5474 1.78074 0.890370 0.455237i \(-0.150445\pi\)
0.890370 + 0.455237i \(0.150445\pi\)
\(258\) 0 0
\(259\) 21.5145 10.6653i 1.33685 0.662712i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.25906i 0.139300i −0.997572 0.0696498i \(-0.977812\pi\)
0.997572 0.0696498i \(-0.0221882\pi\)
\(264\) 0 0
\(265\) 5.11679 + 2.95418i 0.314322 + 0.181474i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.33605 + 14.4385i −0.508258 + 0.880329i 0.491696 + 0.870767i \(0.336377\pi\)
−0.999954 + 0.00956210i \(0.996956\pi\)
\(270\) 0 0
\(271\) −27.2528 + 15.7344i −1.65549 + 0.955797i −0.680730 + 0.732534i \(0.738337\pi\)
−0.974758 + 0.223263i \(0.928329\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.8170i 1.43622i
\(276\) 0 0
\(277\) 19.0398 1.14399 0.571996 0.820256i \(-0.306169\pi\)
0.571996 + 0.820256i \(0.306169\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.58142 + 3.79978i −0.392614 + 0.226676i −0.683292 0.730145i \(-0.739453\pi\)
0.290678 + 0.956821i \(0.406119\pi\)
\(282\) 0 0
\(283\) 26.8315 15.4912i 1.59497 0.920856i 0.602533 0.798094i \(-0.294158\pi\)
0.992436 0.122762i \(-0.0391752\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −18.9281 12.5906i −1.11729 0.743199i
\(288\) 0 0
\(289\) −7.79440 13.5003i −0.458494 0.794136i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.46891 4.27628i 0.144235 0.249823i −0.784852 0.619683i \(-0.787261\pi\)
0.929087 + 0.369860i \(0.120594\pi\)
\(294\) 0 0
\(295\) −5.31431 9.20466i −0.309411 0.535916i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 17.7990 30.8288i 1.02935 1.78288i
\(300\) 0 0
\(301\) 8.07338 4.00219i 0.465342 0.230683i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.75656 + 1.59150i 0.157840 + 0.0911289i
\(306\) 0 0
\(307\) 7.95736i 0.454151i 0.973877 + 0.227075i \(0.0729164\pi\)
−0.973877 + 0.227075i \(0.927084\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.93783 + 8.55257i 0.279998 + 0.484971i 0.971384 0.237514i \(-0.0763327\pi\)
−0.691386 + 0.722486i \(0.742999\pi\)
\(312\) 0 0
\(313\) −14.5707 8.41239i −0.823584 0.475496i 0.0280668 0.999606i \(-0.491065\pi\)
−0.851651 + 0.524110i \(0.824398\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.4515 12.3850i −1.20483 0.695611i −0.243208 0.969974i \(-0.578200\pi\)
−0.961626 + 0.274363i \(0.911533\pi\)
\(318\) 0 0
\(319\) 21.8288 + 37.8087i 1.22218 + 2.11688i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.52888i 0.196352i
\(324\) 0 0
\(325\) 20.1494 + 11.6333i 1.11769 + 0.645299i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.69808 1.12953i −0.0936181 0.0622730i
\(330\) 0 0
\(331\) 9.00269 15.5931i 0.494833 0.857075i −0.505150 0.863032i \(-0.668563\pi\)
0.999982 + 0.00595666i \(0.00189608\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.22340 9.04719i −0.285385 0.494301i
\(336\) 0 0
\(337\) −2.60872 + 4.51844i −0.142106 + 0.246135i −0.928290 0.371858i \(-0.878721\pi\)
0.786183 + 0.617993i \(0.212054\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.56891 + 2.71744i 0.0849615 + 0.147158i
\(342\) 0 0
\(343\) 3.50000 18.1865i 0.188982 0.981981i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.1013 + 8.14138i −0.756996 + 0.437052i −0.828216 0.560409i \(-0.810644\pi\)
0.0712201 + 0.997461i \(0.477311\pi\)
\(348\) 0 0
\(349\) −15.0734 + 8.70262i −0.806859 + 0.465840i −0.845864 0.533399i \(-0.820915\pi\)
