Properties

Label 756.2.be.c.431.10
Level $756$
Weight $2$
Character 756.431
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 431.10
Character \(\chi\) \(=\) 756.431
Dual form 756.2.be.c.107.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.687910 - 1.23563i) q^{2} +(-1.05356 - 1.70000i) q^{4} +(-0.303357 + 0.175143i) q^{5} +(-2.63538 + 0.234036i) q^{7} +(-2.82533 + 0.132362i) q^{8} +(0.00772994 + 0.495319i) q^{10} +(-0.356330 + 0.617181i) q^{11} +0.127465 q^{13} +(-1.52372 + 3.41735i) q^{14} +(-1.78002 + 3.58211i) q^{16} +(-5.30564 - 3.06321i) q^{17} +(-2.91768 + 1.68453i) q^{19} +(0.617349 + 0.331184i) q^{20} +(0.517485 + 0.864856i) q^{22} +(-2.38776 - 4.13571i) q^{23} +(-2.43865 + 4.22387i) q^{25} +(0.0876844 - 0.157499i) q^{26} +(3.17439 + 4.23358i) q^{28} +3.39607i q^{29} +(-0.00202473 - 0.00116898i) q^{31} +(3.20167 + 4.66362i) q^{32} +(-7.43480 + 4.44859i) q^{34} +(0.758471 - 0.532565i) q^{35} +(2.17085 + 3.76003i) q^{37} +(0.0743466 + 4.76398i) q^{38} +(0.833900 - 0.534990i) q^{40} -8.22678i q^{41} +7.55045i q^{43} +(1.42462 - 0.0444762i) q^{44} +(-6.75277 + 0.105384i) q^{46} +(-1.33348 - 2.30966i) q^{47} +(6.89045 - 1.23355i) q^{49} +(3.54156 + 5.91891i) q^{50} +(-0.134292 - 0.216691i) q^{52} +(-10.1596 - 5.86566i) q^{53} -0.249635i q^{55} +(7.41484 - 1.01005i) q^{56} +(4.19629 + 2.33619i) q^{58} +(5.13898 - 8.90098i) q^{59} +(-2.83849 - 4.91641i) q^{61} +(-0.00283726 + 0.00169767i) q^{62} +(7.96496 - 0.747932i) q^{64} +(-0.0386674 + 0.0223246i) q^{65} +(-7.79435 - 4.50007i) q^{67} +(0.382342 + 12.2469i) q^{68} +(-0.136294 - 1.30355i) q^{70} +9.61361 q^{71} +(-2.15337 + 3.72974i) q^{73} +(6.13935 - 0.0958106i) q^{74} +(5.93766 + 3.18532i) q^{76} +(0.794621 - 1.70990i) q^{77} +(1.92240 - 1.10990i) q^{79} +(-0.0874011 - 1.39842i) q^{80} +(-10.1653 - 5.65928i) q^{82} +5.12311 q^{83} +2.14600 q^{85} +(9.32956 + 5.19403i) q^{86} +(0.925057 - 1.79090i) q^{88} +(-7.79048 + 4.49784i) q^{89} +(-0.335919 + 0.0298314i) q^{91} +(-4.51508 + 8.41642i) q^{92} +(-3.77120 + 0.0588532i) q^{94} +(0.590066 - 1.02203i) q^{95} -17.3426 q^{97} +(3.21580 - 9.36262i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} - 2 q^{7} - 20 q^{10} + 8 q^{13} + 12 q^{16} + 42 q^{19} + 4 q^{22} + 6 q^{25} - 28 q^{28} - 30 q^{31} + 24 q^{34} + 12 q^{37} + 36 q^{40} - 12 q^{46} - 14 q^{49} + 84 q^{52} + 28 q^{58}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.687910 1.23563i 0.486426 0.873722i
\(3\) 0 0
\(4\) −1.05356 1.70000i −0.526780 0.850001i
\(5\) −0.303357 + 0.175143i −0.135665 + 0.0783264i −0.566297 0.824202i \(-0.691624\pi\)
0.430631 + 0.902528i \(0.358291\pi\)
\(6\) 0 0
\(7\) −2.63538 + 0.234036i −0.996080 + 0.0884574i
\(8\) −2.82533 + 0.132362i −0.998904 + 0.0467970i
\(9\) 0 0
\(10\) 0.00772994 + 0.495319i 0.00244442 + 0.156634i
\(11\) −0.356330 + 0.617181i −0.107437 + 0.186087i −0.914731 0.404062i \(-0.867598\pi\)
0.807294 + 0.590149i \(0.200931\pi\)
\(12\) 0 0
\(13\) 0.127465 0.0353524 0.0176762 0.999844i \(-0.494373\pi\)
0.0176762 + 0.999844i \(0.494373\pi\)
