Properties

Label 756.2.bi.c.307.8
Level $756$
Weight $2$
Character 756.307
Analytic conductor $6.037$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(307,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,6,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.8
Character \(\chi\) \(=\) 756.307
Dual form 756.2.bi.c.559.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.05092 - 0.946342i) q^{2} +(0.208875 + 1.98906i) q^{4} +(0.416111 + 0.240242i) q^{5} +(1.52257 - 2.16374i) q^{7} +(1.66282 - 2.28802i) q^{8} +(-0.209950 - 0.646259i) q^{10} +(-2.31311 + 1.33548i) q^{11} +(-5.48694 - 3.16789i) q^{13} +(-3.64774 + 0.833054i) q^{14} +(-3.91274 + 0.830933i) q^{16} -2.37005i q^{17} +4.20225 q^{19} +(-0.390941 + 0.877852i) q^{20} +(3.69472 + 0.785512i) q^{22} +(4.15320 + 2.39785i) q^{23} +(-2.38457 - 4.13019i) q^{25} +(2.76845 + 8.52173i) q^{26} +(4.62185 + 2.57653i) q^{28} +(-1.45060 - 2.51250i) q^{29} +(3.14399 - 5.44556i) q^{31} +(4.89833 + 2.82954i) q^{32} +(-2.24287 + 2.49074i) q^{34} +(1.15338 - 0.534572i) q^{35} +4.69467 q^{37} +(-4.41624 - 3.97676i) q^{38} +(1.24160 - 0.552590i) q^{40} +(-10.1295 - 5.84827i) q^{41} +(-1.16280 + 0.671344i) q^{43} +(-3.13950 - 4.32198i) q^{44} +(-2.09550 - 6.45030i) q^{46} +(-3.72876 - 6.45840i) q^{47} +(-2.36356 - 6.58890i) q^{49} +(-1.40258 + 6.59713i) q^{50} +(5.15504 - 11.5756i) q^{52} +8.99689 q^{53} -1.28335 q^{55} +(-2.41892 - 7.08158i) q^{56} +(-0.853225 + 4.01321i) q^{58} +(0.140454 - 0.243273i) q^{59} +(-9.52219 + 5.49764i) q^{61} +(-8.45745 + 2.74757i) q^{62} +(-2.47005 - 7.60913i) q^{64} +(-1.52212 - 2.63639i) q^{65} +(-1.89068 - 1.09159i) q^{67} +(4.71417 - 0.495044i) q^{68} +(-1.71800 - 0.529697i) q^{70} +0.198757i q^{71} -4.84941i q^{73} +(-4.93373 - 4.44276i) q^{74} +(0.877746 + 8.35854i) q^{76} +(-0.632248 + 7.03833i) q^{77} +(3.42117 - 1.97521i) q^{79} +(-1.82776 - 0.594244i) q^{80} +(5.11086 + 15.7321i) q^{82} +(5.09429 + 8.82356i) q^{83} +(0.569384 - 0.986203i) q^{85} +(1.85733 + 0.394877i) q^{86} +(-0.790698 + 7.51310i) q^{88} -2.67188i q^{89} +(-15.2087 + 7.04900i) q^{91} +(-3.90197 + 8.76182i) q^{92} +(-2.19322 + 10.3160i) q^{94} +(1.74860 + 1.00956i) q^{95} +(-1.87526 + 1.08268i) q^{97} +(-3.75143 + 9.16116i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{2} - 2 q^{4} + 24 q^{8} - 10 q^{14} - 18 q^{16} - 14 q^{22} + 32 q^{25} + 28 q^{28} - 8 q^{29} + 16 q^{32} - 16 q^{37} + 84 q^{44} + 24 q^{46} - 24 q^{49} + 12 q^{50} + 48 q^{53} - 32 q^{56}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.05092 0.946342i −0.743114 0.669165i
\(3\) 0 0
\(4\) 0.208875 + 1.98906i 0.104438 + 0.994531i
\(5\) 0.416111 + 0.240242i 0.186091 + 0.107439i 0.590151 0.807293i \(-0.299068\pi\)
−0.404061 + 0.914732i \(0.632402\pi\)
\(6\) 0 0
\(7\) 1.52257 2.16374i 0.575477 0.817818i
\(8\) 1.66282 2.28802i 0.587896 0.808937i
\(9\) 0 0
\(10\) −0.209950 0.646259i −0.0663919 0.204365i
\(11\) −2.31311 + 1.33548i −0.697429 + 0.402661i −0.806389 0.591385i \(-0.798581\pi\)
0.108960 + 0.994046i \(0.465248\pi\)
\(12\) 0 0
\(13\) −5.48694 3.16789i −1.52180 0.878614i −0.999668 0.0257515i \(-0.991802\pi\)
−0.522136 0.852862i \(-0.674865\pi\)
\(14\) −3.64774 + 0.833054i −0.974900 + 0.222643i
\(15\) 0 0
\(16\) −3.91274 + 0.830933i −0.978186 + 0.207733i
\(17\) 2.37005i 0.574821i −0.957808 0.287410i \(-0.907206\pi\)
0.957808 0.287410i \(-0.0927944\pi\)
\(18\) 0 0
\(19\) 4.20225 0.964062 0.482031 0.876154i \(-0.339899\pi\)
0.482031 + 0.876154i \(0.339899\pi\)
\(20\) −0.390941 + 0.877852i −0.0874170 + 0.196294i
\(21\) 0 0
\(22\) 3.69472 + 0.785512i 0.787716 + 0.167472i
\(23\) 4.15320 + 2.39785i 0.866001 + 0.499986i 0.866017 0.500014i \(-0.166672\pi\)
−1.59909e−5 1.00000i \(0.500005\pi\)
\(24\) 0 0
\(25\) −2.38457 4.13019i −0.476914 0.826038i
\(26\) 2.76845 + 8.52173i 0.542937 + 1.67125i
\(27\) 0 0
\(28\) 4.62185 + 2.57653i 0.873447 + 0.486919i
\(29\) −1.45060 2.51250i −0.269369 0.466560i 0.699330 0.714799i \(-0.253482\pi\)
−0.968699 + 0.248238i \(0.920148\pi\)
\(30\) 0 0
\(31\) 3.14399 5.44556i 0.564678 0.978051i −0.432402 0.901681i \(-0.642334\pi\)
0.997080 0.0763698i \(-0.0243330\pi\)
\(32\) 4.89833 + 2.82954i 0.865911 + 0.500198i
\(33\) 0 0
\(34\) −2.24287 + 2.49074i −0.384650 + 0.427158i
\(35\) 1.15338 0.534572i 0.194957 0.0903592i
\(36\) 0 0
\(37\) 4.69467 0.771799 0.385900 0.922541i \(-0.373891\pi\)
0.385900 + 0.922541i \(0.373891\pi\)
\(38\) −4.41624 3.97676i −0.716408 0.645116i
\(39\) 0 0
\(40\) 1.24160 0.552590i 0.196314 0.0873722i
\(41\) −10.1295 5.84827i −1.58196 0.913347i −0.994573 0.104043i \(-0.966822\pi\)
−0.587390 0.809304i \(-0.699845\pi\)
\(42\) 0 0
\(43\) −1.16280 + 0.671344i −0.177326 + 0.102379i −0.586036 0.810285i \(-0.699312\pi\)
0.408710 + 0.912664i \(0.365979\pi\)
\(44\) −3.13950 4.32198i −0.473297 0.651562i
\(45\) 0 0
\(46\) −2.09550 6.45030i −0.308965 0.951044i
\(47\) −3.72876 6.45840i −0.543895 0.942054i −0.998676 0.0514505i \(-0.983616\pi\)
0.454780 0.890604i \(-0.349718\pi\)
\(48\) 0 0
\(49\) −2.36356 6.58890i −0.337652 0.941271i
\(50\) −1.40258 + 6.59713i −0.198354 + 0.932975i
\(51\) 0 0
\(52\) 5.15504 11.5756i 0.714875 1.60524i
\(53\) 8.99689 1.23582 0.617909 0.786250i \(-0.287980\pi\)
0.617909 + 0.786250i \(0.287980\pi\)
\(54\) 0 0
\(55\) −1.28335 −0.173047
\(56\) −2.41892 7.08158i −0.323242 0.946316i
\(57\) 0 0
\(58\) −0.853225 + 4.01321i −0.112034 + 0.526960i
\(59\) 0.140454 0.243273i 0.0182855 0.0316715i −0.856738 0.515752i \(-0.827513\pi\)
0.875023 + 0.484081i \(0.160846\pi\)
\(60\) 0 0
\(61\) −9.52219 + 5.49764i −1.21919 + 0.703900i −0.964745 0.263186i \(-0.915227\pi\)
−0.254446 + 0.967087i \(0.581893\pi\)
\(62\) −8.45745 + 2.74757i −1.07410 + 0.348941i
\(63\) 0 0
\(64\) −2.47005 7.60913i −0.308757 0.951141i
\(65\) −1.52212 2.63639i −0.188796 0.327003i
\(66\) 0 0
\(67\) −1.89068 1.09159i −0.230984 0.133358i 0.380042 0.924969i \(-0.375909\pi\)
−0.611026 + 0.791611i \(0.709243\pi\)
\(68\) 4.71417 0.495044i 0.571677 0.0600330i
\(69\) 0 0
\(70\) −1.71800 0.529697i −0.205340 0.0633109i
\(71\) 0.198757i 0.0235881i 0.999930 + 0.0117940i \(0.00375425\pi\)
−0.999930 + 0.0117940i \(0.996246\pi\)
\(72\) 0 0
\(73\) 4.84941i 0.567580i −0.958886 0.283790i \(-0.908408\pi\)
0.958886 0.283790i \(-0.0915919\pi\)
