Properties

Label 5292.2.f.e.2645.5
Level $5292$
Weight $2$
Character 5292.2645
Analytic conductor $42.257$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(2645,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.2645"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.17213603549184.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} + 19x^{8} - 28x^{6} + 31x^{4} - 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{9} \)
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2645.5
Root \(-0.385418 - 0.222521i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2645
Dual form 5292.2.f.e.2645.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.770835 q^{5} -5.40581i q^{11} -5.28088i q^{13} +5.70866 q^{17} -0.618162i q^{19} +6.74094i q^{23} -4.40581 q^{25} -8.07606i q^{29} +0.580455i q^{31} +9.07606 q^{37} -8.59231 q^{41} +3.40581 q^{43} -0.770835 q^{47} -7.66487i q^{53} +4.16699i q^{55} -13.7885 q^{59} +4.12928i q^{61} +4.07069i q^{65} +13.5526 q^{67} -2.25906i q^{71} +2.26549i q^{73} -8.07069 q^{79} -3.85418 q^{83} -4.40044 q^{85} -5.19615 q^{89} +0.476501i q^{95} +14.0259i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 48 q^{37} - 12 q^{43} - 48 q^{79} - 12 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.770835 −0.344728 −0.172364 0.985033i \(-0.555141\pi\)
−0.172364 + 0.985033i \(0.555141\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 5.40581i − 1.62991i −0.579521 0.814957i \(-0.696760\pi\)
0.579521 0.814957i \(-0.303240\pi\)
\(12\) 0 0
\(13\) − 5.28088i − 1.46465i −0.680954 0.732326i \(-0.738435\pi\)
0.680954 0.732326i \(-0.261565\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.70866 1.38455 0.692277 0.721632i \(-0.256608\pi\)
0.692277 + 0.721632i \(0.256608\pi\)
\(18\) 0 0
\(19\) − 0.618162i − 0.141816i −0.997483 0.0709080i \(-0.977410\pi\)
0.997483 0.0709080i \(-0.0225897\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.74094i 1.40558i 0.711396 + 0.702791i \(0.248063\pi\)
−0.711396 + 0.702791i \(0.751937\pi\)
\(24\) 0 0
\(25\) −4.40581 −0.881163
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8.07606i − 1.49969i −0.661615 0.749844i \(-0.730129\pi\)
0.661615 0.749844i \(-0.269871\pi\)
\(30\) 0 0
\(31\) 0.580455i 0.104253i 0.998640 + 0.0521264i \(0.0165999\pi\)
−0.998640 + 0.0521264i \(0.983400\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.07606 1.49210 0.746048 0.665892i \(-0.231949\pi\)
0.746048 + 0.665892i \(0.231949\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.59231 −1.34189 −0.670947 0.741506i \(-0.734112\pi\)
−0.670947 + 0.741506i \(0.734112\pi\)
\(42\) 0 0
\(43\) 3.40581 0.519382 0.259691 0.965692i \(-0.416379\pi\)
0.259691 + 0.965692i \(0.416379\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.770835 −0.112438 −0.0562189 0.998418i \(-0.517904\pi\)
−0.0562189 + 0.998418i \(0.517904\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 7.66487i − 1.05285i −0.850221 0.526426i \(-0.823532\pi\)
0.850221 0.526426i \(-0.176468\pi\)
\(54\) 0 0
\(55\) 4.16699i 0.561877i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.7885 −1.79510 −0.897552 0.440908i \(-0.854657\pi\)
−0.897552 + 0.440908i \(0.854657\pi\)
\(60\) 0 0
\(61\) 4.12928i 0.528701i 0.964427 + 0.264350i \(0.0851575\pi\)
−0.964427 + 0.264350i \(0.914842\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.07069i 0.504907i
\(66\) 0 0
\(67\) 13.5526 1.65571 0.827855 0.560943i \(-0.189561\pi\)
0.827855 + 0.560943i \(0.189561\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 2.25906i − 0.268101i −0.990974 0.134051i \(-0.957202\pi\)
0.990974 0.134051i \(-0.0427985\pi\)
\(72\) 0 0
\(73\) 2.26549i 0.265155i 0.991173 + 0.132577i \(0.0423253\pi\)
−0.991173 + 0.132577i \(0.957675\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.07069 −0.908023 −0.454012 0.890996i \(-0.650008\pi\)
