Properties

Label 756.2.bi.c.307.17
Level $756$
Weight $2$
Character 756.307
Analytic conductor $6.037$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(307,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bi (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,6,0,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 307.17
Character \(\chi\) \(=\) 756.307
Dual form 756.2.bi.c.559.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.294095 - 1.38330i) q^{2} +(-1.82702 + 0.813640i) q^{4} +(-0.416111 - 0.240242i) q^{5} +(-2.63514 + 0.236713i) q^{7} +(1.66282 + 2.28802i) q^{8} +(-0.209950 + 0.646259i) q^{10} +(2.31311 - 1.33548i) q^{11} +(5.48694 + 3.16789i) q^{13} +(1.10242 + 3.57556i) q^{14} +(2.67598 - 2.97307i) q^{16} +2.37005i q^{17} +4.20225 q^{19} +(0.955712 + 0.100361i) q^{20} +(-2.52763 - 2.80696i) q^{22} +(-4.15320 - 2.39785i) q^{23} +(-2.38457 - 4.13019i) q^{25} +(2.76845 - 8.52173i) q^{26} +(4.62185 - 2.57653i) q^{28} +(-1.45060 - 2.51250i) q^{29} +(3.14399 - 5.44556i) q^{31} +(-4.89962 - 2.82731i) q^{32} +(3.27848 - 0.697018i) q^{34} +(1.15338 + 0.534572i) q^{35} +4.69467 q^{37} +(-1.23586 - 5.81295i) q^{38} +(-0.142241 - 1.35155i) q^{40} +(10.1295 + 5.84827i) q^{41} +(1.16280 - 0.671344i) q^{43} +(-3.13950 + 4.32198i) q^{44} +(-2.09550 + 6.45030i) q^{46} +(-3.72876 - 6.45840i) q^{47} +(6.88793 - 1.24754i) q^{49} +(-5.01199 + 4.51323i) q^{50} +(-12.6023 - 1.32339i) q^{52} +8.99689 q^{53} -1.28335 q^{55} +(-4.92337 - 5.63564i) q^{56} +(-3.04893 + 2.74552i) q^{58} +(0.140454 - 0.243273i) q^{59} +(9.52219 - 5.49764i) q^{61} +(-8.45745 - 2.74757i) q^{62} +(-2.47005 + 7.60913i) q^{64} +(-1.52212 - 2.63639i) q^{65} +(1.89068 + 1.09159i) q^{67} +(-1.92837 - 4.33012i) q^{68} +(0.400269 - 1.75268i) q^{70} -0.198757i q^{71} +4.84941i q^{73} +(-1.38068 - 6.49412i) q^{74} +(-7.67758 + 3.41912i) q^{76} +(-5.77925 + 4.06671i) q^{77} +(-3.42117 + 1.97521i) q^{79} +(-1.82776 + 0.594244i) q^{80} +(5.11086 - 15.7321i) q^{82} +(5.09429 + 8.82356i) q^{83} +(0.569384 - 0.986203i) q^{85} +(-1.27064 - 1.41106i) q^{86} +(6.90188 + 3.07178i) q^{88} +2.67188i q^{89} +(-15.2087 - 7.04900i) q^{91} +(9.53895 + 1.00170i) q^{92} +(-7.83727 + 7.05736i) q^{94} +(-1.74860 - 1.00956i) q^{95} +(1.87526 - 1.08268i) q^{97} +(-3.75143 - 9.16116i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{2} - 2 q^{4} + 24 q^{8} - 10 q^{14} - 18 q^{16} - 14 q^{22} + 32 q^{25} + 28 q^{28} - 8 q^{29} + 16 q^{32} - 16 q^{37} + 84 q^{44} + 24 q^{46} - 24 q^{49} + 12 q^{50} + 48 q^{53} - 32 q^{56}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.294095 1.38330i −0.207956 0.978138i
\(3\) 0 0
\(4\) −1.82702 + 0.813640i −0.913508 + 0.406820i
\(5\) −0.416111 0.240242i −0.186091 0.107439i 0.404061 0.914732i \(-0.367598\pi\)
−0.590151 + 0.807293i \(0.700932\pi\)
\(6\) 0 0
\(7\) −2.63514 + 0.236713i −0.995990 + 0.0894690i
\(8\) 1.66282 + 2.28802i 0.587896 + 0.808937i
\(9\) 0 0
\(10\) −0.209950 + 0.646259i −0.0663919 + 0.204365i
\(11\) 2.31311 1.33548i 0.697429 0.402661i −0.108960 0.994046i \(-0.534752\pi\)
0.806389 + 0.591385i \(0.201419\pi\)
\(12\) 0 0
\(13\) 5.48694 + 3.16789i 1.52180 + 0.878614i 0.999668 + 0.0257515i \(0.00819785\pi\)
0.522136 + 0.852862i \(0.325135\pi\)
\(14\) 1.10242 + 3.57556i 0.294635 + 0.955610i
\(15\) 0 0
\(16\) 2.67598 2.97307i 0.668995 0.743267i
\(17\) 2.37005i 0.574821i 0.957808 + 0.287410i \(0.0927944\pi\)
−0.957808 + 0.287410i \(0.907206\pi\)
\(18\) 0 0
\(19\) 4.20225 0.964062 0.482031 0.876154i \(-0.339899\pi\)
0.482031 + 0.876154i \(0.339899\pi\)
\(20\) 0.955712 + 0.100361i 0.213704 + 0.0224414i
\(21\) 0 0
\(22\) −2.52763 2.80696i −0.538893 0.598446i
\(23\) −4.15320 2.39785i −0.866001 0.499986i 1.59909e−5 1.00000i \(-0.499995\pi\)
−0.866017 + 0.500014i \(0.833328\pi\)
\(24\) 0 0
\(25\) −2.38457 4.13019i −0.476914 0.826038i
\(26\) 2.76845 8.52173i 0.542937 1.67125i
\(27\) 0 0
\(28\) 4.62185 2.57653i 0.873447 0.486919i
\(29\) −1.45060 2.51250i −0.269369 0.466560i 0.699330 0.714799i \(-0.253482\pi\)
−0.968699 + 0.248238i \(0.920148\pi\)
\(30\) 0 0
\(31\) 3.14399 5.44556i 0.564678 0.978051i −0.432402 0.901681i \(-0.642334\pi\)
0.997080 0.0763698i \(-0.0243330\pi\)
\(32\) −4.89962 2.82731i −0.866139 0.499802i
\(33\) 0 0
\(34\) 3.27848 0.697018i 0.562254 0.119538i
\(35\) 1.15338 + 0.534572i 0.194957 + 0.0903592i
\(36\) 0 0
\(37\) 4.69467 0.771799 0.385900 0.922541i \(-0.373891\pi\)
0.385900 + 0.922541i \(0.373891\pi\)
\(38\) −1.23586 5.81295i −0.200483 0.942986i
\(39\) 0 0
\(40\) −0.142241 1.35155i −0.0224902 0.213699i
\(41\) 10.1295 + 5.84827i 1.58196 + 0.913347i 0.994573 + 0.104043i \(0.0331779\pi\)
0.587390 + 0.809304i \(0.300155\pi\)
\(42\) 0 0
\(43\) 1.16280 0.671344i 0.177326 0.102379i −0.408710 0.912664i \(-0.634021\pi\)
0.586036 + 0.810285i \(0.300688\pi\)
\(44\) −3.13950 + 4.32198i −0.473297 + 0.651562i
\(45\) 0 0
\(46\) −2.09550 + 6.45030i −0.308965 + 0.951044i
\(47\) −3.72876 6.45840i −0.543895 0.942054i −0.998676 0.0514505i \(-0.983616\pi\)
0.454780 0.890604i \(-0.349718\pi\)
\(48\) 0 0
\(49\) 6.88793 1.24754i 0.983991 0.178220i
\(50\) −5.01199 + 4.51323i −0.708803 + 0.638267i
\(51\) 0 0
\(52\) −12.6023 1.32339i −1.74762 0.183521i
\(53\) 8.99689 1.23582 0.617909 0.786250i \(-0.287980\pi\)
0.617909 + 0.786250i \(0.287980\pi\)
\(54\) 0 0
\(55\) −1.28335 −0.173047
\(56\) −4.92337 5.63564i −0.657913 0.753094i
\(57\) 0 0
\(58\) −3.04893 + 2.74552i −0.400344 + 0.360504i
\(59\) 0.140454 0.243273i 0.0182855 0.0316715i −0.856738 0.515752i \(-0.827513\pi\)
0.875023 + 0.484081i \(0.160846\pi\)
\(60\) 0 0
\(61\) 9.52219 5.49764i 1.21919 0.703900i 0.254446 0.967087i \(-0.418107\pi\)
0.964745 + 0.263186i \(0.0847735\pi\)
\(62\) −8.45745 2.74757i −1.07410 0.348941i
\(63\) 0 0
\(64\) −2.47005 + 7.60913i −0.308757 + 0.951141i
\(65\) −1.52212 2.63639i −0.188796 0.327003i
\(66\) 0 0
\(67\) 1.89068 + 1.09159i 0.230984 + 0.133358i 0.611026 0.791611i \(-0.290757\pi\)
−0.380042 + 0.924969i \(0.624091\pi\)
\(68\) −1.92837 4.33012i −0.233849 0.525104i
\(69\) 0 0
\(70\) 0.400269 1.75268i 0.0478413 0.209485i
\(71\) 0.198757i 0.0235881i −0.999930 0.0117940i \(-0.996246\pi\)
0.999930 0.0117940i \(-0.00375425\pi\)
\(72\) 0 0
\(73\) 4.84941i 0.567580i 0.958886 + 0.283790i \(0.0915919\pi\)
