Newspace parameters
Level: | \( N \) | \(=\) | \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 756.bi (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.03669039281\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 252) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
307.1 | −1.40431 | − | 0.167104i | 0 | 1.94415 | + | 0.469331i | −1.39056 | − | 0.802839i | 0 | 0.686390 | − | 2.55517i | −2.65176 | − | 0.983961i | 0 | 1.81861 | + | 1.35980i | ||||||
307.2 | −1.40431 | − | 0.167104i | 0 | 1.94415 | + | 0.469331i | 1.39056 | + | 0.802839i | 0 | 2.55603 | + | 0.683151i | −2.65176 | − | 0.983961i | 0 | −1.81861 | − | 1.35980i | ||||||
307.3 | −1.33314 | + | 0.471949i | 0 | 1.55453 | − | 1.25835i | −0.0753642 | − | 0.0435115i | 0 | −0.0425387 | + | 2.64541i | −1.47853 | + | 2.41122i | 0 | 0.121006 | + | 0.0224389i | ||||||
307.4 | −1.33314 | + | 0.471949i | 0 | 1.55453 | − | 1.25835i | 0.0753642 | + | 0.0435115i | 0 | −2.31226 | − | 1.28587i | −1.47853 | + | 2.41122i | 0 | −0.121006 | − | 0.0224389i | ||||||
307.5 | −1.07464 | + | 0.919317i | 0 | 0.309712 | − | 1.97587i | −3.16954 | − | 1.82994i | 0 | 2.31955 | − | 1.27266i | 1.48363 | + | 2.40808i | 0 | 5.08842 | − | 0.947288i | ||||||
307.6 | −1.07464 | + | 0.919317i | 0 | 0.309712 | − | 1.97587i | 3.16954 | + | 1.82994i | 0 | 2.26193 | − | 1.37246i | 1.48363 | + | 2.40808i | 0 | −5.08842 | + | 0.947288i | ||||||
307.7 | −1.05092 | − | 0.946342i | 0 | 0.208875 | + | 1.98906i | −0.416111 | − | 0.240242i | 0 | 2.63514 | − | 0.236713i | 1.66282 | − | 2.28802i | 0 | 0.209950 | + | 0.646259i | ||||||
307.8 | −1.05092 | − | 0.946342i | 0 | 0.208875 | + | 1.98906i | 0.416111 | + | 0.240242i | 0 | 1.52257 | − | 2.16374i | 1.66282 | − | 2.28802i | 0 | −0.209950 | − | 0.646259i | ||||||
307.9 | −1.02930 | − | 0.969818i | 0 | 0.118905 | + | 1.99646i | −3.45303 | − | 1.99361i | 0 | −2.03435 | − | 1.69157i | 1.81382 | − | 2.17027i | 0 | 1.62076 | + | 5.40083i | ||||||
307.10 | −1.02930 | − | 0.969818i | 0 | 0.118905 | + | 1.99646i | 3.45303 | + | 1.99361i | 0 | 0.447766 | + | 2.60759i | 1.81382 | − | 2.17027i | 0 | −1.62076 | − | 5.40083i | ||||||
307.11 | −0.955367 | + | 1.04272i | 0 | −0.174547 | − | 1.99237i | −1.82425 | − | 1.05323i | 0 | −0.655553 | + | 2.56325i | 2.24425 | + | 1.72144i | 0 | 2.84106 | − | 0.895969i | ||||||
307.12 | −0.955367 | + | 1.04272i | 0 | −0.174547 | − | 1.99237i | 1.82425 | + | 1.05323i | 0 | −2.54762 | − | 0.713899i | 2.24425 | + | 1.72144i | 0 | −2.84106 | + | 0.895969i | ||||||
307.13 | −0.648812 | + | 1.25660i | 0 | −1.15809 | − | 1.63059i | −2.66647 | − | 1.53948i | 0 | −1.15806 | − | 2.37885i | 2.80038 | − | 0.397302i | 0 | 3.66455 | − | 2.35184i | ||||||
307.14 | −0.648812 | + | 1.25660i | 0 | −1.15809 | − | 1.63059i | 2.66647 | + | 1.53948i | 0 | 1.48111 | + | 2.19233i | 2.80038 | − | 0.397302i | 0 | −3.66455 | + | 2.35184i | ||||||