\(74\) −4.93373 4.44276i −0.573535 0.516461i
\(75\) 0 0
\(76\) 0.877746 + 8.35854i 0.100684 + 0.958790i
\(77\) −0.632248 + 7.03833i −0.0720514 + 0.802092i
\(78\) 0 0
\(79\) 3.42117 1.97521i 0.384912 0.222229i −0.295041 0.955484i \(-0.595333\pi\)
0.679953 + 0.733256i \(0.262000\pi\)
\(80\) −1.82776 0.594244i −0.204350 0.0664385i
\(81\) 0 0
\(82\) 5.11086 + 15.7321i 0.564400 + 1.73731i
\(83\) 5.09429 + 8.82356i 0.559171 + 0.968512i 0.997566 + 0.0697297i \(0.0222137\pi\)
−0.438395 + 0.898782i \(0.644453\pi\)
\(84\) 0 0
\(85\) 0.569384 0.986203i 0.0617584 0.106969i
\(86\) 1.85733 + 0.394877i 0.200282 + 0.0425807i
\(87\) 0 0
\(88\) −0.790698 + 7.51310i −0.0842887 + 0.800899i
\(89\) 2.67188i 0.283219i −0.989923 0.141609i \(-0.954772\pi\)
0.989923 0.141609i \(-0.0452277\pi\)
\(90\) 0 0
\(91\) −15.2087 + 7.04900i −1.59431 + 0.738936i
\(92\) −3.90197 + 8.76182i −0.406809 + 0.913483i
\(93\) 0 0
\(94\) −2.19322 + 10.3160i −0.226213 + 1.06401i
\(95\) 1.74860 + 1.00956i 0.179403 + 0.103578i
\(96\) 0 0
\(97\) −1.87526 + 1.08268i −0.190403 + 0.109929i −0.592171 0.805812i \(-0.701729\pi\)
0.401768 + 0.915741i \(0.368396\pi\)
\(98\) −3.75143 + 9.16116i −0.378951 + 0.925417i
\(99\) 0 0
\(100\) 7.71713 5.60575i 0.771713 0.560575i
\(101\) 4.50341 2.60004i 0.448106 0.258714i −0.258924 0.965898i \(-0.583368\pi\)
0.707030 + 0.707184i \(0.250035\pi\)
\(102\) 0 0
\(103\) 1.13040 1.95791i 0.111382 0.192919i −0.804946 0.593348i \(-0.797806\pi\)
0.916328 + 0.400429i \(0.131139\pi\)
\(104\) −16.3720 + 7.28659i −1.60541 + 0.714509i
\(105\) 0 0
\(106\) −9.45503 8.51413i −0.918354 0.826966i
\(107\) 14.8308i 1.43375i −0.697204 0.716873i \(-0.745573\pi\)
0.697204 0.716873i \(-0.254427\pi\)
\(108\) 0 0
\(109\) −10.9535 −1.04916 −0.524578 0.851363i \(-0.675777\pi\)
−0.524578 + 0.851363i \(0.675777\pi\)
\(110\) 1.34870 + 1.21449i 0.128593 + 0.115797i
\(111\) 0 0
\(112\) −4.15950 + 9.73132i −0.393036 + 0.919523i
\(113\) 4.72782 8.18882i 0.444756 0.770339i −0.553280 0.832996i \(-0.686624\pi\)
0.998035 + 0.0626563i \(0.0199572\pi\)
\(114\) 0 0
\(115\) 1.15213 + 1.99554i 0.107436 + 0.186085i
\(116\) 4.69454 3.41013i 0.435877 0.316622i
\(117\) 0 0
\(118\) −0.377825 + 0.122744i −0.0347816 + 0.0112995i
\(119\) −5.12817 3.60856i −0.470099 0.330796i
\(120\) 0 0
\(121\) −1.93301 + 3.34807i −0.175728 + 0.304370i
\(122\) 15.2097 + 3.23365i 1.37702 + 0.292761i
\(123\) 0 0
\(124\) 11.4883 + 5.11616i 1.03168 + 0.459445i
\(125\) 4.69391i 0.419836i
\(126\) 0 0
\(127\) 1.45847i 0.129419i 0.997904 + 0.0647093i \(0.0206120\pi\)
−0.997904 + 0.0647093i \(0.979388\pi\)
\(128\) −4.60500 + 10.3341i −0.407028 + 0.913415i
\(129\) 0 0
\(130\) −0.895294 + 4.21108i −0.0785224 + 0.369336i
\(131\) 6.19426 10.7288i 0.541195 0.937377i −0.457641 0.889137i \(-0.651305\pi\)
0.998836 0.0482400i \(-0.0153612\pi\)
\(132\) 0 0
\(133\) 6.39822 9.09258i 0.554796 0.788427i
\(134\) 0.953947 + 2.93640i 0.0824085 + 0.253667i
\(135\) 0 0
\(136\) −5.42271 3.94096i −0.464994 0.337935i
\(137\) 4.45878 + 7.72284i 0.380939 + 0.659806i 0.991197 0.132397i \(-0.0422673\pi\)
−0.610257 + 0.792203i \(0.708934\pi\)
\(138\) 0 0
\(139\) −1.37546 + 2.38237i −0.116665 + 0.202070i −0.918444 0.395551i \(-0.870554\pi\)
0.801779 + 0.597621i \(0.203887\pi\)
\(140\) 1.30421 + 2.18249i 0.110226 + 0.184454i
\(141\) 0 0
\(142\) 0.188092 0.208878i 0.0157843 0.0175286i
\(143\) 16.9225 1.41513
\(144\) 0 0
\(145\) 1.39397i 0.115763i
\(146\) −4.58919 + 5.09635i −0.379804 + 0.421777i
\(147\) 0 0
\(148\) 0.980601 + 9.33799i 0.0806049 + 0.767578i
\(149\) 0.0762596 0.132086i 0.00624743 0.0108209i −0.862885 0.505401i \(-0.831345\pi\)
0.869132 + 0.494580i \(0.164678\pi\)
\(150\) 0 0
\(151\) 10.8876 6.28594i 0.886017 0.511542i 0.0133797 0.999910i \(-0.495741\pi\)
0.872638 + 0.488368i \(0.162408\pi\)
\(152\) 6.98759 9.61482i 0.566768 0.779865i
\(153\) 0 0
\(154\) 7.32511 6.79842i 0.590274 0.547832i
\(155\) 2.61650 1.51064i 0.210162 0.121337i
\(156\) 0 0
\(157\) 9.96123 + 5.75112i 0.794993 + 0.458989i 0.841717 0.539919i \(-0.181545\pi\)
−0.0467246 + 0.998908i \(0.514878\pi\)
\(158\) −5.46461 1.16180i −0.434741 0.0924278i
\(159\) 0 0
\(160\) 1.35848 + 2.35419i 0.107397 + 0.186115i
\(161\) 11.5119 5.33556i 0.907262 0.420501i
\(162\) 0 0
\(163\) 19.9710i 1.56425i 0.623121 + 0.782126i \(0.285865\pi\)
−0.623121 + 0.782126i \(0.714135\pi\)
\(164\) 9.51678 21.3698i 0.743135 1.66870i
\(165\) 0 0
\(166\) 2.99641 14.0938i 0.232566 1.09389i
\(167\) −10.9749 + 19.0090i −0.849260 + 1.47096i 0.0326095 + 0.999468i \(0.489618\pi\)
−0.881870 + 0.471493i \(0.843715\pi\)
\(168\) 0 0
\(169\) 13.5710 + 23.5057i 1.04392 + 1.80813i
\(170\) −1.53166 + 0.497590i −0.117473 + 0.0381634i
\(171\) 0 0
\(172\) −1.57823 2.17266i −0.120339 0.165664i
\(173\) 13.2462 7.64770i 1.00709 0.581444i 0.0967521 0.995309i \(-0.469155\pi\)
0.910339 + 0.413864i \(0.135821\pi\)
\(174\) 0 0
\(175\) −12.5673 1.12891i −0.950002 0.0853379i
\(176\) 7.94092 7.14741i 0.598569 0.538756i
\(177\) 0 0
\(178\) −2.52851 + 2.80794i −0.189520 + 0.210464i
\(179\) 10.6967i 0.799512i 0.916622 + 0.399756i \(0.130905\pi\)
−0.916622 + 0.399756i \(0.869095\pi\)
\(180\) 0 0
\(181\) 7.23452i 0.537738i 0.963177 + 0.268869i \(0.0866498\pi\)
−0.963177 + 0.268869i \(0.913350\pi\)
\(182\) 22.6540 + 6.98471i 1.67922 + 0.517741i
\(183\) 0 0
\(184\) 12.3923 5.51539i 0.913576 0.406600i
\(185\) 1.95350 + 1.12786i 0.143624 + 0.0829216i
\(186\) 0 0
\(187\) 3.16514 + 5.48218i 0.231458 + 0.400897i
\(188\) 12.0673 8.76573i 0.880099 0.639307i
\(189\) 0 0
\(190\) −0.882260 2.71574i −0.0640059 0.197020i
\(191\) −17.2598 + 9.96493i −1.24887 + 0.721037i −0.970885 0.239547i \(-0.923001\pi\)
−0.277988 + 0.960584i \(0.589668\pi\)
\(192\) 0 0
\(193\) 7.12877 12.3474i 0.513140 0.888784i −0.486744 0.873545i \(-0.661816\pi\)
0.999884 0.0152396i \(-0.00485112\pi\)
\(194\) 2.99533 + 0.636820i 0.215052 + 0.0457210i
\(195\) 0 0
\(196\) 12.6120 6.07753i 0.900860 0.434110i
\(197\) −11.9516 −0.851517 −0.425759 0.904837i \(-0.639993\pi\)
−0.425759 + 0.904837i \(0.639993\pi\)
\(198\) 0 0
\(199\) 21.9514 1.55610 0.778048 0.628205i \(-0.216210\pi\)
0.778048 + 0.628205i \(0.216210\pi\)
\(200\) −13.4151 1.41184i −0.948588 0.0998319i
\(201\) 0 0
\(202\) −7.19326 1.52932i −0.506116 0.107602i
\(203\) −7.64505 0.686749i −0.536577 0.0482003i