−0.958886 + 0.283790i \(0.908408\pi\)
\(74\) −1.38068 6.49412i −0.160501 0.754926i
\(75\) 0 0
\(76\) −7.67758 + 3.41912i −0.880679 + 0.392200i
\(77\) −5.77925 + 4.06671i −0.658607 + 0.463444i
\(78\) 0 0
\(79\) −3.42117 + 1.97521i −0.384912 + 0.222229i −0.679953 0.733256i \(-0.738000\pi\)
0.295041 + 0.955484i \(0.404667\pi\)
\(80\) −1.82776 + 0.594244i −0.204350 + 0.0664385i
\(81\) 0 0
\(82\) 5.11086 15.7321i 0.564400 1.73731i
\(83\) 5.09429 + 8.82356i 0.559171 + 0.968512i 0.997566 + 0.0697297i \(0.0222137\pi\)
−0.438395 + 0.898782i \(0.644453\pi\)
\(84\) 0 0
\(85\) 0.569384 0.986203i 0.0617584 0.106969i
\(86\) −1.27064 1.41106i −0.137017 0.152159i
\(87\) 0 0
\(88\) 6.90188 + 3.07178i 0.735743 + 0.327453i
\(89\) 2.67188i 0.283219i 0.989923 + 0.141609i \(0.0452277\pi\)
−0.989923 + 0.141609i \(0.954772\pi\)
\(90\) 0 0
\(91\) −15.2087 7.04900i −1.59431 0.738936i
\(92\) 9.53895 + 1.00170i 0.994504 + 0.104435i
\(93\) 0 0
\(94\) −7.83727 + 7.05736i −0.808353 + 0.727911i
\(95\) −1.74860 1.00956i −0.179403 0.103578i
\(96\) 0 0
\(97\) 1.87526 1.08268i 0.190403 0.109929i −0.401768 0.915741i \(-0.631604\pi\)
0.592171 + 0.805812i \(0.298271\pi\)
\(98\) −3.75143 9.16116i −0.378951 0.925417i
\(99\) 0 0
\(100\) 7.71713 + 5.60575i 0.771713 + 0.560575i
\(101\) −4.50341 + 2.60004i −0.448106 + 0.258714i −0.707030 0.707184i \(-0.749965\pi\)
0.258924 + 0.965898i \(0.416632\pi\)
\(102\) 0 0
\(103\) 1.13040 1.95791i 0.111382 0.192919i −0.804946 0.593348i \(-0.797806\pi\)
0.916328 + 0.400429i \(0.131139\pi\)
\(104\) 1.87562 + 17.8219i 0.183920 + 1.74758i
\(105\) 0 0
\(106\) −2.64594 12.4454i −0.256996 1.20880i
\(107\) 14.8308i 1.43375i 0.697204 + 0.716873i \(0.254427\pi\)
−0.697204 + 0.716873i \(0.745573\pi\)
\(108\) 0 0
\(109\) −10.9535 −1.04916 −0.524578 0.851363i \(-0.675777\pi\)
−0.524578 + 0.851363i \(0.675777\pi\)
\(110\) 0.377426 + 1.77525i 0.0359861 + 0.169264i
\(111\) 0 0
\(112\) −6.34782 + 8.46789i −0.599813 + 0.800140i
\(113\) 4.72782 8.18882i 0.444756 0.770339i −0.553280 0.832996i \(-0.686624\pi\)
0.998035 + 0.0626563i \(0.0199572\pi\)
\(114\) 0 0
\(115\) 1.15213 + 1.99554i 0.107436 + 0.186085i
\(116\) 4.69454 + 3.41013i 0.435877 + 0.316622i
\(117\) 0 0
\(118\) −0.377825 0.122744i −0.0347816 0.0112995i
\(119\) −0.561020 6.24541i −0.0514286 0.572516i
\(120\) 0 0
\(121\) −1.93301 + 3.34807i −0.175728 + 0.304370i
\(122\) −10.4053 11.5552i −0.942050 1.04616i
\(123\) 0 0
\(124\) −1.31341 + 12.5072i −0.117947 + 1.12318i
\(125\) 4.69391i 0.419836i
\(126\) 0 0
\(127\) 1.45847i 0.129419i −0.997904 0.0647093i \(-0.979388\pi\)
0.997904 0.0647093i \(-0.0206120\pi\)
\(128\) 11.2521 + 1.17901i 0.994555 + 0.104211i
\(129\) 0 0
\(130\) −3.19926 + 2.88089i −0.280593 + 0.252671i
\(131\) 6.19426 10.7288i 0.541195 0.937377i −0.457641 0.889137i \(-0.651305\pi\)
0.998836 0.0482400i \(-0.0153612\pi\)
\(132\) 0 0
\(133\) −11.0735 + 0.994726i −0.960196 + 0.0862537i
\(134\) 0.953947 2.93640i 0.0824085 0.253667i
\(135\) 0 0
\(136\) −5.42271 + 3.94096i −0.464994 + 0.337935i
\(137\) 4.45878 + 7.72284i 0.380939 + 0.659806i 0.991197 0.132397i \(-0.0422673\pi\)
−0.610257 + 0.792203i \(0.708934\pi\)
\(138\) 0 0
\(139\) −1.37546 + 2.38237i −0.116665 + 0.202070i −0.918444 0.395551i \(-0.870554\pi\)
0.801779 + 0.597621i \(0.203887\pi\)
\(140\) −2.54219 0.0382367i −0.214855 0.00323159i
\(141\) 0 0
\(142\) −0.274939 + 0.0584533i −0.0230724 + 0.00490529i
\(143\) 16.9225 1.41513
\(144\) 0 0
\(145\) 1.39397i 0.115763i
\(146\) 6.70817 1.42618i 0.555172 0.118032i
\(147\) 0 0
\(148\) −8.57724 + 3.81977i −0.705045 + 0.313983i
\(149\) 0.0762596 0.132086i 0.00624743 0.0108209i −0.862885 0.505401i \(-0.831345\pi\)
0.869132 + 0.494580i \(0.164678\pi\)
\(150\) 0 0
\(151\) −10.8876 + 6.28594i −0.886017 + 0.511542i −0.872638 0.488368i \(-0.837592\pi\)
−0.0133797 + 0.999910i \(0.504259\pi\)
\(152\) 6.98759 + 9.61482i 0.566768 + 0.779865i
\(153\) 0 0
\(154\) 7.32511 + 6.79842i 0.590274 + 0.547832i
\(155\) −2.61650 + 1.51064i −0.210162 + 0.121337i
\(156\) 0 0
\(157\) −9.96123 5.75112i −0.794993 0.458989i 0.0467246 0.998908i \(-0.485122\pi\)
−0.841717 + 0.539919i \(0.818455\pi\)
\(158\) 3.73845 + 4.15159i 0.297415 + 0.330283i
\(159\) 0 0
\(160\) 1.35955 + 2.35357i 0.107482 + 0.186066i
\(161\) 11.5119 + 5.33556i 0.907262 + 0.420501i
\(162\) 0 0
\(163\) 19.9710i 1.56425i −0.623121 0.782126i \(-0.714135\pi\)
0.623121 0.782126i \(-0.285865\pi\)
\(164\) −23.2652 2.44312i −1.81670 0.190776i
\(165\) 0 0
\(166\) 10.7074 9.64187i 0.831055 0.748354i
\(167\) −10.9749 + 19.0090i −0.849260 + 1.47096i 0.0326095 + 0.999468i \(0.489618\pi\)
−0.881870 + 0.471493i \(0.843715\pi\)
\(168\) 0 0
\(169\) 13.5710 + 23.5057i 1.04392 + 1.80813i
\(170\) −1.53166 0.497590i −0.117473 0.0381634i
\(171\) 0 0
\(172\) −1.57823 + 2.17266i −0.120339 + 0.165664i
\(173\) −13.2462 + 7.64770i −1.00709 + 0.581444i −0.910339 0.413864i \(-0.864179\pi\)
−0.0967521 + 0.995309i \(0.530845\pi\)
\(174\) 0 0
\(175\) 7.26134 + 10.3192i 0.548906 + 0.780057i
\(176\) 2.21938 10.4507i 0.167292 0.787754i
\(177\) 0 0
\(178\) 3.69600 0.785786i 0.277027 0.0588971i
\(179\) 10.6967i 0.799512i −0.916622 0.399756i \(-0.869095\pi\)
0.916622 0.399756i \(-0.130905\pi\)
\(180\) 0 0
\(181\) 7.23452i 0.537738i −0.963177 0.268869i \(-0.913350\pi\)
0.963177 0.268869i \(-0.0866498\pi\)
\(182\) −5.27805 + 23.1113i −0.391235 + 1.71312i
\(183\) 0 0
\(184\) −1.41970 13.4898i −0.104662 0.994480i
\(185\) −1.95350 1.12786i −0.143624 0.0829216i
\(186\) 0 0
\(187\) 3.16514 + 5.48218i 0.231458 + 0.400897i
\(188\) 12.0673 + 8.76573i 0.880099 + 0.639307i
\(189\) 0 0
\(190\) −0.882260 + 2.71574i −0.0640059 + 0.197020i
\(191\) 17.2598 9.96493i 1.24887 0.721037i 0.277988 0.960584i \(-0.410332\pi\)
0.970885 + 0.239547i \(0.0769990\pi\)
\(192\) 0 0
\(193\) 7.12877 12.3474i 0.513140 0.888784i −0.486744 0.873545i \(-0.661816\pi\)
0.999884 0.0152396i \(-0.00485112\pi\)
\(194\) −2.04917 2.27562i −0.147122 0.163380i
\(195\) 0 0
\(196\) −11.5693 + 7.88358i −0.826380 + 0.563113i
\(197\) −11.9516 −0.851517 −0.425759 0.904837i \(-0.639993\pi\)
−0.425759 + 0.904837i \(0.639993\pi\)
\(198\) 0 0
\(199\) 21.9514 1.55610 0.778048 0.628205i \(-0.216210\pi\)
0.778048 + 0.628205i \(0.216210\pi\)
\(200\) 5.48485 12.3237i 0.387837 0.871418i
\(201\) 0 0