−0.454012 + 0.890996i \(0.650008\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.85418 −0.423051 −0.211525 0.977373i \(-0.567843\pi\)
−0.211525 + 0.977373i \(0.567843\pi\)
\(84\) 0 0
\(85\) −4.40044 −0.477294
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.19615 −0.550791 −0.275396 0.961331i \(-0.588809\pi\)
−0.275396 + 0.961331i \(0.588809\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.476501i 0.0488880i
\(96\) 0 0
\(97\) 14.0259i 1.42411i 0.702123 + 0.712055i \(0.252235\pi\)
−0.702123 + 0.712055i \(0.747765\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.7048 −1.26418 −0.632088 0.774897i \(-0.717802\pi\)
−0.632088 + 0.774897i \(0.717802\pi\)
\(102\) 0 0
\(103\) 2.96837i 0.292483i 0.989249 + 0.146241i \(0.0467176\pi\)
−0.989249 + 0.146241i \(0.953282\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.92931i 0.476535i 0.971200 + 0.238267i \(0.0765794\pi\)
−0.971200 + 0.238267i \(0.923421\pi\)
\(108\) 0 0
\(109\) −6.81163 −0.652435 −0.326218 0.945295i \(-0.605774\pi\)
−0.326218 + 0.945295i \(0.605774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 6.32975i − 0.595453i −0.954651 0.297726i \(-0.903772\pi\)
0.954651 0.297726i \(-0.0962283\pi\)
\(114\) 0 0
\(115\) − 5.19615i − 0.484544i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −18.2228 −1.65662
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.25033 0.648489
\(126\) 0 0
\(127\) −4.41119 −0.391430 −0.195715 0.980661i \(-0.562703\pi\)
−0.195715 + 0.980661i \(0.562703\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.79200 0.768161 0.384080 0.923300i \(-0.374519\pi\)
0.384080 + 0.923300i \(0.374519\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4.51812i − 0.386009i −0.981198 0.193005i \(-0.938177\pi\)
0.981198 0.193005i \(-0.0618232\pi\)
\(138\) 0 0
\(139\) − 7.67811i − 0.651249i −0.945499 0.325624i \(-0.894425\pi\)
0.945499 0.325624i \(-0.105575\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −28.5474 −2.38726
\(144\) 0 0
\(145\) 6.22531i 0.516984i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 8.55257i − 0.700653i −0.936628 0.350327i \(-0.886071\pi\)
0.936628 0.350327i \(-0.113929\pi\)
\(150\) 0 0
\(151\) −7.07606 −0.575842 −0.287921 0.957654i \(-0.592964\pi\)
−0.287921 + 0.957654i \(0.592964\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 0.447435i − 0.0359388i
\(156\) 0 0
\(157\) 10.6465i 0.849682i 0.905268 + 0.424841i \(0.139670\pi\)
−0.905268 + 0.424841i \(0.860330\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 15.0707 1.18043 0.590214 0.807247i \(-0.299043\pi\)
0.590214 + 0.807247i \(0.299043\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.3843 1.34524 0.672619 0.739989i \(-0.265169\pi\)
0.672619 + 0.739989i \(0.265169\pi\)
\(168\) 0 0
\(169\) −14.8877 −1.14521
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.7554 −1.50198 −0.750989 0.660314i \(-0.770423\pi\)
−0.750989 + 0.660314i \(0.770423\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 17.4873i − 1.30706i −0.756901 0.653529i \(-0.773288\pi\)
0.756901 0.653529i \(-0.226712\pi\)
\(180\) 0 0
\(181\) − 4.11997i − 0.306235i −0.988208 0.153118i \(-0.951069\pi\)
0.988208 0.153118i \(-0.0489313\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.99615 −0.514367
\(186\) 0 0
\(187\) − 30.8600i − 2.25670i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 14.3696i − 1.03975i −0.854244 0.519873i \(-0.825979\pi\)
0.854244 0.519873i \(-0.174021\pi\)
\(192\) 0 0
\(193\) 2.07069 0.149051 0.0745257 0.997219i \(-0.476256\pi\)
0.0745257 + 0.997219i \(0.476256\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 20.2881i − 1.44547i −0.691126 0.722735i \(-0.742885\pi\)
0.691126 0.722735i \(-0.257115\pi\)
\(198\) 0 0
\(199\) 6.26302i 0.443974i 0.975050 + 0.221987i \(0.0712542\pi\)
−0.975050 + 0.221987i \(0.928746\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.62325 0.462588