\(204\) 0 0
\(205\) −2.81000 4.86706i −0.196259 0.339930i
\(206\) −3.04082 + 0.987869i −0.211864 + 0.0688281i
\(207\) 0 0
\(208\) 24.1013 + 7.83585i 1.67112 + 0.543318i
\(209\) −9.72027 + 5.61200i −0.672365 + 0.388190i
\(210\) 0 0
\(211\) −8.92341 5.15194i −0.614313 0.354674i 0.160338 0.987062i \(-0.448741\pi\)
−0.774652 + 0.632388i \(0.782075\pi\)
\(212\) 1.87923 + 17.8954i 0.129066 + 1.22906i
\(213\) 0 0
\(214\) −14.0350 + 15.5860i −0.959411 + 1.06544i
\(215\) −0.645139 −0.0439981
\(216\) 0 0
\(217\) −6.99583 15.0940i −0.474908 1.02465i
\(218\) 11.5113 + 10.3658i 0.779642 + 0.702058i
\(219\) 0 0
\(220\) −0.268060 2.55266i −0.0180726 0.172100i
\(221\) −7.50804 + 13.0043i −0.505046 + 0.874765i
\(222\) 0 0
\(223\) 7.23332 + 12.5285i 0.484379 + 0.838969i 0.999839 0.0179449i \(-0.00571235\pi\)
−0.515460 + 0.856914i \(0.672379\pi\)
\(224\) 13.5805 6.29055i 0.907383 0.420305i
\(225\) 0 0
\(226\) −12.7180 + 4.13168i −0.845988 + 0.274835i
\(227\) 9.67633 + 16.7599i 0.642240 + 1.11239i 0.984932 + 0.172945i \(0.0553282\pi\)
−0.342691 + 0.939448i \(0.611338\pi\)
\(228\) 0 0
\(229\) 17.0595 + 9.84933i 1.12733 + 0.650862i 0.943261 0.332052i \(-0.107741\pi\)
0.184065 + 0.982914i \(0.441074\pi\)
\(230\) 0.677669 3.18747i 0.0446842 0.210175i
\(231\) 0 0
\(232\) −8.16074 0.858857i −0.535779 0.0563868i
\(233\) −7.34808 −0.481389 −0.240694 0.970601i \(-0.577375\pi\)
−0.240694 + 0.970601i \(0.577375\pi\)
\(234\) 0 0
\(235\) 3.58321i 0.233743i
\(236\) 0.513223 + 0.228558i 0.0334080 + 0.0148778i
\(237\) 0 0
\(238\) 1.97438 + 8.64532i 0.127980 + 0.560393i
\(239\) 8.34611 + 4.81863i 0.539865 + 0.311691i 0.745024 0.667037i \(-0.232438\pi\)
−0.205159 + 0.978729i \(0.565771\pi\)
\(240\) 0 0
\(241\) −3.56210 + 2.05658i −0.229455 + 0.132476i −0.610321 0.792154i \(-0.708959\pi\)
0.380865 + 0.924630i \(0.375626\pi\)
\(242\) 5.19986 1.68928i 0.334260 0.108591i
\(243\) 0 0
\(244\) −12.9241 17.7919i −0.827381 1.13901i
\(245\) 0.599424 3.30954i 0.0382958 0.211439i
\(246\) 0 0
\(247\) −23.0575 13.3123i −1.46711 0.847038i
\(248\) −7.23163 16.2485i −0.459209 1.03178i
\(249\) 0 0
\(250\) −4.44204 + 4.93293i −0.280939 + 0.311986i
\(251\) −3.31816 −0.209441 −0.104720 0.994502i \(-0.533395\pi\)
−0.104720 + 0.994502i \(0.533395\pi\)
\(252\) 0 0
\(253\) −12.8091 −0.805300
\(254\) 1.38021 1.53274i 0.0866023 0.0961728i
\(255\) 0 0
\(256\) 14.6191 6.50245i 0.913694 0.406403i
\(257\) 14.9497 + 8.63121i 0.932537 + 0.538400i 0.887613 0.460590i \(-0.152362\pi\)
0.0449237 + 0.998990i \(0.485696\pi\)
\(258\) 0 0
\(259\) 7.14796 10.1581i 0.444153 0.631191i
\(260\) 4.92600 3.57826i 0.305498 0.221915i
\(261\) 0 0
\(262\) −16.6628 + 5.41322i −1.02943 + 0.334430i
\(263\) 11.4455 6.60806i 0.705760 0.407471i −0.103729 0.994606i \(-0.533078\pi\)
0.809489 + 0.587135i \(0.199744\pi\)
\(264\) 0 0
\(265\) 3.74371 + 2.16143i 0.229974 + 0.132776i
\(266\) −15.3287 + 3.50070i −0.939864 + 0.214642i
\(267\) 0 0
\(268\) 1.77632 3.98869i 0.108506 0.243648i
\(269\) 27.5600i 1.68036i 0.542304 + 0.840182i \(0.317552\pi\)
−0.542304 + 0.840182i \(0.682448\pi\)
\(270\) 0 0
\(271\) −21.2467 −1.29065 −0.645323 0.763910i \(-0.723277\pi\)
−0.645323 + 0.763910i \(0.723277\pi\)
\(272\) 1.96935 + 9.27338i 0.119409 + 0.562281i
\(273\) 0 0
\(274\) 2.62261 12.3356i 0.158438 0.745223i
\(275\) 11.0315 + 6.36906i 0.665227 + 0.384069i
\(276\) 0 0
\(277\) 7.26076 + 12.5760i 0.436257 + 0.755619i 0.997397 0.0721016i \(-0.0229706\pi\)
−0.561140 + 0.827721i \(0.689637\pi\)
\(278\) 3.70004 1.20203i 0.221914 0.0720930i
\(279\) 0 0
\(280\) 0.694753 3.52785i 0.0415194 0.210829i
\(281\) −6.35647 11.0097i −0.379195 0.656785i 0.611750 0.791051i \(-0.290466\pi\)
−0.990945 + 0.134266i \(0.957132\pi\)
\(282\) 0 0
\(283\) 10.4272 18.0605i 0.619834 1.07358i −0.369682 0.929158i \(-0.620533\pi\)
0.989516 0.144425i \(-0.0461332\pi\)
\(284\) −0.395340 + 0.0415154i −0.0234591 + 0.00246348i
\(285\) 0 0
\(286\) −17.7843 16.0145i −1.05161 0.946958i
\(287\) −28.0770 + 13.0132i −1.65733 + 0.768147i
\(288\) 0 0
\(289\) 11.3829 0.669581
\(290\) −1.31918 + 1.46496i −0.0774647 + 0.0860253i
\(291\) 0 0
\(292\) 9.64577 1.01292i 0.564476 0.0592768i
\(293\) 5.80807 + 3.35329i 0.339311 + 0.195901i 0.659967 0.751294i \(-0.270570\pi\)
−0.320656 + 0.947196i \(0.603903\pi\)
\(294\) 0 0
\(295\) 0.116889 0.0674857i 0.00680552 0.00392917i
\(296\) 7.80640 10.7415i 0.453738 0.624336i
\(297\) 0 0
\(298\) −0.205141 + 0.0666440i −0.0118835 + 0.00386058i
\(299\) −15.1922 26.3137i −0.878590 1.52176i
\(300\) 0 0
\(301\) −0.317831 + 3.53817i −0.0183195 + 0.203937i
\(302\) −17.3906 3.69732i −1.00072 0.212757i
\(303\) 0 0
\(304\) −16.4423 + 3.49179i −0.943031 + 0.200268i
\(305\) −5.28305 −0.302507
\(306\) 0 0
\(307\) −12.0792 −0.689397 −0.344699 0.938713i \(-0.612019\pi\)
−0.344699 + 0.938713i \(0.612019\pi\)
\(308\) −14.1317 + 0.212553i −0.805231 + 0.0121113i
\(309\) 0 0
\(310\) −4.17932 0.888541i −0.237369 0.0504657i
\(311\) −1.01185 + 1.75258i −0.0573769 + 0.0993797i −0.893287 0.449486i \(-0.851607\pi\)
0.835910 + 0.548866i \(0.184940\pi\)
\(312\) 0 0
\(313\) 16.8337 9.71892i 0.951495 0.549346i 0.0579500 0.998319i \(-0.481544\pi\)
0.893545 + 0.448974i \(0.148210\pi\)
\(314\) −5.02596 15.4707i −0.283631 0.873062i
\(315\) 0 0
\(316\) 4.64342 + 6.39235i 0.261213 + 0.359598i
\(317\) 5.21828 + 9.03832i 0.293088 + 0.507643i 0.974538 0.224222i \(-0.0719839\pi\)
−0.681451 + 0.731864i \(0.738651\pi\)
\(318\) 0 0
\(319\) 6.71078 + 3.87447i 0.375731 + 0.216929i
\(320\) 0.800215 3.75965i 0.0447334 0.210171i
\(321\) 0 0
\(322\) −17.1473 5.28690i −0.955583 0.294627i
\(323\) 9.95953i 0.554163i
\(324\) 0 0
\(325\) 30.2162i 1.67609i
\(326\) 18.8994 20.9880i 1.04674 1.16242i
\(327\) 0 0
\(328\) −30.2245 + 13.4519i −1.66887 + 0.742755i
\(329\) −19.6516 1.76529i −1.08343 0.0973235i
\(330\) 0 0
\(331\) 31.2751 18.0567i 1.71903 0.992484i 0.798328 0.602223i \(-0.205718\pi\)
0.920704 0.390261i \(-0.127615\pi\)
\(332\) −16.4866 + 11.9759i −0.904817 + 0.657262i
\(333\) 0 0
\(334\) 29.5227 9.59103i 1.61541 0.524798i
\(335\) −0.524489 0.908442i −0.0286559 0.0496335i
\(336\) 0 0
\(337\) 3.70539 6.41792i 0.201845 0.349606i −0.747278 0.664512i \(-0.768639\pi\)
0.949123 + 0.314905i \(0.101973\pi\)
\(338\) 7.98233 37.5455i 0.434182 2.04221i
\(339\) 0 0