0.0390047 + 0.999239i \(0.487581\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 29.8894 1.59085 0.795427 0.606050i \(-0.207247\pi\)
0.795427 + 0.606050i \(0.207247\pi\)
\(354\) 0 0
\(355\) 1.74136i 0.0924220i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.2700 11.7029i 1.06981 0.617656i 0.141681 0.989912i \(-0.454749\pi\)
0.928130 + 0.372257i \(0.121416\pi\)
\(360\) 0 0
\(361\) −9.30894 + 16.1236i −0.489944 + 0.848608i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.51235 + 0.873158i 0.0791602 + 0.0457032i
\(366\) 0 0
\(367\) 20.0567i 1.04695i −0.852041 0.523474i \(-0.824636\pi\)
0.852041 0.523474i \(-0.175364\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.2316 + 16.8850i −0.583116 + 0.876626i
\(372\) 0 0
\(373\) −7.98925 −0.413667 −0.206834 0.978376i \(-0.566316\pi\)
−0.206834 + 0.978376i \(0.566316\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.6487 2.19652
\(378\) 0 0
\(379\) −34.5816 −1.77634 −0.888170 0.459516i \(-0.848023\pi\)
−0.888170 + 0.459516i \(0.848023\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.02117 0.409862 0.204931 0.978776i \(-0.434303\pi\)
0.204931 + 0.978776i \(0.434303\pi\)
\(384\) 0 0
\(385\) 11.0027 + 0.698233i 0.560749 + 0.0355852i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.4112i 0.933484i −0.884393 0.466742i \(-0.845428\pi\)
0.884393 0.466742i \(-0.154572\pi\)
\(390\) 0 0
\(391\) 33.3262 + 19.2409i 1.68538 + 0.973052i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.11058 5.38769i 0.156511 0.271084i
\(396\) 0 0
\(397\) −21.9973 + 12.7002i −1.10401 + 0.637402i −0.937272 0.348598i \(-0.886658\pi\)
−0.166741 + 0.986001i \(0.553324\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.58881i 0.428905i −0.976734 0.214452i \(-0.931203\pi\)
0.976734 0.214452i \(-0.0687967\pi\)
\(402\) 0 0
\(403\) 3.06531 0.152694
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −42.4902 + 24.5318i −2.10616 + 1.21599i
\(408\) 0 0
\(409\) 3.04072 1.75556i 0.150354 0.0868069i −0.422936 0.906160i \(-0.639000\pi\)
0.573290 + 0.819353i \(0.305667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 32.6851 16.2029i 1.60833 0.797293i
\(414\) 0 0
\(415\) −1.48547 2.57290i −0.0729187 0.126299i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −14.7862 + 25.6105i −0.722355 + 1.25116i 0.237699 + 0.971339i \(0.423607\pi\)
−0.960054 + 0.279816i \(0.909726\pi\)
\(420\) 0 0
\(421\) 11.5172 + 19.9484i 0.561315 + 0.972226i 0.997382 + 0.0723120i \(0.0230377\pi\)
−0.436067 + 0.899914i \(0.643629\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.5756 + 21.7817i −0.610008 + 1.05657i
\(426\) 0 0
\(427\) −6.05078 + 9.09643i −0.292818 + 0.440207i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.2386 11.6848i −0.974861 0.562836i −0.0741463 0.997247i \(-0.523623\pi\)
−0.900715 + 0.434411i \(0.856957\pi\)
\(432\) 0 0
\(433\) 37.9199i 1.82231i 0.412059 + 0.911157i \(0.364810\pi\)
−0.412059 + 0.911157i \(0.635190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.08350 + 3.60872i 0.0996671 + 0.172628i
\(438\) 0 0
\(439\) 2.71744 + 1.56891i 0.129696 + 0.0748802i 0.563444 0.826154i \(-0.309476\pi\)
−0.433748 + 0.901034i \(0.642809\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −20.9822 12.1141i −0.996896 0.575558i −0.0895675 0.995981i \(-0.528548\pi\)
−0.907328 + 0.420423i \(0.861882\pi\)