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.34167 −0.231148
\(210\) 0 0
\(211\) 3.73556 0.257167 0.128583 0.991699i \(-0.458957\pi\)
0.128583 + 0.991699i \(0.458957\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.62532 −0.179045
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 30.1468i − 2.02789i
\(222\) 0 0
\(223\) − 15.8426i − 1.06090i −0.847716 0.530451i \(-0.822023\pi\)
0.847716 0.530451i \(-0.177977\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.91281 −0.259702 −0.129851 0.991534i \(-0.541450\pi\)
−0.129851 + 0.991534i \(0.541450\pi\)
\(228\) 0 0
\(229\) − 5.07372i − 0.335281i −0.985848 0.167640i \(-0.946385\pi\)
0.985848 0.167640i \(-0.0536147\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.81163i 0.118684i 0.998238 + 0.0593418i \(0.0189002\pi\)
−0.998238 + 0.0593418i \(0.981100\pi\)
\(234\) 0 0
\(235\) 0.594187 0.0387605
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 8.58881i − 0.555564i −0.960644 0.277782i \(-0.910401\pi\)
0.960644 0.277782i \(-0.0895993\pi\)
\(240\) 0 0
\(241\) − 23.8470i − 1.53612i −0.640377 0.768061i \(-0.721222\pi\)
0.640377 0.768061i \(-0.278778\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.26444 −0.207711
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.25033 −0.457637 −0.228818 0.973469i \(-0.573486\pi\)
−0.228818 + 0.973469i \(0.573486\pi\)
\(252\) 0 0
\(253\) 36.4403 2.29098
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.5474 −1.78074 −0.890370 0.455237i \(-0.849555\pi\)
−0.890370 + 0.455237i \(0.849555\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.25906i − 0.139300i −0.997572 0.0696498i \(-0.977812\pi\)
0.997572 0.0696498i \(-0.0221882\pi\)
\(264\) 0 0
\(265\) 5.90835i 0.362947i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.6721 −1.01652 −0.508258 0.861205i \(-0.669710\pi\)
−0.508258 + 0.861205i \(0.669710\pi\)
\(270\) 0 0
\(271\) 31.4688i 1.91159i 0.294028 + 0.955797i \(0.405004\pi\)
−0.294028 + 0.955797i \(0.594996\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.8170i 1.43622i
\(276\) 0 0
\(277\) 19.0398 1.14399 0.571996 0.820256i \(-0.306169\pi\)
0.571996 + 0.820256i \(0.306169\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 7.59956i − 0.453352i −0.973970 0.226676i \(-0.927214\pi\)
0.973970 0.226676i \(-0.0727858\pi\)
\(282\) 0 0
\(283\) − 30.9824i − 1.84171i −0.389903 0.920856i \(-0.627491\pi\)
0.389903 0.920856i \(-0.372509\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.5888 0.916989
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.93783 0.288471 0.144235 0.989543i \(-0.453928\pi\)
0.144235 + 0.989543i \(0.453928\pi\)
\(294\) 0 0
\(295\) 10.6286 0.618823
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 35.5981 2.05869
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 3.18300i − 0.182258i
\(306\) 0 0
\(307\) − 7.95736i − 0.454151i −0.973877 0.227075i \(-0.927084\pi\)
0.973877 0.227075i \(-0.0729164\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.87565 0.559997 0.279998 0.960000i \(-0.409666\pi\)
0.279998 + 0.960000i \(0.409666\pi\)
\(312\) 0 0
\(313\) − 16.8248i − 0.950993i −0.879718 0.475496i \(-0.842268\pi\)
0.879718 0.475496i \(-0.157732\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.7700i 1.39122i 0.718419 + 0.695611i \(0.244866\pi\)
−0.718419 + 0.695611i \(0.755134\pi\)
\(318\) 0 0
\(319\) −43.6577 −2.44436
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 3.52888i − 0.196352i
\(324\) 0 0
\(325\) 23.2666i 1.29060i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −18.0054 −0.989665 −0.494833 0.868988i \(-0.664771\pi\)
−0.494833 + 0.868988i \(0.664771\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.4468 −0.570769
\(336\) 0 0
\(337\) 5.21744 0.284212 0.142106 0.989851i \(-0.454613\pi\)
0.142106 + 0.989851i \(0.454613\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.13783 0.169923