\(340\) 2.08055 + 0.926548i 0.112834 + 0.0502491i
\(341\) 16.7949i 0.909495i
\(342\) 0 0
\(343\) −17.8554 4.91791i −0.964099 0.265542i
\(344\) −0.397484 + 3.77684i −0.0214309 + 0.203633i
\(345\) 0 0
\(346\) −21.1581 4.49830i −1.13747 0.241830i
\(347\) −24.8678 14.3574i −1.33497 0.770747i −0.348915 0.937154i \(-0.613450\pi\)
−0.986057 + 0.166408i \(0.946783\pi\)
\(348\) 0 0
\(349\) −0.744758 + 0.429986i −0.0398660 + 0.0230166i −0.519801 0.854288i \(-0.673994\pi\)
0.479935 + 0.877304i \(0.340660\pi\)
\(350\) 12.1390 + 13.0794i 0.648855 + 0.699123i
\(351\) 0 0
\(352\) −15.1092 0.00344740i −0.805322 0.000183747i
\(353\) −27.7159 + 16.0018i −1.47517 + 0.851690i −0.999608 0.0279920i \(-0.991089\pi\)
−0.475562 + 0.879682i \(0.657755\pi\)
\(354\) 0 0
\(355\) −0.0477497 + 0.0827049i −0.00253429 + 0.00438952i
\(356\) 5.31454 0.558090i 0.281670 0.0295787i
\(357\) 0 0
\(358\) 10.1228 11.2414i 0.535005 0.594129i
\(359\) 5.52163i 0.291421i 0.989327 + 0.145710i \(0.0465468\pi\)
−0.989327 + 0.145710i \(0.953453\pi\)
\(360\) 0 0
\(361\) −1.34111 −0.0705845
\(362\) 6.84633 7.60292i 0.359835 0.399601i
\(363\) 0 0
\(364\) −17.1976 28.7788i −0.901401 1.50842i
\(365\) 1.16503 2.01789i 0.0609805 0.105621i
\(366\) 0 0
\(367\) 11.4766 + 19.8780i 0.599072 + 1.03762i 0.992958 + 0.118465i \(0.0377972\pi\)
−0.393886 + 0.919159i \(0.628869\pi\)
\(368\) −18.2428 5.93114i −0.950974 0.309182i
\(369\) 0 0
\(370\) −0.985644 3.03397i −0.0512412 0.157729i
\(371\) 13.6984 19.4670i 0.711185 1.01067i
\(372\) 0 0
\(373\) −14.2688 + 24.7143i −0.738810 + 1.27966i 0.214222 + 0.976785i \(0.431278\pi\)
−0.953032 + 0.302871i \(0.902055\pi\)
\(374\) 1.86170 8.75665i 0.0962663 0.452796i
\(375\) 0 0
\(376\) −20.9772 2.20769i −1.08182 0.113853i
\(377\) 18.3813i 0.946685i
\(378\) 0 0
\(379\) 13.3942i 0.688014i 0.938967 + 0.344007i \(0.111784\pi\)
−0.938967 + 0.344007i \(0.888216\pi\)
\(380\) −1.64283 + 3.68895i −0.0842754 + 0.189239i
\(381\) 0 0
\(382\) 27.5689 + 5.86127i 1.41055 + 0.299889i
\(383\) 11.1930 19.3869i 0.571937 0.990625i −0.424430 0.905461i \(-0.639525\pi\)
0.996367 0.0851637i \(-0.0271413\pi\)
\(384\) 0 0
\(385\) −1.95399 + 2.77684i −0.0995844 + 0.141521i
\(386\) −19.1766 + 6.22990i −0.976064 + 0.317093i
\(387\) 0 0
\(388\) −2.54521 3.50386i −0.129214 0.177881i
\(389\) −13.5306 23.4357i −0.686029 1.18824i −0.973112 0.230332i \(-0.926019\pi\)
0.287083 0.957906i \(-0.407314\pi\)
\(390\) 0 0
\(391\) 5.68302 9.84327i 0.287402 0.497796i
\(392\) −19.0057 5.54828i −0.959933 0.280231i
\(393\) 0 0
\(394\) 12.5602 + 11.3103i 0.632775 + 0.569805i
\(395\) 1.89812 0.0955046
\(396\) 0 0
\(397\) 11.6658i 0.585487i 0.956191 + 0.292744i \(0.0945683\pi\)
−0.956191 + 0.292744i \(0.905432\pi\)
\(398\) −23.0692 20.7735i −1.15636 1.04128i
\(399\) 0 0
\(400\) 12.7621 + 14.1790i 0.638106 + 0.708948i
\(401\) 8.33464 14.4360i 0.416212 0.720901i −0.579343 0.815084i \(-0.696691\pi\)
0.995555 + 0.0941835i \(0.0300240\pi\)
\(402\) 0 0
\(403\) −34.5018 + 19.9196i −1.71866 + 0.992268i
\(404\) 6.11230 + 8.41447i 0.304098 + 0.418636i
\(405\) 0 0
\(406\) 7.38445 + 7.95654i 0.366484 + 0.394877i
\(407\) −10.8593 + 6.26962i −0.538275 + 0.310773i
\(408\) 0 0
\(409\) 0.589282 + 0.340222i 0.0291381 + 0.0168229i 0.514498 0.857491i \(-0.327978\pi\)
−0.485360 + 0.874314i \(0.661312\pi\)
\(410\) −1.65281 + 7.77412i −0.0816265 + 0.383937i
\(411\) 0 0
\(412\) 4.13053 + 1.83948i 0.203497 + 0.0906247i
\(413\) −0.312530 0.674306i −0.0153786 0.0331804i
\(414\) 0 0
\(415\) 4.89544i 0.240308i
\(416\) −17.9132 31.0429i −0.878267 1.52200i
\(417\) 0 0
\(418\) 15.5261 + 3.30092i 0.759407 + 0.161453i
\(419\) 5.19926 9.00538i 0.254000 0.439941i −0.710623 0.703573i \(-0.751587\pi\)
0.964624 + 0.263631i \(0.0849202\pi\)
\(420\) 0 0
\(421\) −3.42772 5.93699i −0.167057 0.289351i 0.770327 0.637649i \(-0.220093\pi\)
−0.937384 + 0.348298i \(0.886760\pi\)
\(422\) 4.50232 + 13.8589i 0.219170 + 0.674640i
\(423\) 0 0
\(424\) 14.9602 20.5850i 0.726532 0.999698i
\(425\) −9.78875 + 5.65154i −0.474824 + 0.274140i
\(426\) 0 0
\(427\) −2.60272 + 28.9741i −0.125955 + 1.40215i
\(428\) 29.4993 3.09778i 1.42590 0.149737i
\(429\) 0 0
\(430\) 0.677991 + 0.610522i 0.0326956 + 0.0294420i
\(431\) 15.2572i 0.734914i −0.930040 0.367457i \(-0.880228\pi\)
0.930040 0.367457i \(-0.119772\pi\)
\(432\) 0 0
\(433\) 34.6459i 1.66498i −0.554042 0.832489i \(-0.686915\pi\)
0.554042 0.832489i \(-0.313085\pi\)
\(434\) −6.93203 + 22.4831i −0.332748 + 1.07922i
\(435\) 0 0
\(436\) −2.28792 21.7872i −0.109571 1.04342i
\(437\) 17.4528 + 10.0764i 0.834879 + 0.482018i
\(438\) 0 0
\(439\) −6.12174 10.6032i −0.292175 0.506061i 0.682149 0.731213i \(-0.261045\pi\)
−0.974324 + 0.225152i \(0.927712\pi\)
\(440\) −2.13398 + 2.93632i −0.101733 + 0.139984i
\(441\) 0 0
\(442\) 20.1969 6.56135i 0.960668 0.312091i
\(443\) 24.2468 13.9989i 1.15200 0.665108i 0.202627 0.979256i \(-0.435052\pi\)
0.949374 + 0.314148i \(0.101719\pi\)
\(444\) 0 0
\(445\) 0.641897 1.11180i 0.0304288 0.0527043i
\(446\) 4.25456 20.0116i 0.201459 0.947579i
\(447\) 0 0
\(448\) −20.2250 6.24087i −0.955543 0.294853i
\(449\) −23.8270 −1.12446 −0.562232 0.826979i \(-0.690057\pi\)
−0.562232 + 0.826979i \(0.690057\pi\)
\(450\) 0 0
\(451\) 31.2409 1.47108
\(452\) 17.2756 + 7.69348i 0.812576 + 0.361871i
\(453\) 0 0
\(454\) 5.69151 26.7705i 0.267116 1.25640i
\(455\) −8.02199 0.720609i −0.376077 0.0337827i
\(456\) 0 0
\(457\) −11.9100 20.6288i −0.557128 0.964974i −0.997735 0.0672735i \(-0.978570\pi\)
0.440607 0.897700i \(-0.354763\pi\)
\(458\) −8.60742 26.4950i −0.402198 1.23803i
\(459\) 0 0
\(460\) −3.72861 + 2.70847i −0.173847 + 0.126283i
\(461\) −0.317557 + 0.183341i −0.0147901 + 0.00853906i −0.507377 0.861724i \(-0.669385\pi\)
0.492587 + 0.870263i \(0.336051\pi\)
\(462\) 0 0
\(463\) 14.3509 + 8.28549i 0.666943 + 0.385060i 0.794917 0.606718i \(-0.207514\pi\)
−0.127974 + 0.991777i \(0.540848\pi\)
\(464\) 7.76353 + 8.62544i 0.360413 + 0.400426i
\(465\) 0 0
\(466\) 7.72226 + 6.95379i 0.357727 + 0.322128i
\(467\) −26.1463 −1.20991 −0.604953 0.796261i \(-0.706808\pi\)
−0.604953 + 0.796261i \(0.706808\pi\)
\(468\) 0 0
\(469\) −5.24061 + 2.42893i −0.241989 + 0.112158i
\(470\) −3.39094 + 3.76568i −0.156413 + 0.173698i
\(471\) 0 0
\(472\) −0.323064 0.725880i −0.0148702 0.0334113i