\(202\) 4.92106 + 5.46489i 0.346244 + 0.384508i
\(203\) 4.41726 + 6.27743i 0.310031 + 0.440589i
\(204\) 0 0
\(205\) −2.81000 4.86706i −0.196259 0.339930i
\(206\) −3.04082 0.987869i −0.211864 0.0688281i
\(207\) 0 0
\(208\) 24.1013 7.83585i 1.67112 0.543318i
\(209\) 9.72027 5.61200i 0.672365 0.388190i
\(210\) 0 0
\(211\) 8.92341 + 5.15194i 0.614313 + 0.354674i 0.774652 0.632388i \(-0.217925\pi\)
−0.160338 + 0.987062i \(0.551259\pi\)
\(212\) −16.4375 + 7.32023i −1.12893 + 0.502756i
\(213\) 0 0
\(214\) 20.5154 4.36165i 1.40240 0.298156i
\(215\) −0.645139 −0.0439981
\(216\) 0 0
\(217\) −6.99583 + 15.0940i −0.474908 + 1.02465i
\(218\) 3.22137 + 15.1519i 0.218179 + 1.02622i
\(219\) 0 0
\(220\) 2.34470 1.04418i 0.158080 0.0703988i
\(221\) −7.50804 + 13.0043i −0.505046 + 0.874765i
\(222\) 0 0
\(223\) 7.23332 + 12.5285i 0.484379 + 0.838969i 0.999839 0.0179449i \(-0.00571235\pi\)
−0.515460 + 0.856914i \(0.672379\pi\)
\(224\) 13.5805 + 6.29055i 0.907383 + 0.420305i
\(225\) 0 0
\(226\) −12.7180 4.13168i −0.845988 0.274835i
\(227\) 9.67633 + 16.7599i 0.642240 + 1.11239i 0.984932 + 0.172945i \(0.0553282\pi\)
−0.342691 + 0.939448i \(0.611338\pi\)
\(228\) 0 0
\(229\) −17.0595 9.84933i −1.12733 0.650862i −0.184065 0.982914i \(-0.558926\pi\)
−0.943261 + 0.332052i \(0.892259\pi\)
\(230\) 2.42159 2.18061i 0.159675 0.143785i
\(231\) 0 0
\(232\) 3.33658 7.49683i 0.219057 0.492191i
\(233\) −7.34808 −0.481389 −0.240694 0.970601i \(-0.577375\pi\)
−0.240694 + 0.970601i \(0.577375\pi\)
\(234\) 0 0
\(235\) 3.58321i 0.233743i
\(236\) −0.0586747 + 0.558743i −0.00381940 + 0.0363711i
\(237\) 0 0
\(238\) −8.47426 + 2.61280i −0.549304 + 0.169363i
\(239\) −8.34611 4.81863i −0.539865 0.311691i 0.205159 0.978729i \(-0.434229\pi\)
−0.745024 + 0.667037i \(0.767562\pi\)
\(240\) 0 0
\(241\) 3.56210 2.05658i 0.229455 0.132476i −0.380865 0.924630i \(-0.624374\pi\)
0.610321 + 0.792154i \(0.291041\pi\)
\(242\) 5.19986 + 1.68928i 0.334260 + 0.108591i
\(243\) 0 0
\(244\) −12.9241 + 17.7919i −0.827381 + 1.13901i
\(245\) −3.16586 1.13565i −0.202259 0.0725542i
\(246\) 0 0
\(247\) 23.0575 + 13.3123i 1.46711 + 0.847038i
\(248\) 17.6874 1.86147i 1.12315 0.118204i
\(249\) 0 0
\(250\) 6.49307 1.38045i 0.410658 0.0873076i
\(251\) −3.31816 −0.209441 −0.104720 0.994502i \(-0.533395\pi\)
−0.104720 + 0.994502i \(0.533395\pi\)
\(252\) 0 0
\(253\) −12.8091 −0.805300
\(254\) −2.01750 + 0.428929i −0.126589 + 0.0269134i
\(255\) 0 0
\(256\) −1.67826 15.9117i −0.104892 0.994484i
\(257\) −14.9497 8.63121i −0.932537 0.538400i −0.0449237 0.998990i \(-0.514304\pi\)
−0.887613 + 0.460590i \(0.847638\pi\)
\(258\) 0 0
\(259\) −12.3711 + 1.11129i −0.768704 + 0.0690521i
\(260\) 4.92600 + 3.57826i 0.305498 + 0.221915i
\(261\) 0 0
\(262\) −16.6628 5.41322i −1.02943 0.334430i
\(263\) −11.4455 + 6.60806i −0.705760 + 0.407471i −0.809489 0.587135i \(-0.800256\pi\)
0.103729 + 0.994606i \(0.466922\pi\)
\(264\) 0 0
\(265\) −3.74371 2.16143i −0.229974 0.132776i
\(266\) 4.63266 + 15.0254i 0.284047 + 0.921267i
\(267\) 0 0
\(268\) −4.34247 0.456011i −0.265258 0.0278553i
\(269\) 27.5600i 1.68036i −0.542304 0.840182i \(-0.682448\pi\)
0.542304 0.840182i \(-0.317552\pi\)
\(270\) 0 0
\(271\) −21.2467 −1.29065 −0.645323 0.763910i \(-0.723277\pi\)
−0.645323 + 0.763910i \(0.723277\pi\)
\(272\) 7.04631 + 6.34220i 0.427245 + 0.384552i
\(273\) 0 0
\(274\) 9.37167 8.43906i 0.566163 0.509822i
\(275\) −11.0315 6.36906i −0.665227 0.384069i
\(276\) 0 0
\(277\) 7.26076 + 12.5760i 0.436257 + 0.755619i 0.997397 0.0721016i \(-0.0229706\pi\)
−0.561140 + 0.827721i \(0.689637\pi\)
\(278\) 3.70004 + 1.20203i 0.221914 + 0.0720930i
\(279\) 0 0
\(280\) 0.694753 + 3.52785i 0.0415194 + 0.210829i
\(281\) −6.35647 11.0097i −0.379195 0.656785i 0.611750 0.791051i \(-0.290466\pi\)
−0.990945 + 0.134266i \(0.957132\pi\)
\(282\) 0 0
\(283\) 10.4272 18.0605i 0.619834 1.07358i −0.369682 0.929158i \(-0.620533\pi\)
0.989516 0.144425i \(-0.0461332\pi\)
\(284\) 0.161716 + 0.363132i 0.00959610 + 0.0215479i
\(285\) 0 0
\(286\) −4.97683 23.4089i −0.294286 1.38420i
\(287\) −28.0770 13.0132i −1.65733 0.768147i
\(288\) 0 0
\(289\) 11.3829 0.669581
\(290\) 1.92828 0.409960i 0.113232 0.0240737i
\(291\) 0 0
\(292\) −3.94567 8.85995i −0.230903 0.518489i
\(293\) −5.80807 3.35329i −0.339311 0.195901i 0.320656 0.947196i \(-0.396097\pi\)
−0.659967 + 0.751294i \(0.729430\pi\)
\(294\) 0 0
\(295\) −0.116889 + 0.0674857i −0.00680552 + 0.00392917i
\(296\) 7.80640 + 10.7415i 0.453738 + 0.624336i
\(297\) 0 0
\(298\) −0.205141 0.0666440i −0.0118835 0.00386058i
\(299\) −15.1922 26.3137i −0.878590 1.52176i
\(300\) 0 0
\(301\) −2.90523 + 2.04434i −0.167455 + 0.117834i
\(302\) 11.8973 + 13.2121i 0.684612 + 0.760269i
\(303\) 0 0
\(304\) 11.2451 12.4936i 0.644953 0.716555i
\(305\) −5.28305 −0.302507
\(306\) 0 0
\(307\) −12.0792 −0.689397 −0.344699 0.938713i \(-0.612019\pi\)
−0.344699 + 0.938713i \(0.612019\pi\)
\(308\) 7.24995 12.1322i 0.413104 0.691295i
\(309\) 0 0
\(310\) 2.85916 + 3.17513i 0.162389 + 0.180335i
\(311\) −1.01185 + 1.75258i −0.0573769 + 0.0993797i −0.893287 0.449486i \(-0.851607\pi\)
0.835910 + 0.548866i \(0.184940\pi\)
\(312\) 0 0
\(313\) −16.8337 + 9.71892i −0.951495 + 0.549346i −0.893545 0.448974i \(-0.851790\pi\)
−0.0579500 + 0.998319i \(0.518456\pi\)
\(314\) −5.02596 + 15.4707i −0.283631 + 0.873062i
\(315\) 0 0
\(316\) 4.64342 6.39235i 0.261213 0.359598i
\(317\) 5.21828 + 9.03832i 0.293088 + 0.507643i 0.974538 0.224222i \(-0.0719839\pi\)
−0.681451 + 0.731864i \(0.738651\pi\)
\(318\) 0 0
\(319\) −6.71078 3.87447i −0.375731 0.216929i
\(320\) 2.85585 2.57283i 0.159647 0.143826i
\(321\) 0 0
\(322\) 3.99508 17.4935i 0.222637 0.974873i
\(323\) 9.95953i 0.554163i
\(324\) 0 0
\(325\) 30.2162i 1.67609i
\(326\) −27.6258 + 5.87337i −1.53005 + 0.325296i
\(327\) 0 0
\(328\) 3.46260 + 32.9011i 0.191190 + 1.81666i
\(329\) 11.3546 + 16.1361i 0.625999 + 0.889614i
\(330\) 0 0
\(331\) −31.2751 + 18.0567i −1.71903 + 0.992484i −0.798328 + 0.602223i \(0.794282\pi\)
−0.920704 + 0.390261i \(0.872385\pi\)
\(332\) −16.4866 11.9759i −0.904817 0.657262i
\(333\) 0 0
\(334\) 29.5227 + 9.59103i 1.61541 + 0.524798i
\(335\) −0.524489 0.908442i −0.0286559 0.0496335i
\(336\) 0 0
\(337\) 3.70539 6.41792i 0.201845 0.349606i −0.747278 0.664512i \(-0.768639\pi\)