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 16.2828i − 0.874104i −0.899436 0.437052i \(-0.856023\pi\)
0.899436 0.437052i \(-0.143977\pi\)
\(348\) 0 0
\(349\) 17.4052i 0.931681i 0.884869 + 0.465840i \(0.154248\pi\)
−0.884869 + 0.465840i \(0.845752\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −29.8894 −1.59085 −0.795427 0.606050i \(-0.792753\pi\)
−0.795427 + 0.606050i \(0.792753\pi\)
\(354\) 0 0
\(355\) 1.74136i 0.0924220i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.4058i 1.23531i 0.786449 + 0.617656i \(0.211917\pi\)
−0.786449 + 0.617656i \(0.788083\pi\)
\(360\) 0 0
\(361\) 18.6179 0.979888
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1.74632i − 0.0914063i
\(366\) 0 0
\(367\) 20.0567i 1.04695i 0.852041 + 0.523474i \(0.175364\pi\)
−0.852041 + 0.523474i \(0.824636\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.98925 −0.413667 −0.206834 0.978376i \(-0.566316\pi\)
−0.206834 + 0.978376i \(0.566316\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −42.6487 −2.19652
\(378\) 0 0
\(379\) −34.5816 −1.77634 −0.888170 0.459516i \(-0.848023\pi\)
−0.888170 + 0.459516i \(0.848023\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.02117 −0.409862 −0.204931 0.978776i \(-0.565697\pi\)
−0.204931 + 0.978776i \(0.565697\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 18.4112i − 0.933484i −0.884393 0.466742i \(-0.845428\pi\)
0.884393 0.466742i \(-0.154572\pi\)
\(390\) 0 0
\(391\) 38.4817i 1.94610i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.22117 0.313021
\(396\) 0 0
\(397\) 25.4003i 1.27480i 0.770531 + 0.637402i \(0.219991\pi\)
−0.770531 + 0.637402i \(0.780009\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 8.58881i − 0.428905i −0.976734 0.214452i \(-0.931203\pi\)
0.976734 0.214452i \(-0.0687967\pi\)
\(402\) 0 0
\(403\) 3.06531 0.152694
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 49.0635i − 2.43199i
\(408\) 0 0
\(409\) − 3.51112i − 0.173614i −0.996225 0.0868069i \(-0.972334\pi\)
0.996225 0.0868069i \(-0.0276663\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.97093 0.145837
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.5725 −1.44471 −0.722355 0.691523i \(-0.756940\pi\)
−0.722355 + 0.691523i \(0.756940\pi\)
\(420\) 0 0
\(421\) −23.0344 −1.12263 −0.561315 0.827602i \(-0.689704\pi\)
−0.561315 + 0.827602i \(0.689704\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −25.1513 −1.22002
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 23.3696i 1.12567i 0.826568 + 0.562836i \(0.190290\pi\)
−0.826568 + 0.562836i \(0.809710\pi\)
\(432\) 0 0
\(433\) − 37.9199i − 1.82231i −0.412059 0.911157i \(-0.635190\pi\)
0.412059 0.911157i \(-0.364810\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.16699 0.199334
\(438\) 0 0
\(439\) 3.13783i 0.149760i 0.997193 + 0.0748802i \(0.0238574\pi\)
−0.997193 + 0.0748802i \(0.976143\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.2282i 1.15112i 0.817761 + 0.575558i \(0.195215\pi\)
−0.817761 + 0.575558i \(0.804785\pi\)
\(444\) 0 0
\(445\) 4.00538 0.189873
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 25.1812i 1.18837i 0.804327 + 0.594187i \(0.202526\pi\)
−0.804327 + 0.594187i \(0.797474\pi\)
\(450\) 0 0
\(451\) 46.4484i 2.18717i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −26.2121 −1.22615 −0.613074 0.790025i \(-0.710067\pi\)
−0.613074 + 0.790025i \(0.710067\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.80000 0.0838342 0.0419171 0.999121i \(-0.486653\pi\)
0.0419171 + 0.999121i \(0.486653\pi\)
\(462\) 0 0
\(463\) −20.4456 −0.950189 −0.475095 0.879935i \(-0.657586\pi\)
−0.475095 + 0.879935i \(0.657586\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.5054 0.486133 0.243067 0.970010i \(-0.421847\pi\)
0.243067 + 0.970010i \(0.421847\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 18.4112i − 0.846547i
\(474\) 0 0