\(473\) 1.79313 3.10579i 0.0824480 0.142804i
\(474\) 0 0
\(475\) −10.0205 17.3561i −0.459774 0.796352i
\(476\) 6.10651 10.9540i 0.279891 0.502076i
\(477\) 0 0
\(478\) −4.21104 12.9623i −0.192609 0.592880i
\(479\) 19.0772 + 33.0427i 0.871661 + 1.50976i 0.860277 + 0.509826i \(0.170290\pi\)
0.0113840 + 0.999935i \(0.496376\pi\)
\(480\) 0 0
\(481\) −25.7594 14.8722i −1.17453 0.678113i
\(482\) 5.68972 + 1.20966i 0.259160 + 0.0550985i
\(483\) 0 0
\(484\) −7.06328 3.14555i −0.321058 0.142979i
\(485\) −1.04042 −0.0472430
\(486\) 0 0
\(487\) 8.93817i 0.405027i 0.979279 + 0.202514i \(0.0649110\pi\)
−0.979279 + 0.202514i \(0.935089\pi\)
\(488\) −3.25500 + 30.9285i −0.147347 + 1.40007i
\(489\) 0 0
\(490\) −3.76190 + 2.91081i −0.169945 + 0.131497i
\(491\) −8.03087 4.63662i −0.362428 0.209248i 0.307717 0.951478i \(-0.400435\pi\)
−0.670145 + 0.742230i \(0.733768\pi\)
\(492\) 0 0
\(493\) −5.95475 + 3.43798i −0.268189 + 0.154839i
\(494\) 11.6337 + 35.8104i 0.523425 + 1.61119i
\(495\) 0 0
\(496\) −7.77675 + 23.9195i −0.349186 + 1.07402i
\(497\) 0.430058 + 0.302621i 0.0192908 + 0.0135744i
\(498\) 0 0
\(499\) −15.0365 8.68131i −0.673125 0.388629i 0.124135 0.992265i \(-0.460385\pi\)
−0.797260 + 0.603636i \(0.793718\pi\)
\(500\) 9.33648 0.980442i 0.417540 0.0438467i
\(501\) 0 0
\(502\) 3.48713 + 3.14012i 0.155638 + 0.140150i
\(503\) 6.23388 0.277955 0.138978 0.990296i \(-0.455618\pi\)
0.138978 + 0.990296i \(0.455618\pi\)
\(504\) 0 0
\(505\) 2.49856 0.111184
\(506\) 13.4613 + 12.1218i 0.598430 + 0.538878i
\(507\) 0 0
\(508\) −2.90099 + 0.304639i −0.128711 + 0.0135162i
\(509\) 3.52873 + 2.03731i 0.156408 + 0.0903023i 0.576161 0.817336i \(-0.304550\pi\)
−0.419753 + 0.907638i \(0.637883\pi\)
\(510\) 0 0
\(511\) −10.4929 7.38356i −0.464177 0.326629i
\(512\) −21.5171 7.00109i −0.950930 0.309408i
\(513\) 0 0
\(514\) −7.54290 23.2183i −0.332703 1.02411i
\(515\) 0.940746 0.543140i 0.0414542 0.0239336i
\(516\) 0 0
\(517\) 17.2501 + 9.95933i 0.758657 + 0.438011i
\(518\) −17.1249 + 3.91092i −0.752427 + 0.171836i
\(519\) 0 0
\(520\) −8.56311 0.901204i −0.375517 0.0395204i
\(521\) 27.2193i 1.19250i −0.802798 0.596251i \(-0.796656\pi\)
0.802798 0.596251i \(-0.203344\pi\)
\(522\) 0 0
\(523\) 3.44794 0.150768 0.0753838 0.997155i \(-0.475982\pi\)
0.0753838 + 0.997155i \(0.475982\pi\)
\(524\) 22.6340 + 10.0798i 0.988772 + 0.440338i
\(525\) 0 0
\(526\) −18.2818 3.88679i −0.797125 0.169472i
\(527\) −12.9062 7.45141i −0.562204 0.324589i
\(528\) 0 0
\(529\) −0.000637027 0.00110336i −2.76968e−5 4.79723e-5i
\(530\) −1.88889 5.81432i −0.0820483 0.252558i
\(531\) 0 0
\(532\) 19.4222 + 10.8272i 0.842057 + 0.469420i
\(533\) 37.0533 + 64.1783i 1.60496 + 2.77987i
\(534\) 0 0
\(535\) 3.56297 6.17125i 0.154041 0.266806i
\(536\) −5.64143 + 2.51080i −0.243673 + 0.108450i
\(537\) 0 0
\(538\) 26.0812 28.9634i 1.12444 1.24870i
\(539\) 14.2665 + 12.0844i 0.614502 + 0.520511i
\(540\) 0 0
\(541\) 5.99277 0.257649 0.128825 0.991667i \(-0.458880\pi\)
0.128825 + 0.991667i \(0.458880\pi\)
\(542\) 22.3286 + 20.1066i 0.959097 + 0.863654i
\(543\) 0 0
\(544\) 6.70615 11.6093i 0.287524 0.497744i
\(545\) −4.55787 2.63149i −0.195238 0.112721i
\(546\) 0 0
\(547\) 5.72221 3.30372i 0.244664 0.141257i −0.372654 0.927970i \(-0.621552\pi\)
0.617319 + 0.786713i \(0.288219\pi\)
\(548\) −14.4299 + 10.4819i −0.616414 + 0.447765i
\(549\) 0 0
\(550\) −5.56598 17.1330i −0.237334 0.730553i
\(551\) −6.09576 10.5582i −0.259688 0.449793i
\(552\) 0 0
\(553\) 0.935116 10.4099i 0.0397652 0.442675i
\(554\) 4.27070 20.0876i 0.181445 0.853439i
\(555\) 0 0
\(556\) −5.02599 2.23826i −0.213149 0.0949235i
\(557\) −6.08351 −0.257767 −0.128883 0.991660i \(-0.541139\pi\)
−0.128883 + 0.991660i \(0.541139\pi\)
\(558\) 0 0
\(559\) 8.50697 0.359806
\(560\) −4.06868 + 3.05002i −0.171933 + 0.128887i
\(561\) 0 0
\(562\) −3.73881 + 17.5858i −0.157712 + 0.741810i
\(563\) −13.1561 + 22.7871i −0.554465 + 0.960361i 0.443480 + 0.896284i \(0.353744\pi\)
−0.997945 + 0.0640767i \(0.979590\pi\)
\(564\) 0 0
\(565\) 3.93459 2.27164i 0.165530 0.0955686i
\(566\) −28.0496 + 9.11244i −1.17901 + 0.383024i
\(567\) 0 0
\(568\) 0.454759 + 0.330497i 0.0190813 + 0.0138673i
\(569\) 0.683478 + 1.18382i 0.0286529 + 0.0496283i 0.879996 0.474981i \(-0.157545\pi\)
−0.851343 + 0.524609i \(0.824212\pi\)
\(570\) 0 0
\(571\) 14.6500 + 8.45818i 0.613083 + 0.353964i 0.774171 0.632976i \(-0.218167\pi\)
−0.161088 + 0.986940i \(0.551500\pi\)
\(572\) 3.53470 + 33.6600i 0.147793 + 1.40740i
\(573\) 0 0
\(574\) 41.8218 + 12.8946i 1.74561 + 0.538209i
\(575\) 22.8713i 0.953801i
\(576\) 0 0
\(577\) 0.277722i 0.0115617i 0.999983 + 0.00578087i \(0.00184012\pi\)
−0.999983 + 0.00578087i \(0.998160\pi\)
\(578\) −11.9625 10.7721i −0.497575 0.448060i
\(579\) 0 0
\(580\) 2.77270 0.291167i 0.115130 0.0120901i
\(581\) 26.8483 + 2.41176i 1.11386 + 0.100057i
\(582\) 0 0
\(583\) −20.8108 + 12.0151i −0.861896 + 0.497616i
\(584\) −11.0955 8.06369i −0.459136 0.333678i
\(585\) 0 0
\(586\) −2.93047 9.02046i −0.121057 0.372632i
\(587\) 13.6979 + 23.7254i 0.565372 + 0.979253i 0.997015 + 0.0772082i \(0.0246006\pi\)
−0.431643 + 0.902044i \(0.642066\pi\)
\(588\) 0 0
\(589\) 13.2118 22.8836i 0.544385 0.942902i
\(590\) −0.186706 0.0396944i −0.00768654 0.00163419i
\(591\) 0 0
\(592\) −18.3690 + 3.90095i −0.754963 + 0.160328i
\(593\) 32.0154i 1.31471i −0.753579 0.657357i \(-0.771674\pi\)
0.753579 0.657357i \(-0.228326\pi\)
\(594\) 0 0
\(595\) −1.26696 2.73356i −0.0519403 0.112065i
\(596\) 0.278655 + 0.124096i 0.0114142 + 0.00508316i
\(597\) 0 0
\(598\) −8.93591 + 42.0307i −0.365417 + 1.71876i
\(599\) 15.8709 + 9.16306i 0.648467 + 0.374392i 0.787869 0.615843i \(-0.211185\pi\)
−0.139402 + 0.990236i \(0.544518\pi\)
\(600\) 0 0
\(601\) 19.1583 11.0611i 0.781485 0.451190i −0.0554716 0.998460i \(-0.517666\pi\)
0.836956 + 0.547270i \(0.184333\pi\)
\(602\) 3.68233 3.41757i 0.150081 0.139290i
\(603\) 0 0
\(604\) 14.7773 + 20.3431i 0.601279 + 0.827748i
\(605\) −1.60869 + 0.928780i −0.0654027 + 0.0377603i
\(606\) 0 0
\(607\) −7.92507 + 13.7266i −0.321669 + 0.557146i −0.980832 0.194853i \(-0.937577\pi\)
0.659164 + 0.751999i \(0.270910\pi\)
\(608\) 20.5840 + 11.8905i 0.834792 + 0.482221i
\(609\) 0 0
\(610\) 5.55208 + 4.99957i 0.224797 + 0.202427i
\(611\) 47.2491i 1.91150i