0.949123 + 0.314905i \(0.101973\pi\)
\(338\) 28.5242 25.6856i 1.55151 1.39712i
\(339\) 0 0
\(340\) −0.237861 + 2.26508i −0.0128998 + 0.122841i
\(341\) 16.7949i 0.909495i
\(342\) 0 0
\(343\) −17.8554 + 4.91791i −0.964099 + 0.265542i
\(344\) 3.46958 + 1.54419i 0.187067 + 0.0832570i
\(345\) 0 0
\(346\) 14.4747 + 16.0743i 0.778163 + 0.864159i
\(347\) 24.8678 + 14.3574i 1.33497 + 0.770747i 0.986057 0.166408i \(-0.0532168\pi\)
0.348915 + 0.937154i \(0.386550\pi\)
\(348\) 0 0
\(349\) 0.744758 0.429986i 0.0398660 0.0230166i −0.479935 0.877304i \(-0.659340\pi\)
0.519801 + 0.854288i \(0.326006\pi\)
\(350\) 12.1390 13.0794i 0.648855 0.699123i
\(351\) 0 0
\(352\) −15.1092 + 0.00344740i −0.805322 + 0.000183747i
\(353\) 27.7159 16.0018i 1.47517 0.851690i 0.475562 0.879682i \(-0.342245\pi\)
0.999608 + 0.0279920i \(0.00891130\pi\)
\(354\) 0 0
\(355\) −0.0477497 + 0.0827049i −0.00253429 + 0.00438952i
\(356\) −2.17395 4.88157i −0.115219 0.258723i
\(357\) 0 0
\(358\) −14.7968 + 3.14586i −0.782033 + 0.166264i
\(359\) 5.52163i 0.291421i −0.989327 0.145710i \(-0.953453\pi\)
0.989327 0.145710i \(-0.0465468\pi\)
\(360\) 0 0
\(361\) −1.34111 −0.0705845
\(362\) −10.0075 + 2.12763i −0.525982 + 0.111826i
\(363\) 0 0
\(364\) 33.5220 + 0.504199i 1.75703 + 0.0264272i
\(365\) 1.16503 2.01789i 0.0609805 0.105621i
\(366\) 0 0
\(367\) 11.4766 + 19.8780i 0.599072 + 1.03762i 0.992958 + 0.118465i \(0.0377972\pi\)
−0.393886 + 0.919159i \(0.628869\pi\)
\(368\) −18.2428 + 5.93114i −0.950974 + 0.309182i
\(369\) 0 0
\(370\) −0.985644 + 3.03397i −0.0512412 + 0.157729i
\(371\) −23.7081 + 2.12968i −1.23086 + 0.110567i
\(372\) 0 0
\(373\) −14.2688 + 24.7143i −0.738810 + 1.27966i 0.214222 + 0.976785i \(0.431278\pi\)
−0.953032 + 0.302871i \(0.902055\pi\)
\(374\) 6.65263 5.99061i 0.343999 0.309767i
\(375\) 0 0
\(376\) 8.57667 19.2706i 0.442308 0.993807i
\(377\) 18.3813i 0.946685i
\(378\) 0 0
\(379\) 13.3942i 0.688014i −0.938967 0.344007i \(-0.888216\pi\)
0.938967 0.344007i \(-0.111784\pi\)
\(380\) 4.01614 + 0.421743i 0.206024 + 0.0216349i
\(381\) 0 0
\(382\) −18.8605 20.9447i −0.964985 1.07163i
\(383\) 11.1930 19.3869i 0.571937 0.990625i −0.424430 0.905461i \(-0.639525\pi\)
0.996367 0.0851637i \(-0.0271413\pi\)
\(384\) 0 0
\(385\) 3.38180 0.303785i 0.172353 0.0154823i
\(386\) −19.1766 6.22990i −0.976064 0.317093i
\(387\) 0 0
\(388\) −2.54521 + 3.50386i −0.129214 + 0.177881i
\(389\) −13.5306 23.4357i −0.686029 1.18824i −0.973112 0.230332i \(-0.926019\pi\)
0.287083 0.957906i \(-0.407314\pi\)
\(390\) 0 0
\(391\) 5.68302 9.84327i 0.287402 0.497796i
\(392\) 14.3078 + 13.6853i 0.722653 + 0.691211i
\(393\) 0 0
\(394\) 3.51491 + 16.5326i 0.177078 + 0.832901i
\(395\) 1.89812 0.0955046
\(396\) 0 0
\(397\) 11.6658i 0.585487i −0.956191 0.292744i \(-0.905432\pi\)
0.956191 0.292744i \(-0.0945683\pi\)
\(398\) −6.45580 30.3653i −0.323600 1.52208i
\(399\) 0 0
\(400\) −18.6604 3.96283i −0.933020 0.198142i
\(401\) 8.33464 14.4360i 0.416212 0.720901i −0.579343 0.815084i \(-0.696691\pi\)
0.995555 + 0.0941835i \(0.0300240\pi\)
\(402\) 0 0
\(403\) 34.5018 19.9196i 1.71866 0.992268i
\(404\) 6.11230 8.41447i 0.304098 0.418636i
\(405\) 0 0
\(406\) 7.38445 7.95654i 0.366484 0.394877i
\(407\) 10.8593 6.26962i 0.538275 0.310773i
\(408\) 0 0
\(409\) −0.589282 0.340222i −0.0291381 0.0168229i 0.485360 0.874314i \(-0.338688\pi\)
−0.514498 + 0.857491i \(0.672022\pi\)
\(410\) −5.90618 + 5.31844i −0.291686 + 0.262659i
\(411\) 0 0
\(412\) −0.472227 + 4.49688i −0.0232649 + 0.221546i
\(413\) −0.312530 + 0.674306i −0.0153786 + 0.0331804i
\(414\) 0 0
\(415\) 4.89544i 0.240308i
\(416\) −17.9274 31.0347i −0.878961 1.52160i
\(417\) 0 0
\(418\) −10.6217 11.7956i −0.519526 0.576939i
\(419\) 5.19926 9.00538i 0.254000 0.439941i −0.710623 0.703573i \(-0.751587\pi\)
0.964624 + 0.263631i \(0.0849202\pi\)
\(420\) 0 0
\(421\) −3.42772 5.93699i −0.167057 0.289351i 0.770327 0.637649i \(-0.220093\pi\)
−0.937384 + 0.348298i \(0.886760\pi\)
\(422\) 4.50232 13.8589i 0.219170 0.674640i
\(423\) 0 0
\(424\) 14.9602 + 20.5850i 0.726532 + 0.999698i
\(425\) 9.78875 5.65154i 0.474824 0.274140i
\(426\) 0 0
\(427\) −23.7909 + 16.7411i −1.15132 + 0.810157i
\(428\) −12.0669 27.0961i −0.583276 1.30974i
\(429\) 0 0
\(430\) 0.189732 + 0.892419i 0.00914969 + 0.0430363i
\(431\) 15.2572i 0.734914i 0.930040 + 0.367457i \(0.119772\pi\)
−0.930040 + 0.367457i \(0.880228\pi\)
\(432\) 0 0
\(433\) 34.6459i 1.66498i 0.554042 + 0.832489i \(0.313085\pi\)
−0.554042 + 0.832489i \(0.686915\pi\)
\(434\) 22.9370 + 5.23824i 1.10101 + 0.251443i
\(435\) 0 0
\(436\) 20.0122 8.91221i 0.958412 0.426817i
\(437\) −17.4528 10.0764i −0.834879 0.482018i
\(438\) 0 0
\(439\) −6.12174 10.6032i −0.292175 0.506061i 0.682149 0.731213i \(-0.261045\pi\)
−0.974324 + 0.225152i \(0.927712\pi\)
\(440\) −2.13398 2.93632i −0.101733 0.139984i
\(441\) 0 0
\(442\) 20.1969 + 6.56135i 0.960668 + 0.312091i
\(443\) −24.2468 + 13.9989i −1.15200 + 0.665108i −0.949374 0.314148i \(-0.898281\pi\)
−0.202627 + 0.979256i \(0.564948\pi\)
\(444\) 0 0
\(445\) 0.641897 1.11180i 0.0304288 0.0527043i
\(446\) 15.2033 13.6904i 0.719898 0.648258i
\(447\) 0 0
\(448\) 4.70776 20.6358i 0.222421 0.974951i
\(449\) −23.8270 −1.12446 −0.562232 0.826979i \(-0.690057\pi\)
−0.562232 + 0.826979i \(0.690057\pi\)
\(450\) 0 0
\(451\) 31.2409 1.47108
\(452\) −1.97505 + 18.8079i −0.0928985 + 0.884647i
\(453\) 0 0
\(454\) 20.3381 18.3142i 0.954516 0.859529i
\(455\) 4.63506 + 6.58694i 0.217295 + 0.308801i
\(456\) 0 0
\(457\) −11.9100 20.6288i −0.557128 0.964974i −0.997735 0.0672735i \(-0.978570\pi\)
0.440607 0.897700i \(-0.354763\pi\)
\(458\) −8.60742 + 26.4950i −0.402198 + 1.23803i
\(459\) 0 0
\(460\) −3.72861 2.70847i −0.173847 0.126283i
\(461\) 0.317557 0.183341i 0.0147901 0.00853906i −0.492587 0.870263i \(-0.663949\pi\)
0.507377 + 0.861724i \(0.330615\pi\)
\(462\) 0 0
\(463\) −14.3509 8.28549i −0.666943 0.385060i 0.127974 0.991777i \(-0.459152\pi\)
−0.794917 + 0.606718i \(0.792486\pi\)
\(464\) −11.3516 2.41069i −0.526985 0.111914i
\(465\) 0 0
\(466\) 2.16103 + 10.1646i 0.100108 + 0.470865i
\(467\) −26.1463 −1.20991 −0.604953 0.796261i \(-0.706808\pi\)
−0.604953 + 0.796261i \(0.706808\pi\)
\(468\) 0 0
\(469\) −5.24061 2.42893i −0.241989 0.112158i
\(470\) 4.95665 1.05380i 0.228633 0.0486084i