\(475\) 2.72351i 0.124963i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.96699 0.272639 0.136319 0.990665i \(-0.456473\pi\)
0.136319 + 0.990665i \(0.456473\pi\)
\(480\) 0 0
\(481\) − 47.9296i − 2.18540i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 10.8116i − 0.490931i
\(486\) 0 0
\(487\) 24.0398 1.08935 0.544674 0.838648i \(-0.316653\pi\)
0.544674 + 0.838648i \(0.316653\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 21.5579i − 0.972896i −0.873709 0.486448i \(-0.838292\pi\)
0.873709 0.486448i \(-0.161708\pi\)
\(492\) 0 0
\(493\) − 46.1035i − 2.07640i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.8514 1.29157 0.645784 0.763520i \(-0.276531\pi\)
0.645784 + 0.763520i \(0.276531\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.7805 0.926555 0.463278 0.886213i \(-0.346673\pi\)
0.463278 + 0.886213i \(0.346673\pi\)
\(504\) 0 0
\(505\) 9.79331 0.435797
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.4055 1.12608 0.563039 0.826430i \(-0.309632\pi\)
0.563039 + 0.826430i \(0.309632\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 2.28813i − 0.100827i
\(516\) 0 0
\(517\) 4.16699i 0.183264i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.05418 0.0899952 0.0449976 0.998987i \(-0.485672\pi\)
0.0449976 + 0.998987i \(0.485672\pi\)
\(522\) 0 0
\(523\) 11.3367i 0.495721i 0.968796 + 0.247860i \(0.0797275\pi\)
−0.968796 + 0.247860i \(0.920273\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.31362i 0.144343i
\(528\) 0 0
\(529\) −22.4403 −0.975663
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 45.3749i 1.96541i
\(534\) 0 0
\(535\) − 3.79969i − 0.164275i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 18.7826 0.807525 0.403763 0.914864i \(-0.367702\pi\)
0.403763 + 0.914864i \(0.367702\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.25064 0.224913
\(546\) 0 0
\(547\) −6.91856 −0.295816 −0.147908 0.989001i \(-0.547254\pi\)
−0.147908 + 0.989001i \(0.547254\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.99231 −0.212680
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 10.4004i − 0.440681i −0.975423 0.220340i \(-0.929283\pi\)
0.975423 0.220340i \(-0.0707168\pi\)
\(558\) 0 0
\(559\) − 17.9857i − 0.760714i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.02148 −0.253775 −0.126887 0.991917i \(-0.540499\pi\)
−0.126887 + 0.991917i \(0.540499\pi\)
\(564\) 0 0
\(565\) 4.87919i 0.205269i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 29.3534i − 1.23056i −0.788309 0.615280i \(-0.789043\pi\)
0.788309 0.615280i \(-0.210957\pi\)
\(570\) 0 0
\(571\) 17.2282 0.720977 0.360489 0.932764i \(-0.382610\pi\)
0.360489 + 0.932764i \(0.382610\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 29.6993i − 1.23855i
\(576\) 0 0
\(577\) 2.14305i 0.0892164i 0.999005 + 0.0446082i \(0.0142039\pi\)
−0.999005 + 0.0446082i \(0.985796\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −41.4349 −1.71606
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 17.5840 0.725769 0.362885 0.931834i \(-0.381792\pi\)
0.362885 + 0.931834i \(0.381792\pi\)
\(588\) 0 0
\(589\) 0.358815 0.0147847
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24.2939 −0.997630 −0.498815 0.866708i \(-0.666231\pi\)
−0.498815 + 0.866708i \(0.666231\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 37.8116i 1.54494i 0.635051 + 0.772471i \(0.280979\pi\)
−0.635051 + 0.772471i \(0.719021\pi\)
\(600\) 0 0
\(601\) − 2.90227i − 0.118386i −0.998247 0.0591931i \(-0.981147\pi\)
0.998247 0.0591931i \(-0.0188528\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0468 0.571083
\(606\) 0 0
\(607\) − 11.1706i − 0.453401i −0.973965 0.226701i \(-0.927206\pi\)
0.973965 0.226701i \(-0.0727939\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.07069i 0.164682i
\(612\) 0 0
\(613\) 16.2591 0.656697 0.328349 0.944557i \(-0.393508\pi\)