\(612\) 0 0
\(613\) 24.5067 0.989818 0.494909 0.868945i \(-0.335201\pi\)
0.494909 + 0.868945i \(0.335201\pi\)
\(614\) 12.6943 + 11.4311i 0.512301 + 0.461320i
\(615\) 0 0
\(616\) 15.0525 + 13.1501i 0.606483 + 0.529832i
\(617\) 15.9608 27.6449i 0.642557 1.11294i −0.342303 0.939590i \(-0.611207\pi\)
0.984860 0.173352i \(-0.0554599\pi\)
\(618\) 0 0
\(619\) 0.227459 + 0.393971i 0.00914236 + 0.0158350i 0.870560 0.492062i \(-0.163757\pi\)
−0.861418 + 0.507897i \(0.830423\pi\)
\(620\) 3.55128 + 4.88885i 0.142623 + 0.196341i
\(621\) 0 0
\(622\) 2.72192 0.884267i 0.109139 0.0354559i
\(623\) −5.78126 4.06812i −0.231621 0.162986i
\(624\) 0 0
\(625\) −10.7952 + 18.6978i −0.431807 + 0.747911i
\(626\) −26.8883 5.71657i −1.07467 0.228480i
\(627\) 0 0
\(628\) −9.35868 + 21.0148i −0.373452 + 0.838581i
\(629\) 11.1266i 0.443646i
\(630\) 0 0
\(631\) 28.8331i 1.14783i −0.818916 0.573913i \(-0.805425\pi\)
0.818916 0.573913i \(-0.194575\pi\)
\(632\) 1.16947 11.1121i 0.0465190 0.442017i
\(633\) 0 0
\(634\) 3.06933 14.4368i 0.121899 0.573360i
\(635\) −0.350386 + 0.606887i −0.0139046 + 0.0240836i
\(636\) 0 0
\(637\) −7.90415 + 43.6404i −0.313174 + 1.72910i
\(638\) −3.38593 10.4225i −0.134050 0.412629i
\(639\) 0 0
\(640\) −4.39888 + 3.19383i −0.173881 + 0.126247i
\(641\) −3.90266 6.75961i −0.154146 0.266989i 0.778602 0.627518i \(-0.215929\pi\)
−0.932748 + 0.360530i \(0.882596\pi\)
\(642\) 0 0
\(643\) −2.26137 + 3.91681i −0.0891797 + 0.154464i −0.907165 0.420776i \(-0.861758\pi\)
0.817985 + 0.575240i \(0.195091\pi\)
\(644\) 13.0173 + 21.7833i 0.512954 + 0.858384i
\(645\) 0 0
\(646\) −9.42511 + 10.4667i −0.370826 + 0.411806i
\(647\) 32.4931 1.27744 0.638718 0.769441i \(-0.279465\pi\)
0.638718 + 0.769441i \(0.279465\pi\)
\(648\) 0 0
\(649\) 0.750290i 0.0294515i
\(650\) 28.5948 31.7548i 1.12158 1.24553i
\(651\) 0 0
\(652\) −39.7236 + 4.17146i −1.55570 + 0.163367i
\(653\) −3.99865 + 6.92587i −0.156479 + 0.271030i −0.933597 0.358325i \(-0.883348\pi\)
0.777117 + 0.629356i \(0.216681\pi\)
\(654\) 0 0
\(655\) 5.15500 2.97624i 0.201422 0.116291i
\(656\) 44.4937 + 14.4658i 1.73719 + 0.564796i
\(657\) 0 0
\(658\) 18.9817 + 20.4523i 0.739985 + 0.797314i
\(659\) −6.89888 + 3.98307i −0.268742 + 0.155158i −0.628316 0.777958i \(-0.716255\pi\)
0.359574 + 0.933117i \(0.382922\pi\)
\(660\) 0 0
\(661\) 0.220771 + 0.127462i 0.00858700 + 0.00495771i 0.504287 0.863536i \(-0.331755\pi\)
−0.495700 + 0.868494i \(0.665089\pi\)
\(662\) −49.9554 10.6207i −1.94157 0.412787i
\(663\) 0 0
\(664\) 28.6594 + 3.01619i 1.11220 + 0.117051i
\(665\) 4.84679 2.24641i 0.187950 0.0871119i
\(666\) 0 0
\(667\) 13.9132i 0.538723i
\(668\) −40.1025 17.8592i −1.55161 0.690992i
\(669\) 0 0
\(670\) −0.308499 + 1.45105i −0.0119184 + 0.0560589i
\(671\) 14.6839 25.4333i 0.566867 0.981842i
\(672\) 0 0
\(673\) −0.198313 0.343488i −0.00764441 0.0132405i 0.862178 0.506606i \(-0.169100\pi\)
−0.869822 + 0.493365i \(0.835767\pi\)
\(674\) −9.96762 + 3.23817i −0.383938 + 0.124730i
\(675\) 0 0
\(676\) −43.9197 + 31.9034i −1.68922 + 1.22705i
\(677\) 43.1462 24.9105i 1.65824 0.957388i 0.684720 0.728806i \(-0.259924\pi\)
0.973525 0.228582i \(-0.0734090\pi\)
\(678\) 0 0
\(679\) −0.512568 + 5.70602i −0.0196706 + 0.218977i
\(680\) −1.30967 2.94264i −0.0502234 0.112845i
\(681\) 0 0
\(682\) 15.8937 17.6501i 0.608602 0.675859i
\(683\) 28.4508i 1.08864i 0.838878 + 0.544320i \(0.183212\pi\)
−0.838878 + 0.544320i \(0.816788\pi\)
\(684\) 0 0
\(685\) 4.28474i 0.163712i
\(686\) 14.1106 + 22.0656i 0.538744 + 0.842469i
\(687\) 0 0
\(688\) 3.99190 3.59301i 0.152190 0.136982i
\(689\) −49.3654 28.5011i −1.88067 1.08581i
\(690\) 0 0
\(691\) 6.08340 + 10.5368i 0.231423 + 0.400837i 0.958227 0.286008i \(-0.0923284\pi\)
−0.726804 + 0.686845i \(0.758995\pi\)
\(692\) 17.9786 + 24.7501i 0.683443 + 0.940859i
\(693\) 0 0
\(694\) 12.5471 + 38.6219i 0.476281 + 1.46607i
\(695\) −1.14469 + 0.660887i −0.0434206 + 0.0250689i
\(696\) 0 0
\(697\) −13.8607 + 24.0074i −0.525011 + 0.909345i
\(698\) 1.18960 + 0.252913i 0.0450269 + 0.00957291i
\(699\) 0 0
\(700\) −0.379526 25.2330i −0.0143447 0.953719i
\(701\) 9.67651 0.365477 0.182738 0.983162i \(-0.441504\pi\)
0.182738 + 0.983162i \(0.441504\pi\)
\(702\) 0 0
\(703\) 19.7282 0.744062
\(704\) 15.8753 + 14.3021i 0.598323 + 0.539029i
\(705\) 0 0
\(706\) 44.2705 + 9.41209i 1.66614 + 0.354229i
\(707\) 1.23093 13.7030i 0.0462938 0.515353i
\(708\) 0 0
\(709\) −22.5400 39.0404i −0.846507 1.46619i −0.884306 0.466907i \(-0.845368\pi\)
0.0377999 0.999285i \(-0.487965\pi\)
\(710\) 0.128448 0.0417289i 0.00482058 0.00156606i
\(711\) 0 0
\(712\) −6.11331 4.44286i −0.229106 0.166503i
\(713\) 26.1153 15.0776i 0.978024 0.564662i
\(714\) 0 0
\(715\) 7.04166 + 4.06550i 0.263343 + 0.152041i
\(716\) −21.2765 + 2.23429i −0.795140 + 0.0834992i
\(717\) 0 0
\(718\) 5.22535 5.80281i 0.195008 0.216559i
\(719\) −12.1609 −0.453526 −0.226763 0.973950i \(-0.572814\pi\)
−0.226763 + 0.973950i \(0.572814\pi\)
\(720\) 0 0
\(721\) −2.51531 5.42696i −0.0936749 0.202111i
\(722\) 1.40940 + 1.26914i 0.0524524 + 0.0472326i
\(723\) 0 0
\(724\) −14.3899 + 1.51111i −0.534797 + 0.0561601i
\(725\) −6.91809 + 11.9825i −0.256931 + 0.445018i
\(726\) 0 0
\(727\) −8.39590 14.5421i −0.311387 0.539337i 0.667276 0.744810i \(-0.267460\pi\)
−0.978663 + 0.205473i \(0.934127\pi\)
\(728\) −9.16118 + 46.5191i −0.339536 + 1.72411i
\(729\) 0 0
\(730\) −3.13397 + 1.01813i −0.115993 + 0.0376827i
\(731\) 1.59112 + 2.75589i 0.0588496 + 0.101930i
\(732\) 0 0
\(733\) −18.4832 10.6713i −0.682693 0.394153i 0.118176 0.992993i \(-0.462295\pi\)
−0.800869 + 0.598840i \(0.795629\pi\)
\(734\) 6.75040 31.7510i 0.249162 1.17195i
\(735\) 0 0
\(736\) 13.5589 + 23.4971i 0.499789 + 0.866115i
\(737\) 5.83114 0.214793
\(738\) 0 0
\(739\) 50.5558i 1.85973i −0.367907 0.929863i \(-0.619926\pi\)
0.367907 0.929863i \(-0.380074\pi\)
\(740\) −1.83534 + 4.12122i −0.0674684 + 0.151499i
\(741\) 0 0
\(742\) −32.8183 + 7.49490i −1.20480 + 0.275146i
\(743\) 32.1395 + 18.5558i 1.17909 + 0.680745i 0.955803 0.294009i \(-0.0949895\pi\)
0.223282 + 0.974754i \(0.428323\pi\)
\(744\) 0 0
\(745\) 0.0634650 0.0366415i 0.00232518 0.00134244i
\(746\) 38.3835 12.4696i 1.40532 0.456545i
\(747\) 0 0
\(748\) −10.2433 + 7.44075i −0.374532 + 0.272061i