\(471\) 0 0
\(472\) 0.790163 0.0831588i 0.0363702 0.00382769i
\(473\) 1.79313 3.10579i 0.0824480 0.142804i
\(474\) 0 0
\(475\) −10.0205 17.3561i −0.459774 0.796352i
\(476\) 6.10651 + 10.9540i 0.279891 + 0.502076i
\(477\) 0 0
\(478\) −4.21104 + 12.9623i −0.192609 + 0.592880i
\(479\) 19.0772 + 33.0427i 0.871661 + 1.50976i 0.860277 + 0.509826i \(0.170290\pi\)
0.0113840 + 0.999935i \(0.496376\pi\)
\(480\) 0 0
\(481\) 25.7594 + 14.8722i 1.17453 + 0.678113i
\(482\) −3.89246 4.32261i −0.177297 0.196890i
\(483\) 0 0
\(484\) 0.807517 7.68976i 0.0367053 0.349534i
\(485\) −1.04042 −0.0472430
\(486\) 0 0
\(487\) 8.93817i 0.405027i −0.979279 0.202514i \(-0.935089\pi\)
0.979279 0.202514i \(-0.0649110\pi\)
\(488\) 28.4124 + 12.6454i 1.28617 + 0.572428i
\(489\) 0 0
\(490\) −0.639884 + 4.71331i −0.0289070 + 0.212926i
\(491\) 8.03087 + 4.63662i 0.362428 + 0.209248i 0.670145 0.742230i \(-0.266232\pi\)
−0.307717 + 0.951478i \(0.599565\pi\)
\(492\) 0 0
\(493\) 5.95475 3.43798i 0.268189 0.154839i
\(494\) 11.6337 35.8104i 0.523425 1.61119i
\(495\) 0 0
\(496\) −7.77675 23.9195i −0.349186 1.07402i
\(497\) 0.0470482 + 0.523752i 0.00211040 + 0.0234935i
\(498\) 0 0
\(499\) 15.0365 + 8.68131i 0.673125 + 0.388629i 0.797260 0.603636i \(-0.206282\pi\)
−0.124135 + 0.992265i \(0.539615\pi\)
\(500\) −3.81915 8.57585i −0.170798 0.383524i
\(501\) 0 0
\(502\) 0.975855 + 4.59000i 0.0435545 + 0.204862i
\(503\) 6.23388 0.277955 0.138978 0.990296i \(-0.455618\pi\)
0.138978 + 0.990296i \(0.455618\pi\)
\(504\) 0 0
\(505\) 2.49856 0.111184
\(506\) 3.76708 + 17.7187i 0.167467 + 0.787694i
\(507\) 0 0
\(508\) 1.18667 + 2.66465i 0.0526500 + 0.118225i
\(509\) −3.52873 2.03731i −0.156408 0.0903023i 0.419753 0.907638i \(-0.362117\pi\)
−0.576161 + 0.817336i \(0.695450\pi\)
\(510\) 0 0
\(511\) −1.14792 12.7789i −0.0507808 0.565304i
\(512\) −21.5171 + 7.00109i −0.950930 + 0.309408i
\(513\) 0 0
\(514\) −7.54290 + 23.2183i −0.332703 + 1.02411i
\(515\) −0.940746 + 0.543140i −0.0414542 + 0.0239336i
\(516\) 0 0
\(517\) −17.2501 9.95933i −0.758657 0.438011i
\(518\) 5.17552 + 16.7861i 0.227399 + 0.737539i
\(519\) 0 0
\(520\) 3.50109 7.86647i 0.153533 0.344968i
\(521\) 27.2193i 1.19250i 0.802798 + 0.596251i \(0.203344\pi\)
−0.802798 + 0.596251i \(0.796656\pi\)
\(522\) 0 0
\(523\) 3.44794 0.150768 0.0753838 0.997155i \(-0.475982\pi\)
0.0753838 + 0.997155i \(0.475982\pi\)
\(524\) −2.58766 + 24.6415i −0.113042 + 1.07647i
\(525\) 0 0
\(526\) 12.5070 + 13.8891i 0.545330 + 0.605595i
\(527\) 12.9062 + 7.45141i 0.562204 + 0.324589i
\(528\) 0 0
\(529\) −0.000637027 0.00110336i −2.76968e−5 4.79723e-5i
\(530\) −1.88889 + 5.81432i −0.0820483 + 0.252558i
\(531\) 0 0
\(532\) 19.4222 10.8272i 0.842057 0.469420i
\(533\) 37.0533 + 64.1783i 1.60496 + 2.77987i
\(534\) 0 0
\(535\) 3.56297 6.17125i 0.154041 0.266806i
\(536\) 0.646298 + 6.14103i 0.0279158 + 0.265252i
\(537\) 0 0
\(538\) −38.1237 + 8.10525i −1.64363 + 0.349442i
\(539\) 14.2665 12.0844i 0.614502 0.520511i
\(540\) 0 0
\(541\) 5.99277 0.257649 0.128825 0.991667i \(-0.458880\pi\)
0.128825 + 0.991667i \(0.458880\pi\)
\(542\) 6.24854 + 29.3905i 0.268398 + 1.26243i
\(543\) 0 0
\(544\) 6.70086 11.6123i 0.287297 0.497875i
\(545\) 4.55787 + 2.63149i 0.195238 + 0.112721i
\(546\) 0 0
\(547\) −5.72221 + 3.30372i −0.244664 + 0.141257i −0.617319 0.786713i \(-0.711781\pi\)
0.372654 + 0.927970i \(0.378448\pi\)
\(548\) −14.4299 10.4819i −0.616414 0.447765i
\(549\) 0 0
\(550\) −5.56598 + 17.1330i −0.237334 + 0.730553i
\(551\) −6.09576 10.5582i −0.259688 0.449793i
\(552\) 0 0
\(553\) 8.54771 6.01480i 0.363485 0.255775i
\(554\) 15.2610 13.7423i 0.648377 0.583855i
\(555\) 0 0
\(556\) 0.574601 5.47176i 0.0243685 0.232055i
\(557\) −6.08351 −0.257767 −0.128883 0.991660i \(-0.541139\pi\)
−0.128883 + 0.991660i \(0.541139\pi\)
\(558\) 0 0
\(559\) 8.50697 0.359806
\(560\) 4.67574 1.99857i 0.197586 0.0844550i
\(561\) 0 0
\(562\) −13.3603 + 12.0308i −0.563571 + 0.507488i
\(563\) −13.1561 + 22.7871i −0.554465 + 0.960361i 0.443480 + 0.896284i \(0.353744\pi\)
−0.997945 + 0.0640767i \(0.979590\pi\)
\(564\) 0 0
\(565\) −3.93459 + 2.27164i −0.165530 + 0.0955686i
\(566\) −28.0496 9.11244i −1.17901 0.383024i
\(567\) 0 0
\(568\) 0.454759 0.330497i 0.0190813 0.0138673i
\(569\) 0.683478 + 1.18382i 0.0286529 + 0.0496283i 0.879996 0.474981i \(-0.157545\pi\)
−0.851343 + 0.524609i \(0.824212\pi\)
\(570\) 0 0
\(571\) −14.6500 8.45818i −0.613083 0.353964i 0.161088 0.986940i \(-0.448500\pi\)
−0.774171 + 0.632976i \(0.781833\pi\)
\(572\) −30.9178 + 13.7689i −1.29274 + 0.575705i
\(573\) 0 0
\(574\) −9.74386 + 42.6660i −0.406701 + 1.78084i
\(575\) 22.8713i 0.953801i
\(576\) 0 0
\(577\) 0.277722i 0.0115617i −0.999983 0.00578087i \(-0.998160\pi\)
0.999983 0.00578087i \(-0.00184012\pi\)
\(578\) −3.34764 15.7459i −0.139244 0.654943i
\(579\) 0 0
\(580\) −1.13419 2.54681i −0.0470948 0.105751i
\(581\) −15.5128 22.0455i −0.643580 0.914599i
\(582\) 0 0
\(583\) 20.8108 12.0151i 0.861896 0.497616i
\(584\) −11.0955 + 8.06369i −0.459136 + 0.333678i
\(585\) 0 0
\(586\) −2.93047 + 9.02046i −0.121057 + 0.372632i
\(587\) 13.6979 + 23.7254i 0.565372 + 0.979253i 0.997015 + 0.0772082i \(0.0246006\pi\)
−0.431643 + 0.902044i \(0.642066\pi\)
\(588\) 0 0
\(589\) 13.2118 22.8836i 0.544385 0.942902i
\(590\) 0.127729 + 0.141845i 0.00525852 + 0.00583965i
\(591\) 0 0
\(592\) 12.5628 13.9576i 0.516330 0.573653i
\(593\) 32.0154i 1.31471i 0.753579 + 0.657357i \(0.228326\pi\)
−0.753579 + 0.657357i \(0.771674\pi\)
\(594\) 0 0
\(595\) −1.26696 + 2.73356i −0.0519403 + 0.112065i
\(596\) −0.0318575 + 0.303370i −0.00130494 + 0.0124265i
\(597\) 0 0
\(598\) −31.9317 + 28.7541i −1.30578 + 1.17584i
\(599\) −15.8709 9.16306i −0.648467 0.374392i 0.139402 0.990236i \(-0.455482\pi\)
−0.787869 + 0.615843i \(0.788815\pi\)
\(600\) 0 0
\(601\) −19.1583 + 11.0611i −0.781485 + 0.451190i −0.836956 0.547270i \(-0.815667\pi\)
0.0554716 + 0.998460i \(0.482334\pi\)
\(602\) 3.68233 + 3.41757i 0.150081 + 0.139290i
\(603\) 0 0
\(604\) 14.7773 20.3431i 0.601279 0.827748i
\(605\) 1.60869 0.928780i 0.0654027 0.0377603i
\(606\) 0 0
\(607\) −7.92507 + 13.7266i −0.321669 + 0.557146i −0.980832 0.194853i \(-0.937577\pi\)
0.659164 + 0.751999i \(0.270910\pi\)
\(608\) −20.5894 11.8811i −0.835012 0.481840i
\(609\) 0 0