0.328349 + 0.944557i \(0.393508\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 5.34050i − 0.215001i −0.994205 0.107500i \(-0.965715\pi\)
0.994205 0.107500i \(-0.0342846\pi\)
\(618\) 0 0
\(619\) 21.2082i 0.852431i 0.904622 + 0.426216i \(0.140154\pi\)
−0.904622 + 0.426216i \(0.859846\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.4403 0.657610
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 51.8122 2.06589
\(630\) 0 0
\(631\) 44.7338 1.78082 0.890411 0.455157i \(-0.150417\pi\)
0.890411 + 0.455157i \(0.150417\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.40030 0.134937
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 27.3096i − 1.07867i −0.842093 0.539333i \(-0.818676\pi\)
0.842093 0.539333i \(-0.181324\pi\)
\(642\) 0 0
\(643\) 35.7298i 1.40905i 0.709681 + 0.704524i \(0.248839\pi\)
−0.709681 + 0.704524i \(0.751161\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.9074 1.60823 0.804117 0.594471i \(-0.202638\pi\)
0.804117 + 0.594471i \(0.202638\pi\)
\(648\) 0 0
\(649\) 74.5378i 2.92587i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 26.0761i − 1.02044i −0.860045 0.510218i \(-0.829565\pi\)
0.860045 0.510218i \(-0.170435\pi\)
\(654\) 0 0
\(655\) −6.77718 −0.264806
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.8568i 1.59156i 0.605589 + 0.795778i \(0.292938\pi\)
−0.605589 + 0.795778i \(0.707062\pi\)
\(660\) 0 0
\(661\) − 7.25780i − 0.282296i −0.989989 0.141148i \(-0.954921\pi\)
0.989989 0.141148i \(-0.0450793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 54.4403 2.10794
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 22.3221 0.861736
\(672\) 0 0
\(673\) 35.2465 1.35865 0.679326 0.733836i \(-0.262272\pi\)
0.679326 + 0.733836i \(0.262272\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.9634 −0.421359 −0.210680 0.977555i \(-0.567568\pi\)
−0.210680 + 0.977555i \(0.567568\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 8.89844i − 0.340490i −0.985402 0.170245i \(-0.945544\pi\)
0.985402 0.170245i \(-0.0544558\pi\)
\(684\) 0 0
\(685\) 3.48273i 0.133068i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40.4773 −1.54206
\(690\) 0 0
\(691\) − 8.40607i − 0.319782i −0.987135 0.159891i \(-0.948886\pi\)
0.987135 0.159891i \(-0.0511143\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.91856i 0.224504i
\(696\) 0 0
\(697\) −49.0506 −1.85792
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3351i 1.07020i 0.844788 + 0.535101i \(0.179727\pi\)
−0.844788 + 0.535101i \(0.820273\pi\)
\(702\) 0 0
\(703\) − 5.61048i − 0.211603i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −24.0868 −0.904599 −0.452300 0.891866i \(-0.649396\pi\)
−0.452300 + 0.891866i \(0.649396\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.91281 −0.146536
\(714\) 0 0
\(715\) 22.0054 0.822954
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.14166 0.191752 0.0958759 0.995393i \(-0.469435\pi\)
0.0958759 + 0.995393i \(0.469435\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 35.5816i 1.32147i
\(726\) 0 0
\(727\) − 6.91889i − 0.256607i −0.991735 0.128304i \(-0.959047\pi\)
0.991735 0.128304i \(-0.0409532\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.4426 0.719112
\(732\) 0 0
\(733\) − 17.1981i − 0.635225i −0.948221 0.317613i \(-0.897119\pi\)
0.948221 0.317613i \(-0.102881\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 73.2626i − 2.69866i
\(738\) 0 0
\(739\) −21.2228 −0.780694 −0.390347 0.920668i \(-0.627645\pi\)
−0.390347 + 0.920668i \(0.627645\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.7047i 1.23651i 0.785979 + 0.618253i \(0.212159\pi\)
−0.785979 + 0.618253i \(0.787841\pi\)
\(744\) 0 0
\(745\) 6.59262i 0.241535i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.82238 0.175971 0.0879856 0.996122i \(-0.471957\pi\)
0.0879856 + 0.996122i \(0.471957\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 5.45448 0.198509
\(756\) 0 0