\(444\) 0 0
\(445\) −2.00269 3.46876i −0.0949365 0.164435i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.1812i 1.18837i 0.804327 + 0.594187i \(0.202526\pi\)
−0.804327 + 0.594187i \(0.797474\pi\)
\(450\) 0 0
\(451\) 40.2255 + 23.2242i 1.89415 + 1.09359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 5.96492 8.96734i 0.279640 0.420396i
\(456\) 0 0
\(457\) 13.1060 22.7003i 0.613074 1.06188i −0.377645 0.925951i \(-0.623266\pi\)
0.990719 0.135925i \(-0.0434007\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.899998 + 1.55884i 0.0419171 + 0.0726026i 0.886223 0.463259i \(-0.153320\pi\)
−0.844306 + 0.535862i \(0.819987\pi\)
\(462\) 0 0
\(463\) 10.2228 17.7064i 0.475095 0.822888i −0.524499 0.851411i \(-0.675747\pi\)
0.999593 + 0.0285234i \(0.00908051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.25271 + 9.09797i 0.243067 + 0.421004i 0.961586 0.274503i \(-0.0885133\pi\)
−0.718520 + 0.695507i \(0.755180\pi\)
\(468\) 0 0
\(469\) 32.1259 15.9257i 1.48344 0.735381i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −15.9446 + 9.20560i −0.733132 + 0.423274i
\(474\) 0 0
\(475\) −2.35862 + 1.36175i −0.108221 + 0.0624815i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.96699 −0.272639 −0.136319 0.990665i \(-0.543527\pi\)
−0.136319 + 0.990665i \(0.543527\pi\)
\(480\) 0 0
\(481\) 47.9296i 2.18540i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.36314 + 5.40581i −0.425158 + 0.245465i
\(486\) 0 0
\(487\) −12.0199 + 20.8191i −0.544674 + 0.943403i 0.453953 + 0.891026i \(0.350013\pi\)
−0.998627 + 0.0523777i \(0.983320\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.6697 + 10.7790i 0.842553 + 0.486448i 0.858131 0.513430i \(-0.171626\pi\)
−0.0155783 + 0.999879i \(0.504959\pi\)
\(492\) 0 0
\(493\) 46.1035i 2.07640i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.96492 + 0.378535i 0.267563 + 0.0169796i
\(498\) 0 0
\(499\) 28.8514 1.29157 0.645784 0.763520i \(-0.276531\pi\)
0.645784 + 0.763520i \(0.276531\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.7805 −0.926555 −0.463278 0.886213i \(-0.653327\pi\)
−0.463278 + 0.886213i \(0.653327\pi\)
\(504\) 0 0
\(505\) 9.79331 0.435797
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −25.4055 −1.12608 −0.563039 0.826430i \(-0.690368\pi\)
−0.563039 + 0.826430i \(0.690368\pi\)
\(510\) 0 0
\(511\) −3.31969 + 4.99065i −0.146855 + 0.220773i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.28813i 0.100827i
\(516\) 0 0
\(517\) 3.60872 + 2.08350i 0.158711 + 0.0916320i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.02709 1.77897i 0.0449976 0.0779381i −0.842649 0.538463i \(-0.819005\pi\)
0.887647 + 0.460524i \(0.152339\pi\)
\(522\) 0 0
\(523\) −9.81790 + 5.66837i −0.429307 + 0.247860i −0.699051 0.715071i \(-0.746394\pi\)
0.269744 + 0.962932i \(0.413061\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.31362i 0.144343i
\(528\) 0 0
\(529\) −22.4403 −0.975663
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 39.2959 22.6875i 1.70209 0.982704i
\(534\) 0 0
\(535\) 3.29063 1.89984i 0.142266 0.0821374i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.78349 + 37.5371i −0.206040 + 1.61684i
\(540\) 0 0
\(541\) −9.39128 16.2662i −0.403763 0.699337i 0.590414 0.807101i \(-0.298965\pi\)
−0.994177 + 0.107763i \(0.965631\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.62532 4.54719i 0.112456 0.194780i