\(610\) 1.55372 + 7.30802i 0.0629082 + 0.295893i
\(611\) 47.2491i 1.91150i
\(612\) 0 0
\(613\) 24.5067 0.989818 0.494909 0.868945i \(-0.335201\pi\)
0.494909 + 0.868945i \(0.335201\pi\)
\(614\) 3.55243 + 16.7091i 0.143365 + 0.674326i
\(615\) 0 0
\(616\) −18.9146 6.46082i −0.762089 0.260314i
\(617\) 15.9608 27.6449i 0.642557 1.11294i −0.342303 0.939590i \(-0.611207\pi\)
0.984860 0.173352i \(-0.0554599\pi\)
\(618\) 0 0
\(619\) 0.227459 + 0.393971i 0.00914236 + 0.0158350i 0.870560 0.492062i \(-0.163757\pi\)
−0.861418 + 0.507897i \(0.830423\pi\)
\(620\) 3.55128 4.88885i 0.142623 0.196341i
\(621\) 0 0
\(622\) 2.72192 + 0.884267i 0.109139 + 0.0354559i
\(623\) −0.632468 7.04078i −0.0253393 0.282083i
\(624\) 0 0
\(625\) −10.7952 + 18.6978i −0.431807 + 0.747911i
\(626\) 18.3948 + 20.4277i 0.735206 + 0.816454i
\(627\) 0 0
\(628\) 22.8787 + 2.40253i 0.912958 + 0.0958716i
\(629\) 11.1266i 0.443646i
\(630\) 0 0
\(631\) 28.8331i 1.14783i 0.818916 + 0.573913i \(0.194575\pi\)
−0.818916 + 0.573913i \(0.805425\pi\)
\(632\) −10.2081 4.54327i −0.406057 0.180722i
\(633\) 0 0
\(634\) 10.9680 9.87654i 0.435595 0.392248i
\(635\) −0.350386 + 0.606887i −0.0139046 + 0.0240836i
\(636\) 0 0
\(637\) 41.7458 + 14.9750i 1.65403 + 0.593331i
\(638\) −3.38593 + 10.4225i −0.134050 + 0.412629i
\(639\) 0 0
\(640\) −4.39888 3.19383i −0.173881 0.126247i
\(641\) −3.90266 6.75961i −0.154146 0.266989i 0.778602 0.627518i \(-0.215929\pi\)
−0.932748 + 0.360530i \(0.882596\pi\)
\(642\) 0 0
\(643\) −2.26137 + 3.91681i −0.0891797 + 0.154464i −0.907165 0.420776i \(-0.861758\pi\)
0.817985 + 0.575240i \(0.195091\pi\)
\(644\) −25.3736 0.381640i −0.999859 0.0150387i
\(645\) 0 0
\(646\) 13.7770 2.92904i 0.542048 0.115242i
\(647\) 32.4931 1.27744 0.638718 0.769441i \(-0.279465\pi\)
0.638718 + 0.769441i \(0.279465\pi\)
\(648\) 0 0
\(649\) 0.750290i 0.0294515i
\(650\) −41.7979 + 8.88641i −1.63945 + 0.348554i
\(651\) 0 0
\(652\) 16.2492 + 36.4874i 0.636369 + 1.42896i
\(653\) −3.99865 + 6.92587i −0.156479 + 0.271030i −0.933597 0.358325i \(-0.883348\pi\)
0.777117 + 0.629356i \(0.216681\pi\)
\(654\) 0 0
\(655\) −5.15500 + 2.97624i −0.201422 + 0.116291i
\(656\) 44.4937 14.4658i 1.73719 0.564796i
\(657\) 0 0
\(658\) 18.9817 20.4523i 0.739985 0.797314i
\(659\) 6.89888 3.98307i 0.268742 0.155158i −0.359574 0.933117i \(-0.617078\pi\)
0.628316 + 0.777958i \(0.283745\pi\)
\(660\) 0 0
\(661\) −0.220771 0.127462i −0.00858700 0.00495771i 0.495700 0.868494i \(-0.334911\pi\)
−0.504287 + 0.863536i \(0.668245\pi\)
\(662\) 34.1755 + 37.9523i 1.32827 + 1.47506i
\(663\) 0 0
\(664\) −11.7176 + 26.3278i −0.454731 + 1.02172i
\(665\) 4.84679 + 2.24641i 0.187950 + 0.0871119i
\(666\) 0 0
\(667\) 13.9132i 0.538723i
\(668\) 4.58476 43.6594i 0.177390 1.68923i
\(669\) 0 0
\(670\) −1.10239 + 0.992692i −0.0425892 + 0.0383510i
\(671\) 14.6839 25.4333i 0.566867 0.981842i
\(672\) 0 0
\(673\) −0.198313 0.343488i −0.00764441 0.0132405i 0.862178 0.506606i \(-0.169100\pi\)
−0.869822 + 0.493365i \(0.835767\pi\)
\(674\) −9.96762 3.23817i −0.383938 0.124730i
\(675\) 0 0
\(676\) −43.9197 31.9034i −1.68922 1.22705i
\(677\) −43.1462 + 24.9105i −1.65824 + 0.957388i −0.684720 + 0.728806i \(0.740076\pi\)
−0.973525 + 0.228582i \(0.926591\pi\)
\(678\) 0 0
\(679\) −4.68528 + 3.29691i −0.179804 + 0.126524i
\(680\) 3.20323 0.337117i 0.122838 0.0129278i
\(681\) 0 0
\(682\) −23.2323 + 4.93929i −0.889612 + 0.189135i
\(683\) 28.4508i 1.08864i −0.838878 0.544320i \(-0.816788\pi\)
0.838878 0.544320i \(-0.183212\pi\)
\(684\) 0 0
\(685\) 4.28474i 0.163712i
\(686\) 12.0541 + 23.2529i 0.460228 + 0.887801i
\(687\) 0 0
\(688\) 1.11568 5.25359i 0.0425350 0.200291i
\(689\) 49.3654 + 28.5011i 1.88067 + 1.08581i
\(690\) 0 0
\(691\) 6.08340 + 10.5368i 0.231423 + 0.400837i 0.958227 0.286008i \(-0.0923284\pi\)
−0.726804 + 0.686845i \(0.758995\pi\)
\(692\) 17.9786 24.7501i 0.683443 0.940859i
\(693\) 0 0
\(694\) 12.5471 38.6219i 0.476281 1.46607i
\(695\) 1.14469 0.660887i 0.0434206 0.0250689i
\(696\) 0 0
\(697\) −13.8607 + 24.0074i −0.525011 + 0.909345i
\(698\) −0.813827 0.903764i −0.0308038 0.0342080i
\(699\) 0 0
\(700\) −21.6627 12.9452i −0.818773 0.489283i
\(701\) 9.67651 0.365477 0.182738 0.983162i \(-0.441504\pi\)
0.182738 + 0.983162i \(0.441504\pi\)
\(702\) 0 0
\(703\) 19.7282 0.744062
\(704\) 4.44830 + 20.8995i 0.167652 + 0.787678i
\(705\) 0 0
\(706\) −30.2863 33.6333i −1.13984 1.26581i
\(707\) 11.2516 7.91749i 0.423162 0.297768i
\(708\) 0 0
\(709\) −22.5400 39.0404i −0.846507 1.46619i −0.884306 0.466907i \(-0.845368\pi\)
0.0377999 0.999285i \(-0.487965\pi\)
\(710\) 0.128448 + 0.0417289i 0.00482058 + 0.00156606i
\(711\) 0 0
\(712\) −6.11331 + 4.44286i −0.229106 + 0.166503i
\(713\) −26.1153 + 15.0776i −0.978024 + 0.564662i
\(714\) 0 0
\(715\) −7.04166 4.06550i −0.263343 0.152041i
\(716\) 8.70330 + 19.5431i 0.325258 + 0.730361i
\(717\) 0 0
\(718\) −7.63805 + 1.62388i −0.285050 + 0.0606028i
\(719\) −12.1609 −0.453526 −0.226763 0.973950i \(-0.572814\pi\)
−0.226763 + 0.973950i \(0.572814\pi\)
\(720\) 0 0
\(721\) −2.51531 + 5.42696i −0.0936749 + 0.202111i
\(722\) 0.394412 + 1.85515i 0.0146785 + 0.0690414i
\(723\) 0 0
\(724\) 5.88630 + 13.2176i 0.218762 + 0.491228i
\(725\) −6.91809 + 11.9825i −0.256931 + 0.445018i
\(726\) 0 0
\(727\) −8.39590 14.5421i −0.311387 0.539337i 0.667276 0.744810i \(-0.267460\pi\)
−0.978663 + 0.205473i \(0.934127\pi\)
\(728\) −9.16118 46.5191i −0.339536 1.72411i
\(729\) 0 0
\(730\) −3.13397 1.01813i −0.115993 0.0376827i
\(731\) 1.59112 + 2.75589i 0.0588496 + 0.101930i
\(732\) 0 0
\(733\) 18.4832 + 10.6713i 0.682693 + 0.394153i 0.800869 0.598840i \(-0.204371\pi\)
−0.118176 + 0.992993i \(0.537705\pi\)
\(734\) 24.1220 21.7215i 0.890359 0.801756i
\(735\) 0 0
\(736\) 13.5696 + 23.4909i 0.500184 + 0.865887i
\(737\) 5.83114 0.214793
\(738\) 0 0
\(739\) 50.5558i 1.85973i 0.367907 + 0.929863i \(0.380074\pi\)
−0.367907 + 0.929863i \(0.619926\pi\)
\(740\) 4.48675 + 0.471163i 0.164936 + 0.0173203i
\(741\) 0 0
\(742\) 9.91839 + 32.1690i 0.364116 + 1.18096i
\(743\) −32.1395 18.5558i −1.17909 0.680745i −0.223282 0.974754i \(-0.571677\pi\)
−0.955803 + 0.294009i \(0.905011\pi\)
\(744\) 0 0
\(745\) −0.0634650 + 0.0366415i −0.00232518 + 0.00134244i
\(746\) 38.3835 + 12.4696i 1.40532 + 0.456545i
\(747\) 0 0