\(757\) −7.30426 −0.265478 −0.132739 0.991151i \(-0.542377\pi\)
−0.132739 + 0.991151i \(0.542377\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.8385 0.574145 0.287072 0.957909i \(-0.407318\pi\)
0.287072 + 0.957909i \(0.407318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 72.8152i 2.62920i
\(768\) 0 0
\(769\) − 47.3208i − 1.70643i −0.521559 0.853215i \(-0.674649\pi\)
0.521559 0.853215i \(-0.325351\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −21.0346 −0.756564 −0.378282 0.925690i \(-0.623485\pi\)
−0.378282 + 0.925690i \(0.623485\pi\)
\(774\) 0 0
\(775\) − 2.55737i − 0.0918636i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.31144i 0.190302i
\(780\) 0 0
\(781\) −12.2121 −0.436982
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 8.20669i − 0.292909i
\(786\) 0 0
\(787\) − 39.0152i − 1.39074i −0.718652 0.695370i \(-0.755240\pi\)
0.718652 0.695370i \(-0.244760\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 21.8062 0.774363
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −31.6853 −1.12235 −0.561175 0.827697i \(-0.689651\pi\)
−0.561175 + 0.827697i \(0.689651\pi\)
\(798\) 0 0
\(799\) −4.40044 −0.155676
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.2468 0.432180
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.23000i 0.0784025i 0.999231 + 0.0392012i \(0.0124813\pi\)
−0.999231 + 0.0392012i \(0.987519\pi\)
\(810\) 0 0
\(811\) − 55.3535i − 1.94373i −0.235548 0.971863i \(-0.575688\pi\)
0.235548 0.971863i \(-0.424312\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.6170 −0.406926
\(816\) 0 0
\(817\) − 2.10534i − 0.0736566i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 45.9821i − 1.60479i −0.596797 0.802393i \(-0.703560\pi\)
0.596797 0.802393i \(-0.296440\pi\)
\(822\) 0 0
\(823\) 42.2989 1.47445 0.737223 0.675649i \(-0.236137\pi\)
0.737223 + 0.675649i \(0.236137\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 21.1105i − 0.734084i −0.930204 0.367042i \(-0.880370\pi\)
0.930204 0.367042i \(-0.119630\pi\)
\(828\) 0 0
\(829\) 54.6884i 1.89941i 0.313154 + 0.949703i \(0.398615\pi\)
−0.313154 + 0.949703i \(0.601385\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.4004 −0.463741
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 43.3651 1.49713 0.748564 0.663062i \(-0.230744\pi\)
0.748564 + 0.663062i \(0.230744\pi\)
\(840\) 0 0
\(841\) −36.2228 −1.24906
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.4760 0.394785
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 61.1812i 2.09726i
\(852\) 0 0
\(853\) 26.5989i 0.910730i 0.890305 + 0.455365i \(0.150491\pi\)
−0.890305 + 0.455365i \(0.849509\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29.6311 1.01218 0.506090 0.862481i \(-0.331091\pi\)
0.506090 + 0.862481i \(0.331091\pi\)
\(858\) 0 0
\(859\) − 4.84149i − 0.165189i −0.996583 0.0825947i \(-0.973679\pi\)
0.996583 0.0825947i \(-0.0263207\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 21.9691i 0.747838i 0.927461 + 0.373919i \(0.121986\pi\)
−0.927461 + 0.373919i \(0.878014\pi\)
\(864\) 0 0
\(865\) 15.2282 0.517774
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 43.6286i 1.48000i
\(870\) 0 0
\(871\) − 71.5695i − 2.42504i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −42.5978 −1.43842 −0.719212 0.694791i \(-0.755497\pi\)
−0.719212 + 0.694791i \(0.755497\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −41.2523 −1.38982 −0.694912 0.719095i \(-0.744557\pi\)
−0.694912 + 0.719095i \(0.744557\pi\)
\(882\) 0 0
\(883\) 4.21206 0.141747 0.0708736 0.997485i \(-0.477421\pi\)
0.0708736 + 0.997485i \(0.477421\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.59170 −0.120598 −0.0602988 0.998180i \(-0.519205\pi\)
−0.0602988 + 0.998180i \(0.519205\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.476501i 0.0159455i
\(894\) 0 0
\(895\) 13.4798i 0.450580i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.68779 0.156347