\(546\) 0 0
\(547\) 3.45928 + 5.99165i 0.147908 + 0.256184i 0.930454 0.366408i \(-0.119413\pi\)
−0.782546 + 0.622593i \(0.786079\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.49616 + 4.32347i −0.106340 + 0.184186i
\(552\) 0 0
\(553\) 17.7790 + 11.8262i 0.756039 + 0.502903i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.00704 + 5.20022i 0.381641 + 0.220340i 0.678532 0.734571i \(-0.262617\pi\)
−0.296891 + 0.954911i \(0.595950\pi\)
\(558\) 0 0
\(559\) 17.9857i 0.760714i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.01074 5.21475i −0.126887 0.219776i 0.795582 0.605846i \(-0.207165\pi\)
−0.922469 + 0.386071i \(0.873832\pi\)
\(564\) 0 0
\(565\) 4.22550 + 2.43960i 0.177768 + 0.102635i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 25.4208 + 14.6767i 1.06570 + 0.615280i 0.927002 0.375055i \(-0.122376\pi\)
0.138694 + 0.990335i \(0.455710\pi\)
\(570\) 0 0
\(571\) −8.61410 14.9201i −0.360489 0.624385i 0.627553 0.778574i \(-0.284057\pi\)
−0.988041 + 0.154189i \(0.950723\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6993i 1.23855i
\(576\) 0 0
\(577\) 1.85594 + 1.07153i 0.0772636 + 0.0446082i 0.538134 0.842859i \(-0.319129\pi\)
−0.460870 + 0.887467i \(0.652463\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.13621 4.52907i 0.379034 0.187897i
\(582\) 0 0
\(583\) 20.7174 35.8837i 0.858029 1.48615i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.79200 + 15.2282i 0.362885 + 0.628535i 0.988434 0.151650i \(-0.0484585\pi\)
−0.625550 + 0.780184i \(0.715125\pi\)
\(588\) 0 0
\(589\) −0.179407 + 0.310743i −0.00739235 + 0.0128039i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1469 21.0391i −0.498815 0.863973i 0.501184 0.865341i \(-0.332898\pi\)
−0.999999 + 0.00136757i \(0.999565\pi\)
\(594\) 0 0
\(595\) 9.69375 + 6.44811i 0.397405 + 0.264347i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 32.7458 18.9058i 1.33796 0.772471i 0.351454 0.936205i \(-0.385687\pi\)
0.986504 + 0.163735i \(0.0523541\pi\)
\(600\) 0 0
\(601\) 2.51344 1.45114i 0.102525 0.0591931i −0.447861 0.894103i \(-0.647814\pi\)
0.550386 + 0.834910i \(0.314481\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0468 −0.571083
\(606\) 0 0
\(607\) 11.1706i 0.453401i 0.973965 + 0.226701i \(0.0727939\pi\)
−0.973965 + 0.226701i \(0.927206\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.52532 2.03534i 0.142619 0.0823412i
\(612\) 0 0
\(613\) −8.12953 + 14.0808i −0.328349 + 0.568717i −0.982184 0.187920i \(-0.939825\pi\)
0.653836 + 0.756637i \(0.273159\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.62501 + 2.67025i 0.186196 + 0.107500i 0.590200 0.807257i \(-0.299049\pi\)
−0.404005 + 0.914757i \(0.632382\pi\)
\(618\) 0 0
\(619\) 21.2082i 0.852431i −0.904622 0.426216i \(-0.859846\pi\)
0.904622 0.426216i \(-0.140154\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.3173 6.10603i 0.493483 0.244633i
\(624\) 0 0
\(625\) 16.4403 0.657610
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −51.8122 −2.06589
\(630\) 0 0
\(631\) 44.7338 1.78082 0.890411 0.455157i \(-0.150417\pi\)
0.890411 + 0.455157i \(0.150417\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.40030 −0.134937
\(636\) 0 0
\(637\) 29.4203 + 22.3817i 1.16568 + 0.886795i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.3096i 1.07867i −0.842093 0.539333i \(-0.818676\pi\)