\(749\) −32.0900 22.5809i −1.17254 0.825088i
\(750\) 0 0
\(751\) 37.8228 + 21.8370i 1.38017 + 0.796843i 0.992180 0.124819i \(-0.0398350\pi\)
0.387993 + 0.921662i \(0.373168\pi\)
\(752\) 19.9562 + 22.1717i 0.727726 + 0.808519i
\(753\) 0 0
\(754\) 17.3950 19.3173i 0.633488 0.703495i
\(755\) 6.04058 0.219839
\(756\) 0 0
\(757\) −53.5207 −1.94524 −0.972622 0.232392i \(-0.925345\pi\)
−0.972622 + 0.232392i \(0.925345\pi\)
\(758\) 12.6755 14.0763i 0.460394 0.511273i
\(759\) 0 0
\(760\) 5.21749 2.32212i 0.189258 0.0842322i
\(761\) −19.6964 11.3717i −0.713994 0.412225i 0.0985439 0.995133i \(-0.468582\pi\)
−0.812538 + 0.582908i \(0.801915\pi\)
\(762\) 0 0
\(763\) −16.6775 + 23.7006i −0.603765 + 0.858018i
\(764\) −23.4260 32.2493i −0.847524 1.16674i
\(765\) 0 0
\(766\) −30.1096 + 9.78170i −1.08791 + 0.353427i
\(767\) −1.54132 + 0.889883i −0.0556540 + 0.0321318i
\(768\) 0 0
\(769\) −9.86460 5.69533i −0.355726 0.205379i 0.311478 0.950253i \(-0.399176\pi\)
−0.667204 + 0.744875i \(0.732509\pi\)
\(770\) 4.68132 1.06910i 0.168703 0.0385277i
\(771\) 0 0
\(772\) 26.0488 + 11.6005i 0.937515 + 0.417511i
\(773\) 30.6663i 1.10299i −0.834178 0.551495i \(-0.814058\pi\)
0.834178 0.551495i \(-0.185942\pi\)
\(774\) 0 0
\(775\) −29.9883 −1.07721
\(776\) −0.641025 + 6.09092i −0.0230114 + 0.218651i
\(777\) 0 0
\(778\) −7.95856 + 37.4337i −0.285328 + 1.34206i
\(779\) −42.5667 24.5759i −1.52511 0.880523i
\(780\) 0 0
\(781\) −0.265435 0.459746i −0.00949800 0.0164510i
\(782\) −15.2875 + 4.96644i −0.546680 + 0.177600i
\(783\) 0 0
\(784\) 14.7229 + 23.8167i 0.525819 + 0.850596i
\(785\) 2.76332 + 4.78621i 0.0986271 + 0.170827i
\(786\) 0 0
\(787\) 9.75700 16.8996i 0.347799 0.602406i −0.638059 0.769988i \(-0.720262\pi\)
0.985858 + 0.167581i \(0.0535957\pi\)
\(788\) −2.49640 23.7725i −0.0889305 0.846861i
\(789\) 0 0
\(790\) −1.99477 1.79627i −0.0709708 0.0639083i
\(791\) −10.5201 22.6978i −0.374050 0.807042i
\(792\) 0 0
\(793\) 69.6636 2.47383
\(794\) 11.0398 12.2598i 0.391787 0.435084i
\(795\) 0 0
\(796\) 4.58511 + 43.6628i 0.162515 + 1.54759i
\(797\) 25.9632 + 14.9898i 0.919663 + 0.530968i 0.883528 0.468379i \(-0.155162\pi\)
0.0361355 + 0.999347i \(0.488495\pi\)
\(798\) 0 0
\(799\) −15.3067 + 8.83733i −0.541512 + 0.312642i
\(800\) 0.00615553 26.9783i 0.000217631 0.953827i
\(801\) 0 0
\(802\) −22.4205 + 7.28372i −0.791694 + 0.257197i
\(803\) 6.47626 + 11.2172i 0.228542 + 0.395847i
\(804\) 0 0
\(805\) 6.07204 + 0.545446i 0.214011 + 0.0192245i
\(806\) 55.1095 + 11.7165i 1.94115 + 0.412697i
\(807\) 0 0
\(808\) 1.53941 14.6273i 0.0541564 0.514586i
\(809\) 54.5869 1.91917 0.959586 0.281415i \(-0.0908038\pi\)
0.959586 + 0.281415i \(0.0908038\pi\)
\(810\) 0 0
\(811\) 17.5107 0.614883 0.307442 0.951567i \(-0.400527\pi\)
0.307442 + 0.951567i \(0.400527\pi\)
\(812\) −0.230876 15.3499i −0.00810215 0.538677i
\(813\) 0 0
\(814\) 17.3455 + 3.68772i 0.607959 + 0.129255i
\(815\) −4.79788 + 8.31016i −0.168062 + 0.291092i
\(816\) 0 0
\(817\) −4.88638 + 2.82115i −0.170953 + 0.0986997i
\(818\) −0.297323 0.915209i −0.0103957 0.0319995i
\(819\) 0 0
\(820\) 9.09395 6.60587i 0.317575 0.230687i
\(821\) 9.47071 + 16.4037i 0.330530 + 0.572495i 0.982616 0.185650i \(-0.0594392\pi\)
−0.652086 + 0.758145i \(0.726106\pi\)
\(822\) 0 0
\(823\) −8.43975 4.87269i −0.294191 0.169851i 0.345639 0.938367i \(-0.387662\pi\)
−0.639831 + 0.768516i \(0.720995\pi\)
\(824\) −2.60009 5.84204i −0.0905783 0.203517i
\(825\) 0 0
\(826\) −0.309679 + 1.00440i −0.0107751 + 0.0349476i
\(827\) 38.9872i 1.35572i 0.735193 + 0.677858i \(0.237092\pi\)
−0.735193 + 0.677858i \(0.762908\pi\)
\(828\) 0 0
\(829\) 8.11853i 0.281968i 0.990012 + 0.140984i \(0.0450266\pi\)
−0.990012 + 0.140984i \(0.954973\pi\)
\(830\) 4.63276 5.14473i 0.160805 0.178576i
\(831\) 0 0
\(832\) −10.5518 + 49.5757i −0.365819 + 1.71873i
\(833\) −15.6160 + 5.60176i −0.541062 + 0.194089i
\(834\) 0 0
\(835\) −9.13352 + 5.27324i −0.316078 + 0.182488i
\(836\) −13.1929 18.1620i −0.456288 0.628147i
\(837\) 0 0
\(838\) −13.9862 + 4.54368i −0.483144 + 0.156959i
\(839\) −13.5859 23.5314i −0.469036 0.812394i 0.530337 0.847787i \(-0.322065\pi\)
−0.999373 + 0.0353923i \(0.988732\pi\)
\(840\) 0 0
\(841\) 10.2915 17.8255i 0.354881 0.614672i
\(842\) −2.01615 + 9.48311i −0.0694811 + 0.326810i
\(843\) 0 0
\(844\) 8.38364 18.8253i 0.288577 0.647995i
\(845\) 13.0413i 0.448635i
\(846\) 0 0
\(847\) 4.30122 + 9.28021i 0.147792 + 0.318872i
\(848\) −35.2025 + 7.47581i −1.20886 + 0.256720i
\(849\) 0 0
\(850\) 15.6355 + 3.32417i 0.536293 + 0.114018i
\(851\) 19.4979 + 11.2571i 0.668379 + 0.385889i
\(852\) 0 0
\(853\) −20.4384 + 11.8001i −0.699797 + 0.404028i −0.807272 0.590180i \(-0.799057\pi\)
0.107475 + 0.994208i \(0.465724\pi\)
\(854\) 30.1547 27.9865i 1.03187 0.957677i
\(855\) 0 0
\(856\) −33.9331 24.6609i −1.15981 0.842893i
\(857\) 13.6342 7.87173i 0.465737 0.268893i −0.248717 0.968576i \(-0.580009\pi\)
0.714453 + 0.699683i \(0.246675\pi\)
\(858\) 0 0
\(859\) −13.3695 + 23.1566i −0.456160 + 0.790093i −0.998754 0.0499024i \(-0.984109\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(860\) −0.134754 1.28322i −0.00459506 0.0437575i
\(861\) 0 0
\(862\) −14.4385 + 16.0341i −0.491778 + 0.546125i
\(863\) 50.8477i 1.73088i −0.501015 0.865438i \(-0.667040\pi\)
0.501015 0.865438i \(-0.332960\pi\)
\(864\) 0 0
\(865\) 7.34919 0.249880
\(866\) −32.7869 + 36.4102i −1.11414 + 1.23727i
\(867\) 0 0
\(868\) 28.5617 17.0679i 0.969448 0.579323i
\(869\) −5.27570 + 9.13778i −0.178966 + 0.309978i
\(870\) 0 0
\(871\) 6.91604 + 11.9789i 0.234341 + 0.405891i
\(872\) −18.2137 + 25.0618i −0.616794 + 0.848700i
\(873\) 0 0
\(874\) −8.80582 27.1057i −0.297861 0.916866i
\(875\) −10.1564 7.14680i −0.343349 0.241606i
\(876\) 0 0
\(877\) 6.79088 11.7621i 0.229312 0.397179i −0.728293 0.685266i \(-0.759686\pi\)
0.957604 + 0.288087i \(0.0930192\pi\)
\(878\) −3.60074 + 16.9363i −0.121519 + 0.571574i
\(879\) 0 0
\(880\) 5.02141 1.06638i 0.169272 0.0359475i
\(881\) 5.11905i 0.172465i −0.996275 0.0862325i \(-0.972517\pi\)
0.996275 0.0862325i \(-0.0274828\pi\)
\(882\) 0 0
\(883\) 36.5196i 1.22898i −0.788924 0.614491i \(-0.789361\pi\)
0.788924 0.614491i \(-0.210639\pi\)
\(884\) −27.4346 12.2177i −0.922727 0.410925i
\(885\) 0 0
\(886\) −38.7293 8.23400i −1.30113 0.276627i