\(748\) −10.2433 7.44075i −0.374532 0.272061i
\(749\) −3.51063 39.0812i −0.128276 1.42800i
\(750\) 0 0
\(751\) −37.8228 21.8370i −1.38017 0.796843i −0.387993 0.921662i \(-0.626832\pi\)
−0.992180 + 0.124819i \(0.960165\pi\)
\(752\) −29.1793 6.19669i −1.06406 0.225970i
\(753\) 0 0
\(754\) −25.4268 + 5.40584i −0.925988 + 0.196869i
\(755\) 6.04058 0.219839
\(756\) 0 0
\(757\) −53.5207 −1.94524 −0.972622 0.232392i \(-0.925345\pi\)
−0.972622 + 0.232392i \(0.925345\pi\)
\(758\) −18.5281 + 3.93916i −0.672972 + 0.143077i
\(759\) 0 0
\(760\) −0.597730 5.67954i −0.0216820 0.206019i
\(761\) 19.6964 + 11.3717i 0.713994 + 0.412225i 0.812538 0.582908i \(-0.198085\pi\)
−0.0985439 + 0.995133i \(0.531418\pi\)
\(762\) 0 0
\(763\) 28.8640 2.59283i 1.04495 0.0938669i
\(764\) −23.4260 + 32.2493i −0.847524 + 1.16674i
\(765\) 0 0
\(766\) −30.1096 9.78170i −1.08791 0.353427i
\(767\) 1.54132 0.889883i 0.0556540 0.0321318i
\(768\) 0 0
\(769\) 9.86460 + 5.69533i 0.355726 + 0.205379i 0.667204 0.744875i \(-0.267491\pi\)
−0.311478 + 0.950253i \(0.600824\pi\)
\(770\) −1.41479 4.58869i −0.0509857 0.165365i
\(771\) 0 0
\(772\) −2.97805 + 28.3591i −0.107182 + 1.02067i
\(773\) 30.6663i 1.10299i 0.834178 + 0.551495i \(0.185942\pi\)
−0.834178 + 0.551495i \(0.814058\pi\)
\(774\) 0 0
\(775\) −29.9883 −1.07721
\(776\) 5.59540 + 2.49032i 0.200863 + 0.0893972i
\(777\) 0 0
\(778\) −28.4392 + 25.6092i −1.01960 + 0.918133i
\(779\) 42.5667 + 24.5759i 1.52511 + 0.880523i
\(780\) 0 0
\(781\) −0.265435 0.459746i −0.00949800 0.0164510i
\(782\) −15.2875 4.96644i −0.546680 0.177600i
\(783\) 0 0
\(784\) 14.7229 23.8167i 0.525819 0.850596i
\(785\) 2.76332 + 4.78621i 0.0986271 + 0.170827i
\(786\) 0 0
\(787\) 9.75700 16.8996i 0.347799 0.602406i −0.638059 0.769988i \(-0.720262\pi\)
0.985858 + 0.167581i \(0.0535957\pi\)
\(788\) 21.8358 9.72431i 0.777868 0.346414i
\(789\) 0 0
\(790\) −0.558226 2.62566i −0.0198608 0.0934166i
\(791\) −10.5201 + 22.6978i −0.374050 + 0.807042i
\(792\) 0 0
\(793\) 69.6636 2.47383
\(794\) −16.1372 + 3.43084i −0.572688 + 0.121756i
\(795\) 0 0
\(796\) −40.1056 + 17.8606i −1.42151 + 0.633051i
\(797\) −25.9632 14.9898i −0.919663 0.530968i −0.0361355 0.999347i \(-0.511505\pi\)
−0.883528 + 0.468379i \(0.844838\pi\)
\(798\) 0 0
\(799\) 15.3067 8.83733i 0.541512 0.312642i
\(800\) 0.00615553 + 26.9783i 0.000217631 + 0.953827i
\(801\) 0 0
\(802\) −22.4205 7.28372i −0.791694 0.257197i
\(803\) 6.47626 + 11.2172i 0.228542 + 0.395847i
\(804\) 0 0
\(805\) −3.50839 4.98581i −0.123654 0.175727i
\(806\) −37.7016 41.8680i −1.32798 1.47474i
\(807\) 0 0
\(808\) −13.4373 5.98047i −0.472723 0.210392i
\(809\) 54.5869 1.91917 0.959586 0.281415i \(-0.0908038\pi\)
0.959586 + 0.281415i \(0.0908038\pi\)
\(810\) 0 0
\(811\) 17.5107 0.614883 0.307442 0.951567i \(-0.400527\pi\)
0.307442 + 0.951567i \(0.400527\pi\)
\(812\) −13.1780 7.87490i −0.462457 0.276355i
\(813\) 0 0
\(814\) −11.8664 13.1778i −0.415917 0.461880i
\(815\) −4.79788 + 8.31016i −0.168062 + 0.291092i
\(816\) 0 0
\(817\) 4.88638 2.82115i 0.170953 0.0986997i
\(818\) −0.297323 + 0.915209i −0.0103957 + 0.0319995i
\(819\) 0 0
\(820\) 9.09395 + 6.60587i 0.317575 + 0.230687i
\(821\) 9.47071 + 16.4037i 0.330530 + 0.572495i 0.982616 0.185650i \(-0.0594392\pi\)
−0.652086 + 0.758145i \(0.726106\pi\)
\(822\) 0 0
\(823\) 8.43975 + 4.87269i 0.294191 + 0.169851i 0.639831 0.768516i \(-0.279005\pi\)
−0.345639 + 0.938367i \(0.612338\pi\)
\(824\) 6.35940 0.669280i 0.221540 0.0233155i
\(825\) 0 0
\(826\) 1.02468 + 0.234011i 0.0356531 + 0.00814229i
\(827\) 38.9872i 1.35572i −0.735193 0.677858i \(-0.762908\pi\)
0.735193 0.677858i \(-0.237092\pi\)
\(828\) 0 0
\(829\) 8.11853i 0.281968i −0.990012 0.140984i \(-0.954973\pi\)
0.990012 0.140984i \(-0.0450266\pi\)
\(830\) −6.77185 + 1.43972i −0.235054 + 0.0499735i
\(831\) 0 0
\(832\) −37.6579 + 33.9260i −1.30555 + 1.17617i
\(833\) 2.95673 + 16.3247i 0.102445 + 0.565618i
\(834\) 0 0
\(835\) 9.13352 5.27324i 0.316078 0.182488i
\(836\) −13.1929 + 18.1620i −0.456288 + 0.628147i
\(837\) 0 0
\(838\) −13.9862 4.54368i −0.483144 0.156959i
\(839\) −13.5859 23.5314i −0.469036 0.812394i 0.530337 0.847787i \(-0.322065\pi\)
−0.999373 + 0.0353923i \(0.988732\pi\)
\(840\) 0 0
\(841\) 10.2915 17.8255i 0.354881 0.614672i
\(842\) −7.20454 + 6.48759i −0.248285 + 0.223577i
\(843\) 0 0
\(844\) −20.4950 2.15223i −0.705469 0.0740826i
\(845\) 13.0413i 0.448635i
\(846\) 0 0
\(847\) 4.30122 9.28021i 0.147792 0.318872i
\(848\) 24.0755 26.7484i 0.826756 0.918543i
\(849\) 0 0
\(850\) −10.6966 11.8787i −0.366889 0.407434i
\(851\) −19.4979 11.2571i −0.668379 0.385889i
\(852\) 0 0
\(853\) 20.4384 11.8001i 0.699797 0.404028i −0.107475 0.994208i \(-0.534276\pi\)
0.807272 + 0.590180i \(0.200943\pi\)
\(854\) 30.1547 + 27.9865i 1.03187 + 0.957677i
\(855\) 0 0
\(856\) −33.9331 + 24.6609i −1.15981 + 0.842893i
\(857\) −13.6342 + 7.87173i −0.465737 + 0.268893i −0.714453 0.699683i \(-0.753325\pi\)
0.248717 + 0.968576i \(0.419991\pi\)
\(858\) 0 0
\(859\) −13.3695 + 23.1566i −0.456160 + 0.790093i −0.998754 0.0499024i \(-0.984109\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(860\) 1.17868 0.524911i 0.0401927 0.0178993i
\(861\) 0 0
\(862\) 21.1052 4.48706i 0.718847 0.152830i
\(863\) 50.8477i 1.73088i 0.501015 + 0.865438i \(0.332960\pi\)
−0.501015 + 0.865438i \(0.667040\pi\)
\(864\) 0 0
\(865\) 7.34919 0.249880
\(866\) 47.9256 10.1892i 1.62858 0.346243i
\(867\) 0 0
\(868\) 0.500396 33.2691i 0.0169845 1.12923i
\(869\) −5.27570 + 9.13778i −0.178966 + 0.309978i
\(870\) 0 0
\(871\) 6.91604 + 11.9789i 0.234341 + 0.405891i
\(872\) −18.2137 25.0618i −0.616794 0.848700i
\(873\) 0 0
\(874\) −8.80582 + 27.1057i −0.297861 + 0.916866i
\(875\) −1.11111 12.3691i −0.0375623 0.418152i
\(876\) 0 0
\(877\) 6.79088 11.7621i 0.229312 0.397179i −0.728293 0.685266i \(-0.759686\pi\)
0.957604 + 0.288087i \(0.0930192\pi\)
\(878\) −12.8669 + 11.5865i −0.434238 + 0.391026i
\(879\) 0 0
\(880\) −3.43421 + 3.81548i −0.115767 + 0.128620i
\(881\) 5.11905i 0.172465i 0.996275 + 0.0862325i \(0.0274828\pi\)
−0.996275 + 0.0862325i \(0.972517\pi\)
\(882\) 0 0
\(883\) 36.5196i 1.22898i 0.788924 + 0.614491i \(0.210639\pi\)
−0.788924 + 0.614491i \(0.789361\pi\)
\(884\) 3.13649 29.8679i 0.105492 1.00457i
\(885\) 0 0