\(900\) 0 0
\(901\) − 43.7562i − 1.45773i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.17582i 0.105568i
\(906\) 0 0
\(907\) 5.84787 0.194175 0.0970877 0.995276i \(-0.469047\pi\)
0.0970877 + 0.995276i \(0.469047\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.59956i 0.251785i 0.992044 + 0.125892i \(0.0401794\pi\)
−0.992044 + 0.125892i \(0.959821\pi\)
\(912\) 0 0
\(913\) 20.8350i 0.689536i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 26.6125 0.877865 0.438933 0.898520i \(-0.355357\pi\)
0.438933 + 0.898520i \(0.355357\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.9298 −0.392675
\(924\) 0 0
\(925\) −39.9874 −1.31478
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 52.4113 1.71956 0.859779 0.510667i \(-0.170601\pi\)
0.859779 + 0.510667i \(0.170601\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 23.7879i 0.777949i
\(936\) 0 0
\(937\) 49.0719i 1.60311i 0.597922 + 0.801554i \(0.295993\pi\)
−0.597922 + 0.801554i \(0.704007\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.4638 0.895294 0.447647 0.894210i \(-0.352262\pi\)
0.447647 + 0.894210i \(0.352262\pi\)
\(942\) 0 0
\(943\) − 57.9202i − 1.88614i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 58.9512i 1.91566i 0.287341 + 0.957828i \(0.407229\pi\)
−0.287341 + 0.957828i \(0.592771\pi\)
\(948\) 0 0
\(949\) 11.9638 0.388360
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.6649i 0.539828i 0.962884 + 0.269914i \(0.0869953\pi\)
−0.962884 + 0.269914i \(0.913005\pi\)
\(954\) 0 0
\(955\) 11.0766i 0.358429i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.6631 0.989131
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.59616 −0.0513822
\(966\) 0 0
\(967\) 23.3459 0.750753 0.375376 0.926872i \(-0.377513\pi\)
0.375376 + 0.926872i \(0.377513\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.3301 0.491967 0.245984 0.969274i \(-0.420889\pi\)
0.245984 + 0.969274i \(0.420889\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.7463i 0.631741i 0.948802 + 0.315870i \(0.102296\pi\)
−0.948802 + 0.315870i \(0.897704\pi\)
\(978\) 0 0
\(979\) 28.0894i 0.897742i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.8388 0.728444 0.364222 0.931312i \(-0.381335\pi\)
0.364222 + 0.931312i \(0.381335\pi\)
\(984\) 0 0
\(985\) 15.6388i 0.498294i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 22.9584i 0.730034i
\(990\) 0 0
\(991\) 7.84249 0.249125 0.124563 0.992212i \(-0.460247\pi\)
0.124563 + 0.992212i \(0.460247\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 4.82776i − 0.153050i
\(996\) 0 0
\(997\) 0.702889i 0.0222607i 0.999938 + 0.0111304i \(0.00354298\pi\)
−0.999938 + 0.0111304i \(0.996457\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.f.e.2645.5 12
3.2 odd 2 inner 5292.2.f.e.2645.8 12
7.4 even 3 756.2.t.e.593.4 yes 12
7.5 odd 6 756.2.t.e.269.3 12
7.6 odd 2 inner 5292.2.f.e.2645.7 12
21.5 even 6 756.2.t.e.269.4 yes 12
21.11 odd 6 756.2.t.e.593.3 yes 12
21.20 even 2 inner 5292.2.f.e.2645.6 12
63.4 even 3 2268.2.bm.i.593.3 12
63.5 even 6 2268.2.w.i.269.4 12
63.11 odd 6 2268.2.w.i.1349.3 12
63.25 even 3 2268.2.w.i.1349.4 12
63.32 odd 6 2268.2.bm.i.593.4 12
63.40 odd 6 2268.2.w.i.269.3 12
63.47 even 6 2268.2.bm.i.1025.3 12
63.61 odd 6 2268.2.bm.i.1025.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.t.e.269.3 12 7.5 odd 6
756.2.t.e.269.4 yes 12 21.5 even 6
756.2.t.e.593.3 yes 12 21.11 odd 6
756.2.t.e.593.4 yes 12 7.4 even 3
2268.2.w.i.269.3 12 63.40 odd 6
2268.2.w.i.269.4 12 63.5 even 6
2268.2.w.i.1349.3 12 63.11 odd 6
2268.2.w.i.1349.4 12 63.25 even 3
2268.2.bm.i.593.3 12 63.4 even 3
2268.2.bm.i.593.4 12 63.32 odd 6
2268.2.bm.i.1025.3 12 63.47 even 6
2268.2.bm.i.1025.4 12 63.61 odd 6
5292.2.f.e.2645.5 12 1.1 even 1 trivial
5292.2.f.e.2645.6 12 21.20 even 2 inner
5292.2.f.e.2645.7 12 7.6 odd 2 inner
5292.2.f.e.2645.8 12 3.2 odd 2 inner