0.842093 0.539333i \(-0.181324\pi\)
\(642\) 0 0
\(643\) 30.9429 + 17.8649i 1.22027 + 0.704524i 0.964976 0.262340i \(-0.0844941\pi\)
0.255295 + 0.966863i \(0.417827\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.4537 35.4268i 0.804117 1.39277i −0.112768 0.993621i \(-0.535972\pi\)
0.916885 0.399150i \(-0.130695\pi\)
\(648\) 0 0
\(649\) −64.5517 + 37.2689i −2.53387 + 1.46293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.0761i 1.02044i −0.860045 0.510218i \(-0.829565\pi\)
0.860045 0.510218i \(-0.170435\pi\)
\(654\) 0 0
\(655\) −6.77718 −0.264806
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 35.3830 20.4284i 1.37833 0.795778i 0.386370 0.922344i \(-0.373729\pi\)
0.991958 + 0.126566i \(0.0403956\pi\)
\(660\) 0 0
\(661\) 6.28544 3.62890i 0.244475 0.141148i −0.372757 0.927929i \(-0.621587\pi\)
0.617232 + 0.786781i \(0.288254\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.559939 + 1.12953i 0.0217135 + 0.0438013i
\(666\) 0 0
\(667\) −27.2201 47.1466i −1.05397 1.82553i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.1611 19.3315i 0.430868 0.746286i
\(672\) 0 0
\(673\) −17.6233 30.5244i −0.679326 1.17663i −0.975184 0.221396i \(-0.928939\pi\)
0.295858 0.955232i \(-0.404395\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.48172 + 9.49462i −0.210680 + 0.364908i −0.951927 0.306324i \(-0.900901\pi\)
0.741248 + 0.671232i \(0.234234\pi\)
\(678\) 0 0
\(679\) −16.4819 33.2479i −0.632516 1.27594i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.70628 + 4.44922i 0.294873 + 0.170245i 0.640137 0.768261i \(-0.278877\pi\)
−0.345265 + 0.938505i \(0.612211\pi\)
\(684\) 0 0
\(685\) 3.48273i 0.133068i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −20.2386 35.0544i −0.771031 1.33546i
\(690\) 0 0
\(691\) −7.27987 4.20304i −0.276939 0.159891i 0.355098 0.934829i \(-0.384448\pi\)
−0.632037 + 0.774938i \(0.717781\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.12562 2.95928i −0.194426 0.112252i
\(696\) 0 0
\(697\) 24.5253 + 42.4790i 0.928961 + 1.60901i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3351i 1.07020i 0.844788 + 0.535101i \(0.179727\pi\)
−0.844788 + 0.535101i \(0.820273\pi\)
\(702\) 0 0
\(703\) −4.85881 2.80524i −0.183254 0.105802i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.12885 + 33.5463i −0.0800638 + 1.26164i
\(708\) 0 0
\(709\) 12.0434 20.8598i 0.452300 0.783406i −0.546229 0.837636i \(-0.683937\pi\)
0.998528 + 0.0542300i \(0.0172704\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.95640 3.38859i −0.0732679 0.126904i
\(714\) 0 0
\(715\) −11.0027 + 19.0572i −0.411477 + 0.712699i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.57083 + 4.45281i 0.0958759 + 0.166062i 0.909974 0.414666i \(-0.136101\pi\)
−0.814098 + 0.580728i \(0.802768\pi\)
\(720\) 0 0
\(721\) 7.83781 + 0.497389i 0.291895 + 0.0185237i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 30.8146 17.7908i 1.14443 0.660734i
\(726\) 0 0
\(727\) 5.99193 3.45945i 0.222229 0.128304i −0.384753 0.923019i \(-0.625713\pi\)
0.606982 + 0.794716i \(0.292380\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −19.4426 −0.719112
\(732\) 0 0
\(733\) 17.1981i 0.635225i 0.948221 + 0.317613i \(0.102881\pi\)
−0.948221 + 0.317613i \(0.897119\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −63.4473 + 36.6313i −2.33711 + 1.34933i