\(887\) −16.1245 + 27.9284i −0.541407 + 0.937744i 0.457417 + 0.889252i \(0.348775\pi\)
−0.998824 + 0.0484917i \(0.984559\pi\)
\(888\) 0 0
\(889\) 3.15576 + 2.22063i 0.105841 + 0.0744774i
\(890\) −1.72673 + 0.560960i −0.0578800 + 0.0188034i
\(891\) 0 0
\(892\) −23.4091 + 17.0044i −0.783793 + 0.569350i
\(893\) −15.6692 27.1398i −0.524349 0.908199i
\(894\) 0 0
\(895\) −2.56981 + 4.45103i −0.0858991 + 0.148782i
\(896\) 15.3489 + 25.6984i 0.512772 + 0.858525i
\(897\) 0 0
\(898\) 25.0403 + 22.5485i 0.835606 + 0.752452i
\(899\) −18.2427 −0.608426
\(900\) 0 0
\(901\) 21.3231i 0.710374i
\(902\) −32.8318 29.5646i −1.09318 0.984392i
\(903\) 0 0
\(904\) −10.8747 24.4339i −0.361686 0.812658i
\(905\) −1.73803 + 3.01036i −0.0577742 + 0.100068i
\(906\) 0 0
\(907\) 24.3819 14.0769i 0.809588 0.467416i −0.0372246 0.999307i \(-0.511852\pi\)
0.846813 + 0.531891i \(0.178518\pi\)
\(908\) −31.3153 + 22.7475i −1.03924 + 0.754904i
\(909\) 0 0
\(910\) 7.74855 + 8.34885i 0.256862 + 0.276762i
\(911\) −33.2831 + 19.2160i −1.10272 + 0.636655i −0.936934 0.349507i \(-0.886349\pi\)
−0.165785 + 0.986162i \(0.553016\pi\)
\(912\) 0 0
\(913\) −23.5673 13.6066i −0.779964 0.450312i
\(914\) −7.00535 + 32.9502i −0.231717 + 1.08990i
\(915\) 0 0
\(916\) −16.0276 + 35.9898i −0.529567 + 1.18914i
\(917\) −13.7831 29.7381i −0.455158 0.982038i
\(918\) 0 0
\(919\) 17.3398i 0.571988i 0.958231 + 0.285994i \(0.0923238\pi\)
−0.958231 + 0.285994i \(0.907676\pi\)
\(920\) 6.48162 + 0.682143i 0.213693 + 0.0224896i
\(921\) 0 0
\(922\) 0.507231 + 0.107839i 0.0167048 + 0.00355150i
\(923\) 0.629639 1.09057i 0.0207248 0.0358964i
\(924\) 0 0
\(925\) −11.1948 19.3899i −0.368081 0.637536i
\(926\) −7.24077 22.2883i −0.237946 0.732438i
\(927\) 0 0
\(928\) 0.00374457 16.4116i 0.000122922 0.538738i
\(929\) −48.7835 + 28.1651i −1.60053 + 0.924068i −0.609153 + 0.793053i \(0.708490\pi\)
−0.991380 + 0.131016i \(0.958176\pi\)
\(930\) 0 0
\(931\) −9.93228 27.6882i −0.325517 0.907444i
\(932\) −1.53483 14.6158i −0.0502751 0.478756i
\(933\) 0 0
\(934\) 27.4777 + 24.7433i 0.899099 + 0.809627i
\(935\) 3.04160i 0.0994708i
\(936\) 0 0
\(937\) 36.1315i 1.18036i 0.807270 + 0.590182i \(0.200944\pi\)
−0.807270 + 0.590182i \(0.799056\pi\)
\(938\) 7.80607 + 2.40678i 0.254877 + 0.0785842i
\(939\) 0 0
\(940\) 7.12724 0.748445i 0.232465 0.0244116i
\(941\) −12.0974 6.98446i −0.394365 0.227687i 0.289684 0.957122i \(-0.406450\pi\)
−0.684050 + 0.729435i \(0.739783\pi\)
\(942\) 0 0
\(943\) −28.0466 48.5781i −0.913321 1.58192i
\(944\) −0.347416 + 1.06857i −0.0113074 + 0.0347791i
\(945\) 0 0
\(946\) −4.82357 + 1.56703i −0.156828 + 0.0509485i
\(947\) −11.0539 + 6.38196i −0.359203 + 0.207386i −0.668731 0.743505i \(-0.733162\pi\)
0.309528 + 0.950890i \(0.399829\pi\)
\(948\) 0 0
\(949\) −15.3624 + 26.6084i −0.498684 + 0.863746i
\(950\) −5.89398 + 27.7228i −0.191226 + 0.899445i
\(951\) 0 0
\(952\) −16.7837 + 5.73296i −0.543962 + 0.185806i
\(953\) 3.91673 0.126875 0.0634377 0.997986i \(-0.479794\pi\)
0.0634377 + 0.997986i \(0.479794\pi\)
\(954\) 0 0
\(955\) −9.57597 −0.309871
\(956\) −7.84126 + 17.6074i −0.253604 + 0.569465i
\(957\) 0 0
\(958\) 11.2210 52.7789i 0.362535 1.70521i
\(959\) 23.4990 + 2.11090i 0.758823 + 0.0681645i
\(960\) 0 0
\(961\) −4.26940 7.39481i −0.137722 0.238542i
\(962\) 12.9969 + 40.0067i 0.419038 + 1.28987i
\(963\) 0 0
\(964\) −4.83470 6.65568i −0.155715 0.214365i
\(965\) 5.93272 3.42526i 0.190981 0.110263i
\(966\) 0 0
\(967\) 20.2799 + 11.7086i 0.652158 + 0.376524i 0.789283 0.614030i \(-0.210453\pi\)
−0.137125 + 0.990554i \(0.543786\pi\)
\(968\) 4.44620 + 9.99001i 0.142906 + 0.321091i
\(969\) 0 0
\(970\) 1.09340 + 0.984592i 0.0351070 + 0.0316133i
\(971\) 25.1209 0.806167 0.403084 0.915163i \(-0.367938\pi\)
0.403084 + 0.915163i \(0.367938\pi\)
\(972\) 0 0
\(973\) 3.06060 + 6.60347i 0.0981184 + 0.211698i
\(974\) 8.45856 9.39332i 0.271030 0.300982i
\(975\) 0 0
\(976\) 32.6897 29.4231i 1.04637 0.941812i
\(977\) 1.21770 2.10911i 0.0389575 0.0674764i −0.845889 0.533359i \(-0.820930\pi\)
0.884847 + 0.465882i \(0.154263\pi\)
\(978\) 0 0
\(979\) 3.56823 + 6.18036i 0.114041 + 0.197525i
\(980\) 6.70809 + 0.501010i 0.214282 + 0.0160042i
\(981\) 0 0
\(982\) 4.05199 + 12.4727i 0.129304 + 0.398019i
\(983\) 9.60279 + 16.6325i 0.306281 + 0.530495i 0.977546 0.210723i \(-0.0675818\pi\)
−0.671264 + 0.741218i \(0.734248\pi\)
\(984\) 0 0
\(985\) −4.97320 2.87128i −0.158459 0.0914865i
\(986\) 9.51149 + 2.02218i 0.302907 + 0.0643994i
\(987\) 0 0
\(988\) 21.6628 48.6434i 0.689184 1.54755i
\(989\) −6.43913 −0.204752
\(990\) 0 0
\(991\) 29.4493i 0.935489i 0.883864 + 0.467745i \(0.154933\pi\)
−0.883864 + 0.467745i \(0.845067\pi\)
\(992\) 30.8088 17.7781i 0.978180 0.564455i
\(993\) 0 0
\(994\) −0.165575 0.725013i −0.00525172 0.0229960i
\(995\) 9.13423 + 5.27365i 0.289575 + 0.167186i
\(996\) 0 0
\(997\) 13.3933 7.73264i 0.424171 0.244895i −0.272689 0.962102i \(-0.587913\pi\)
0.696860 + 0.717207i \(0.254580\pi\)
\(998\) 7.58668 + 23.3530i 0.240152 + 0.739227i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bi.c.307.8 80
3.2 odd 2 252.2.bi.c.139.34 yes 80
4.3 odd 2 inner 756.2.bi.c.307.18 80
7.6 odd 2 inner 756.2.bi.c.307.7 80
9.2 odd 6 252.2.bi.c.223.24 yes 80
9.7 even 3 inner 756.2.bi.c.559.17 80
12.11 even 2 252.2.bi.c.139.23 80
21.20 even 2 252.2.bi.c.139.33 yes 80
28.27 even 2 inner 756.2.bi.c.307.17 80
36.7 odd 6 inner 756.2.bi.c.559.7 80
36.11 even 6 252.2.bi.c.223.33 yes 80
63.20 even 6 252.2.bi.c.223.23 yes 80
63.34 odd 6 inner 756.2.bi.c.559.18 80
84.83 odd 2 252.2.bi.c.139.24 yes 80
252.83 odd 6 252.2.bi.c.223.34 yes 80
252.223 even 6 inner 756.2.bi.c.559.8 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bi.c.139.23 80 12.11 even 2
252.2.bi.c.139.24 yes 80 84.83 odd 2
252.2.bi.c.139.33 yes 80 21.20 even 2
252.2.bi.c.139.34 yes 80 3.2 odd 2
252.2.bi.c.223.23 yes 80 63.20 even 6
252.2.bi.c.223.24 yes 80 9.2 odd 6
252.2.bi.c.223.33 yes 80 36.11 even 6
252.2.bi.c.223.34 yes 80 252.83 odd 6
756.2.bi.c.307.7 80 7.6 odd 2 inner
756.2.bi.c.307.8 80 1.1 even 1 trivial
756.2.bi.c.307.17 80 28.27 even 2 inner
756.2.bi.c.307.18 80 4.3 odd 2 inner
756.2.bi.c.559.7 80 36.7 odd 6 inner
756.2.bi.c.559.8 80 252.223 even 6 inner
756.2.bi.c.559.17 80 9.7 even 3 inner
756.2.bi.c.559.18 80 63.34 odd 6 inner