\(886\) 26.4955 + 29.4235i 0.890133 + 0.988502i
\(887\) −16.1245 + 27.9284i −0.541407 + 0.937744i 0.457417 + 0.889252i \(0.348775\pi\)
−0.998824 + 0.0484917i \(0.984559\pi\)
\(888\) 0 0
\(889\) 0.345239 + 3.84328i 0.0115789 + 0.128899i
\(890\) −1.72673 0.560960i −0.0578800 0.0188034i
\(891\) 0 0
\(892\) −23.4091 17.0044i −0.783793 0.569350i
\(893\) −15.6692 27.1398i −0.524349 0.908199i
\(894\) 0 0
\(895\) −2.56981 + 4.45103i −0.0858991 + 0.148782i
\(896\) −29.9300 0.443341i −0.999890 0.0148110i
\(897\) 0 0
\(898\) 7.00739 + 32.9598i 0.233840 + 1.09988i
\(899\) −18.2427 −0.608426
\(900\) 0 0
\(901\) 21.3231i 0.710374i
\(902\) −9.18778 43.2154i −0.305920 1.43892i
\(903\) 0 0
\(904\) 26.5977 2.79921i 0.884626 0.0931003i
\(905\) −1.73803 + 3.01036i −0.0577742 + 0.100068i
\(906\) 0 0
\(907\) −24.3819 + 14.0769i −0.809588 + 0.467416i −0.846813 0.531891i \(-0.821482\pi\)
0.0372246 + 0.999307i \(0.488148\pi\)
\(908\) −31.3153 22.7475i −1.03924 0.754904i
\(909\) 0 0
\(910\) 7.74855 8.34885i 0.256862 0.276762i
\(911\) 33.2831 19.2160i 1.10272 0.636655i 0.165785 0.986162i \(-0.446984\pi\)
0.936934 + 0.349507i \(0.113651\pi\)
\(912\) 0 0
\(913\) 23.5673 + 13.6066i 0.779964 + 0.450312i
\(914\) −25.0330 + 22.5419i −0.828019 + 0.745620i
\(915\) 0 0
\(916\) 39.1819 + 4.11456i 1.29461 + 0.135949i
\(917\) −13.7831 + 29.7381i −0.455158 + 0.982038i
\(918\) 0 0
\(919\) 17.3398i 0.571988i −0.958231 0.285994i \(-0.907676\pi\)
0.958231 0.285994i \(-0.0923238\pi\)
\(920\) −2.65006 + 5.95432i −0.0873698 + 0.196308i
\(921\) 0 0
\(922\) −0.347007 0.385355i −0.0114281 0.0126910i
\(923\) 0.629639 1.09057i 0.0207248 0.0358964i
\(924\) 0 0
\(925\) −11.1948 19.3899i −0.368081 0.637536i
\(926\) −7.24077 + 22.2883i −0.237946 + 0.732438i
\(927\) 0 0
\(928\) 0.00374457 + 16.4116i 0.000122922 + 0.538738i
\(929\) 48.7835 28.1651i 1.60053 0.924068i 0.609153 0.793053i \(-0.291510\pi\)
0.991380 0.131016i \(-0.0418238\pi\)
\(930\) 0 0
\(931\) 28.9448 5.24248i 0.948628 0.171815i
\(932\) 13.4251 5.97869i 0.439753 0.195839i
\(933\) 0 0
\(934\) 7.68949 + 36.1681i 0.251608 + 1.18346i
\(935\) 3.04160i 0.0994708i
\(936\) 0 0
\(937\) 36.1315i 1.18036i −0.807270 0.590182i \(-0.799056\pi\)
0.807270 0.590182i \(-0.200944\pi\)
\(938\) −1.81870 + 7.96365i −0.0593827 + 0.260022i
\(939\) 0 0
\(940\) −2.91545 6.54659i −0.0950914 0.213526i
\(941\) 12.0974 + 6.98446i 0.394365 + 0.227687i 0.684050 0.729435i \(-0.260217\pi\)
−0.289684 + 0.957122i \(0.593550\pi\)
\(942\) 0 0
\(943\) −28.0466 48.5781i −0.913321 1.58192i
\(944\) −0.347416 1.06857i −0.0113074 0.0347791i
\(945\) 0 0
\(946\) −4.82357 1.56703i −0.156828 0.0509485i
\(947\) 11.0539 6.38196i 0.359203 0.207386i −0.309528 0.950890i \(-0.600171\pi\)
0.668731 + 0.743505i \(0.266838\pi\)
\(948\) 0 0
\(949\) −15.3624 + 26.6084i −0.498684 + 0.863746i
\(950\) −21.0616 + 18.9657i −0.683330 + 0.615329i
\(951\) 0 0
\(952\) 13.3567 11.6686i 0.432894 0.378182i
\(953\) 3.91673 0.126875 0.0634377 0.997986i \(-0.479794\pi\)
0.0634377 + 0.997986i \(0.479794\pi\)
\(954\) 0 0
\(955\) −9.57597 −0.309871
\(956\) 19.1691 + 2.01299i 0.619973 + 0.0651046i
\(957\) 0 0
\(958\) 40.0974 36.1072i 1.29549 1.16657i
\(959\) −13.5776 19.2953i −0.438444 0.623078i
\(960\) 0 0
\(961\) −4.26940 7.39481i −0.137722 0.238542i
\(962\) 12.9969 40.0067i 0.419038 1.28987i
\(963\) 0 0
\(964\) −4.83470 + 6.65568i −0.155715 + 0.214365i
\(965\) −5.93272 + 3.42526i −0.190981 + 0.110263i
\(966\) 0 0
\(967\) −20.2799 11.7086i −0.652158 0.376524i 0.137125 0.990554i \(-0.456214\pi\)
−0.789283 + 0.614030i \(0.789547\pi\)
\(968\) −10.8747 + 1.14448i −0.349526 + 0.0367850i
\(969\) 0 0
\(970\) 0.305982 + 1.43921i 0.00982448 + 0.0462102i
\(971\) 25.1209 0.806167 0.403084 0.915163i \(-0.367938\pi\)
0.403084 + 0.915163i \(0.367938\pi\)
\(972\) 0 0
\(973\) 3.06060 6.60347i 0.0981184 0.211698i
\(974\) −12.3641 + 2.62867i −0.396173 + 0.0842280i
\(975\) 0 0
\(976\) 9.13633 43.0217i 0.292447 1.37709i
\(977\) 1.21770 2.10911i 0.0389575 0.0674764i −0.845889 0.533359i \(-0.820930\pi\)
0.884847 + 0.465882i \(0.154263\pi\)
\(978\) 0 0
\(979\) 3.56823 + 6.18036i 0.114041 + 0.197525i
\(980\) 6.70809 0.501010i 0.214282 0.0160042i
\(981\) 0 0
\(982\) 4.05199 12.4727i 0.129304 0.398019i
\(983\) 9.60279 + 16.6325i 0.306281 + 0.530495i 0.977546 0.210723i \(-0.0675818\pi\)
−0.671264 + 0.741218i \(0.734248\pi\)
\(984\) 0 0
\(985\) 4.97320 + 2.87128i 0.158459 + 0.0914865i
\(986\) −6.50700 7.22610i −0.207225 0.230126i
\(987\) 0 0
\(988\) −52.9578 5.56120i −1.68481 0.176925i
\(989\) −6.43913 −0.204752
\(990\) 0 0
\(991\) 29.4493i 0.935489i −0.883864 0.467745i \(-0.845067\pi\)
0.883864 0.467745i \(-0.154933\pi\)
\(992\) −30.8007 + 17.7921i −0.977922 + 0.564901i
\(993\) 0 0
\(994\) 0.710667 0.219114i 0.0225410 0.00694988i
\(995\) −9.13423 5.27365i −0.289575 0.167186i
\(996\) 0 0
\(997\) −13.3933 + 7.73264i −0.424171 + 0.244895i −0.696860 0.717207i \(-0.745420\pi\)
0.272689 + 0.962102i \(0.412087\pi\)
\(998\) 7.58668 23.3530i 0.240152 0.739227i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bi.c.307.17 80
3.2 odd 2 252.2.bi.c.139.24 yes 80
4.3 odd 2 inner 756.2.bi.c.307.7 80
7.6 odd 2 inner 756.2.bi.c.307.18 80
9.2 odd 6 252.2.bi.c.223.34 yes 80
9.7 even 3 inner 756.2.bi.c.559.8 80
12.11 even 2 252.2.bi.c.139.33 yes 80
21.20 even 2 252.2.bi.c.139.23 80
28.27 even 2 inner 756.2.bi.c.307.8 80
36.7 odd 6 inner 756.2.bi.c.559.18 80
36.11 even 6 252.2.bi.c.223.23 yes 80
63.20 even 6 252.2.bi.c.223.33 yes 80
63.34 odd 6 inner 756.2.bi.c.559.7 80
84.83 odd 2 252.2.bi.c.139.34 yes 80
252.83 odd 6 252.2.bi.c.223.24 yes 80
252.223 even 6 inner 756.2.bi.c.559.17 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bi.c.139.23 80 21.20 even 2
252.2.bi.c.139.24 yes 80 3.2 odd 2
252.2.bi.c.139.33 yes 80 12.11 even 2
252.2.bi.c.139.34 yes 80 84.83 odd 2
252.2.bi.c.223.23 yes 80 36.11 even 6
252.2.bi.c.223.24 yes 80 252.83 odd 6
252.2.bi.c.223.33 yes 80 63.20 even 6
252.2.bi.c.223.34 yes 80 9.2 odd 6
756.2.bi.c.307.7 80 4.3 odd 2 inner
756.2.bi.c.307.8 80 28.27 even 2 inner
756.2.bi.c.307.17 80 1.1 even 1 trivial
756.2.bi.c.307.18 80 7.6 odd 2 inner
756.2.bi.c.559.7 80 63.34 odd 6 inner
756.2.bi.c.559.8 80 9.7 even 3 inner
756.2.bi.c.559.17 80 252.223 even 6 inner
756.2.bi.c.559.18 80 36.7 odd 6 inner