307.15 | −0.325239 | − | 1.37631i | 0 | −1.78844 | + | 0.895257i | −3.45303 | − | 1.99361i | 0 | 2.03435 | + | 1.69157i | 1.81382 | + | 2.17027i | 0 | −1.62076 | + | 5.40083i | ||||||
307.16 | −0.325239 | − | 1.37631i | 0 | −1.78844 | + | 0.895257i | 3.45303 | + | 1.99361i | 0 | −0.447766 | − | 2.60759i | 1.81382 | + | 2.17027i | 0 | 1.62076 | − | 5.40083i | ||||||
307.17 | −0.294095 | − | 1.38330i | 0 | −1.82702 | + | 0.813640i | −0.416111 | − | 0.240242i | 0 | −2.63514 | + | 0.236713i | 1.66282 | + | 2.28802i | 0 | −0.209950 | + | 0.646259i | ||||||
307.18 | −0.294095 | − | 1.38330i | 0 | −1.82702 | + | 0.813640i | 0.416111 | + | 0.240242i | 0 | −1.52257 | + | 2.16374i | 1.66282 | + | 2.28802i | 0 | 0.209950 | − | 0.646259i | ||||||
307.19 | −0.139426 | + | 1.40732i | 0 | −1.96112 | − | 0.392436i | −1.35495 | − | 0.782280i | 0 | 0.314165 | + | 2.62703i | 0.825716 | − | 2.70522i | 0 | 1.28984 | − | 1.79778i | ||||||
307.20 | −0.139426 | + | 1.40732i | 0 | −1.96112 | − | 0.392436i | 1.35495 | + | 0.782280i | 0 | −2.11799 | − | 1.58559i | 0.825716 | − | 2.70522i | 0 | −1.28984 | + | 1.79778i | ||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
28.d | even | 2 | 1 | inner |
36.f | odd | 6 | 1 | inner |
63.l | odd | 6 | 1 | inner |
252.bi | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 756.2.bi.c | 80 | |
3.b | odd | 2 | 1 | 252.2.bi.c | ✓ | 80 | |
4.b | odd | 2 | 1 | inner | 756.2.bi.c | 80 | |
7.b | odd | 2 | 1 | inner | 756.2.bi.c | 80 | |
9.c | even | 3 | 1 | inner | 756.2.bi.c | 80 | |
9.d | odd | 6 | 1 | 252.2.bi.c | ✓ | 80 | |
12.b | even | 2 | 1 | 252.2.bi.c | ✓ | 80 | |
21.c | even | 2 | 1 | 252.2.bi.c | ✓ | 80 | |
28.d | even | 2 | 1 | inner | 756.2.bi.c | 80 | |
36.f | odd | 6 | 1 | inner | 756.2.bi.c | 80 | |
36.h | even | 6 | 1 | 252.2.bi.c | ✓ | 80 | |
63.l | odd | 6 | 1 | inner | 756.2.bi.c | 80 | |
63.o | even | 6 | 1 | 252.2.bi.c | ✓ | 80 | |
84.h | odd | 2 | 1 | 252.2.bi.c | ✓ | 80 | |
252.s | odd | 6 | 1 | 252.2.bi.c | ✓ | 80 | |
252.bi | even | 6 | 1 | inner | 756.2.bi.c | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
252.2.bi.c | ✓ | 80 | 3.b | odd | 2 | 1 | |
252.2.bi.c | ✓ | 80 | 9.d | odd | 6 | 1 | |
252.2.bi.c | ✓ | 80 | 12.b | even | 2 | 1 | |
252.2.bi.c | ✓ | 80 | 21.c | even | 2 | 1 | |
252.2.bi.c | ✓ | 80 | 36.h | even | 6 | 1 | |
252.2.bi.c | ✓ | 80 | 63.o | even | 6 | 1 | |
252.2.bi.c | ✓ | 80 | 84.h | odd | 2 | 1 | |
252.2.bi.c | ✓ | 80 | 252.s | odd | 6 | 1 | |
756.2.bi.c | 80 | 1.a | even | 1 | 1 | trivial | |
756.2.bi.c | 80 | 4.b | odd | 2 | 1 | inner | |
756.2.bi.c | 80 | 7.b | odd | 2 | 1 | inner | |
756.2.bi.c | 80 | 9.c | even | 3 | 1 | inner | |
756.2.bi.c | 80 | 28.d | even | 2 | 1 | inner | |
756.2.bi.c | 80 | 36.f | odd | 6 | 1 | inner | |
756.2.bi.c | 80 | 63.l | odd | 6 | 1 | inner | |
756.2.bi.c | 80 | 252.bi | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{40} - 58 T_{5}^{38} + 1986 T_{5}^{36} - 45000 T_{5}^{34} + 757017 T_{5}^{32} - 9662658 T_{5}^{30} + \cdots + 3370896 \)
acting on \(S_{2}^{\mathrm{new}}(756, [\chi])\).