\(738\) 0 0
\(739\) 10.6114 18.3795i 0.390347 0.676101i −0.602148 0.798384i \(-0.705688\pi\)
0.992495 + 0.122284i \(0.0390217\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −29.1891 16.8523i −1.07085 0.618253i −0.142433 0.989804i \(-0.545492\pi\)
−0.928412 + 0.371552i \(0.878826\pi\)
\(744\) 0 0
\(745\) 6.59262i 0.241535i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 5.79247 + 11.6848i 0.211652 + 0.426953i
\(750\) 0 0
\(751\) 4.82238 0.175971 0.0879856 0.996122i \(-0.471957\pi\)
0.0879856 + 0.996122i \(0.471957\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.45448 −0.198509
\(756\) 0 0
\(757\) −7.30426 −0.265478 −0.132739 0.991151i \(-0.542377\pi\)
−0.132739 + 0.991151i \(0.542377\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.8385 −0.574145 −0.287072 0.957909i \(-0.592682\pi\)
−0.287072 + 0.957909i \(0.592682\pi\)
\(762\) 0 0
\(763\) 15.0054 + 9.98130i 0.543231 + 0.361347i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 72.8152i 2.62920i
\(768\) 0 0
\(769\) −40.9810 23.6604i −1.47781 0.853215i −0.478126 0.878291i \(-0.658684\pi\)
−0.999686 + 0.0250761i \(0.992017\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.5173 + 18.2165i −0.378282 + 0.655203i −0.990812 0.135244i \(-0.956818\pi\)
0.612531 + 0.790447i \(0.290152\pi\)
\(774\) 0 0
\(775\) 2.21475 1.27869i 0.0795562 0.0459318i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.31144i 0.190302i
\(780\) 0 0
\(781\) −12.2121 −0.436982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.10720 + 4.10334i −0.253667 + 0.146455i
\(786\) 0 0
\(787\) 33.7881 19.5076i 1.20442 0.695370i 0.242883 0.970056i \(-0.421907\pi\)
0.961534 + 0.274685i \(0.0885737\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.27519 + 13.9438i −0.329788 + 0.495786i
\(792\) 0 0
\(793\) −10.9031 18.8848i −0.387181 0.670618i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.8426 + 27.4403i −0.561175 + 0.971984i 0.436219 + 0.899840i \(0.356317\pi\)
−0.997394 + 0.0721433i \(0.977016\pi\)
\(798\) 0 0
\(799\) 2.20022 + 3.81089i 0.0778381 + 0.134820i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.12340 10.6060i 0.216090 0.374279i
\(804\) 0 0
\(805\) −13.7201 0.870682i −0.483571 0.0306875i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.93123 1.11500i −0.0678985 0.0392012i 0.465666 0.884960i \(-0.345815\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(810\) 0 0
\(811\) 55.3535i 1.94373i 0.235548 + 0.971863i \(0.424312\pi\)
−0.235548 + 0.971863i \(0.575688\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.80851 10.0606i −0.203463 0.352409i
\(816\) 0 0
\(817\) −1.82328 1.05267i −0.0637885 0.0368283i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 39.8216 + 22.9910i 1.38978 + 0.802393i 0.993291 0.115645i \(-0.0368934\pi\)
0.396494 + 0.918037i \(0.370227\pi\)
\(822\) 0 0
\(823\) −21.1494 36.6319i −0.737223 1.27691i −0.953741 0.300629i \(-0.902803\pi\)
0.216518 0.976279i \(-0.430530\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.1105i 0.734084i −0.930204 0.367042i \(-0.880370\pi\)
0.930204 0.367042i \(-0.119630\pi\)
\(828\) 0 0
\(829\) 47.3615 + 27.3442i 1.64493 + 0.949703i 0.979043 + 0.203652i \(0.0652812\pi\)
0.665890 + 0.746050i \(0.268052\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.1947 + 31.8036i −0.838298 + 1.10193i
\(834\) 0 0
\(835\) 6.70022 11.6051i 0.231871 0.401612i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.6825 + 37.5553i 0.748564 + 1.29655i 0.948511 + 0.316745i \(0.102590\pi\)
−0.199947 + 0.979807i \(0.564077\pi\)
\(840\) 0 0
\(841\) 18.1114 31.3699i 0.624531 1.08172i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.73798 + 9.93847i 0.197392 + 0.341894i
\(846\) 0 0
\(847\) 3.05347 48.1163i 0.104918 1.65329i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 52.9845 30.5906i 1.81628 1.04863i
\(852\) 0 0
\(853\) −23.0353 + 13.2995i −0.788715 + 0.455365i −0.839510 0.543344i \(-0.817158\pi\)
0.0507949 + 0.998709i \(0.483825\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29.6311 −1.01218 −0.506090 0.862481i \(-0.668909\pi\)
−0.506090 + 0.862481i \(0.668909\pi\)
\(858\) 0 0
\(859\) 4.84149i 0.165189i 0.996583 + 0.0825947i \(0.0263207\pi\)
−0.996583 + 0.0825947i \(0.973679\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.0258 10.9846i 0.647647 0.373919i −0.139907 0.990165i \(-0.544680\pi\)
0.787554 + 0.616246i \(0.211347\pi\)
\(864\) 0 0
\(865\) −7.61410 + 13.1880i −0.258887 + 0.448406i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37.7835 21.8143i −1.28172 0.740000i
\(870\) 0 0
\(871\) 71.5695i 2.42504i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.21489 19.1441i 0.0410706 0.647187i
\(876\) 0 0
\(877\) −42.5978 −1.43842 −0.719212 0.694791i \(-0.755497\pi\)
−0.719212 + 0.694791i \(0.755497\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 41.2523 1.38982 0.694912 0.719095i \(-0.255443\pi\)
0.694912 + 0.719095i \(0.255443\pi\)
\(882\) 0 0
\(883\) 4.21206 0.141747 0.0708736 0.997485i \(-0.477421\pi\)
0.0708736 + 0.997485i \(0.477421\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.59170 0.120598 0.0602988 0.998180i \(-0.480795\pi\)
0.0602988 + 0.998180i \(0.480795\pi\)
\(888\) 0 0
\(889\) 0.739151 11.6475i 0.0247903 0.390644i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.476501i 0.0159455i
\(894\) 0 0
\(895\) 11.6738 + 6.73989i 0.390213 + 0.225290i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.34389 4.05974i 0.0781733 0.135400i
\(900\) 0 0
\(901\) 37.8940 21.8781i 1.26243 0.728865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.17582i 0.105568i
\(906\) 0 0
\(907\) 5.84787 0.194175 0.0970877 0.995276i \(-0.469047\pi\)
0.0970877 + 0.995276i \(0.469047\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.58142 3.79978i 0.218052 0.125892i −0.386996 0.922081i \(-0.626487\pi\)
0.605048 + 0.796189i \(0.293154\pi\)
\(912\) 0 0
\(913\) −18.0436 + 10.4175i −0.597156 + 0.344768i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.47321 23.2148i 0.0486498 0.766619i
\(918\) 0 0
\(919\) −13.3062 23.0471i −0.438933 0.760254i 0.558675 0.829387i \(-0.311310\pi\)
−0.997607 + 0.0691331i \(0.977977\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.96492 + 10.3315i −0.196338 + 0.340067i
\(924\) 0 0
\(925\) 19.9937 + 34.6301i 0.657390 + 1.13863i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 26.2056 45.3895i 0.859779 1.48918i −0.0123610 0.999924i \(-0.503935\pi\)
0.872140 0.489257i \(-0.162732\pi\)
\(930\) 0 0
\(931\) −3.99084 + 1.67250i −0.130795 + 0.0548138i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −20.6010 11.8940i −0.673723 0.388974i
\(936\) 0 0
\(937\) 49.0719i 1.60311i −0.597922 0.801554i \(-0.704007\pi\)
0.597922 0.801554i \(-0.295993\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 13.7319 + 23.7843i 0.447647 + 0.775348i 0.998232 0.0594314i \(-0.0189287\pi\)
−0.550585 + 0.834779i \(0.685595\pi\)
\(942\) 0 0
\(943\) −50.1604 28.9601i −1.63345 0.943071i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −51.0532 29.4756i −1.65901 0.957828i −0.973174 0.230069i \(-0.926105\pi\)
−0.685833 0.727759i \(-0.740562\pi\)
\(948\) 0 0
\(949\) −5.98188 10.3609i −0.194180 0.336330i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.6649i 0.539828i 0.962884 + 0.269914i \(0.0869953\pi\)
−0.962884 + 0.269914i \(0.913005\pi\)
\(954\) 0 0
\(955\) 9.59259 + 5.53828i 0.310409 + 0.179215i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.9298 + 0.757069i 0.385234 + 0.0244470i
\(960\) 0 0
\(961\) −15.3315 + 26.5550i −0.494566 + 0.856613i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.798079 1.38231i −0.0256911 0.0444983i
\(966\) 0 0
\(967\) −11.6729 + 20.2181i −0.375376 + 0.650171i −0.990383 0.138351i \(-0.955820\pi\)
0.615007 + 0.788522i \(0.289153\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.66507 + 13.2763i 0.245984 + 0.426056i 0.962408 0.271609i \(-0.0875557\pi\)
−0.716424 + 0.697665i \(0.754222\pi\)
\(972\) 0 0
\(973\) 11.2510 16.9142i 0.360690 0.542243i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.1008 9.87316i 0.547103 0.315870i −0.200849 0.979622i \(-0.564370\pi\)
0.747953 + 0.663752i \(0.231037\pi\)
\(978\) 0 0
\(979\) −24.3262 + 14.0447i −0.777467 + 0.448871i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22.8388 −0.728444 −0.364222 0.931312i \(-0.618665\pi\)
−0.364222 + 0.931312i \(0.618665\pi\)
\(984\) 0 0
\(985\) 15.6388i 0.498294i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19.8825 11.4792i 0.632228 0.365017i
\(990\) 0 0
\(991\) −3.92125 + 6.79180i −0.124563 + 0.215749i −0.921562 0.388232i \(-0.873086\pi\)
0.796999 + 0.603980i \(0.206419\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.18096 + 2.41388i 0.132545 + 0.0765251i
\(996\) 0 0
\(997\) 0.702889i 0.0222607i −0.999938 0.0111304i \(-0.996457\pi\)
0.999938 0.0111304i \(-0.00354298\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.bm.i.1025.4 12
3.2 odd 2 inner 2268.2.bm.i.1025.3 12
7.5 odd 6 2268.2.w.i.1349.4 12
9.2 odd 6 2268.2.w.i.269.4 12
9.4 even 3 756.2.t.e.269.3 12
9.5 odd 6 756.2.t.e.269.4 yes 12
9.7 even 3 2268.2.w.i.269.3 12
21.5 even 6 2268.2.w.i.1349.3 12
63.4 even 3 5292.2.f.e.2645.7 12
63.5 even 6 756.2.t.e.593.3 yes 12
63.31 odd 6 5292.2.f.e.2645.5 12
63.32 odd 6 5292.2.f.e.2645.6 12
63.40 odd 6 756.2.t.e.593.4 yes 12
63.47 even 6 inner 2268.2.bm.i.593.4 12
63.59 even 6 5292.2.f.e.2645.8 12
63.61 odd 6 inner 2268.2.bm.i.593.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.3 12 9.4 even 3
756.2.t.e.269.4 yes 12 9.5 odd 6
756.2.t.e.593.3 yes 12 63.5 even 6
756.2.t.e.593.4 yes 12 63.40 odd 6
2268.2.w.i.269.3 12 9.7 even 3
2268.2.w.i.269.4 12 9.2 odd 6
2268.2.w.i.1349.3 12 21.5 even 6
2268.2.w.i.1349.4 12 7.5 odd 6
2268.2.bm.i.593.3 12 63.61 odd 6 inner
2268.2.bm.i.593.4 12 63.47 even 6 inner
2268.2.bm.i.1025.3 12 3.2 odd 2 inner
2268.2.bm.i.1025.4 12 1.1 even 1 trivial
5292.2.f.e.2645.5 12 63.31 odd 6
5292.2.f.e.2645.6 12 63.32 odd 6
5292.2.f.e.2645.7 12 63.4 even 3
5292.2.f.e.2645.8 12 63.59 even 6