\(14\) −1.52372 + 3.41735i −0.407232 + 0.913325i
\(15\) 0 0
\(16\) −1.78002 + 3.58211i −0.445005 + 0.895528i
\(17\) −5.30564 3.06321i −1.28681 0.742938i −0.308723 0.951152i \(-0.599902\pi\)
−0.978083 + 0.208214i \(0.933235\pi\)
\(18\) 0 0
\(19\) −2.91768 + 1.68453i −0.669363 + 0.386457i −0.795835 0.605513i \(-0.792968\pi\)
0.126472 + 0.991970i \(0.459634\pi\)
\(20\) 0.617349 + 0.331184i 0.138043 + 0.0740549i
\(21\) 0 0
\(22\) 0.517485 + 0.864856i 0.110328 + 0.184388i
\(23\) −2.38776 4.13571i −0.497881 0.862356i 0.502116 0.864801i \(-0.332555\pi\)
−0.999997 + 0.00244454i \(0.999222\pi\)
\(24\) 0 0
\(25\) −2.43865 + 4.22387i −0.487730 + 0.844773i
\(26\) 0.0876844 0.157499i 0.0171963 0.0308882i
\(27\) 0 0
\(28\) 3.17439 + 4.23358i 0.599904 + 0.800072i
\(29\) 3.39607i 0.630635i 0.948986 + 0.315318i \(0.102111\pi\)
−0.948986 + 0.315318i \(0.897889\pi\)
\(30\) 0 0
\(31\) −0.00202473 0.00116898i −0.000363652 0.000209955i 0.499818 0.866130i \(-0.333400\pi\)
−0.500182 + 0.865920i \(0.666733\pi\)
\(32\) 3.20167 + 4.66362i 0.565981 + 0.824418i
\(33\) 0 0
\(34\) −7.43480 + 4.44859i −1.27506 + 0.762927i
\(35\) 0.758471 0.532565i 0.128205 0.0900200i
\(36\) 0 0
\(37\) 2.17085 + 3.76003i 0.356886 + 0.618145i 0.987439 0.158001i \(-0.0505051\pi\)
−0.630553 + 0.776146i \(0.717172\pi\)
\(38\) 0.0743466 + 4.76398i 0.0120606 + 0.772819i
\(39\) 0 0
\(40\) 0.833900 0.534990i 0.131851 0.0845893i
\(41\) 8.22678i 1.28481i −0.766367 0.642404i \(-0.777937\pi\)
0.766367 0.642404i \(-0.222063\pi\)
\(42\) 0 0
\(43\) 7.55045i 1.15143i 0.817649 + 0.575717i \(0.195277\pi\)
−0.817649 + 0.575717i \(0.804723\pi\)
\(44\) 1.42462 0.0444762i 0.214770 0.00670503i
\(45\) 0 0
\(46\) −6.75277 + 0.105384i −0.995642 + 0.0155380i
\(47\) −1.33348 2.30966i −0.194508 0.336898i 0.752231 0.658900i \(-0.228978\pi\)
−0.946739 + 0.322001i \(0.895644\pi\)
\(48\) 0 0
\(49\) 6.89045 1.23355i 0.984351 0.176221i
\(50\) 3.54156 + 5.91891i 0.500852 + 0.837060i
\(51\) 0 0
\(52\) −0.134292 0.216691i −0.0186230 0.0300496i
\(53\) −10.1596 5.86566i −1.39553 0.805710i −0.401610 0.915811i \(-0.631549\pi\)
−0.993920 + 0.110101i \(0.964883\pi\)
\(54\) 0 0
\(55\) 0.249635i 0.0336608i
\(56\) 7.41484 1.01005i 0.990849 0.134974i
\(57\) 0 0
\(58\) 4.19629 + 2.33619i 0.551000 + 0.306757i
\(59\) 5.13898 8.90098i 0.669039 1.15881i −0.309134 0.951018i \(-0.600039\pi\)
0.978173 0.207791i \(-0.0666274\pi\)
\(60\) 0 0
\(61\) −2.83849 4.91641i −0.363432 0.629482i 0.625091 0.780552i \(-0.285062\pi\)
−0.988523 + 0.151069i \(0.951728\pi\)
\(62\) −0.00283726 + 0.00169767i −0.000360332 + 0.000215604i
\(63\) 0 0
\(64\) 7.96496 0.747932i 0.995620 0.0934915i
\(65\) −0.0386674 + 0.0223246i −0.00479610 + 0.00276903i
\(66\) 0 0
\(67\) −7.79435 4.50007i −0.952231 0.549771i −0.0584577 0.998290i \(-0.518618\pi\)
−0.893773 + 0.448519i \(0.851952\pi\)
\(68\) 0.382342 + 12.2469i 0.0463658 + 1.48515i
\(69\) 0 0
\(70\) −0.136294 1.30355i −0.0162903 0.155803i
\(71\) 9.61361 1.14093 0.570463 0.821323i \(-0.306764\pi\)
0.570463 + 0.821323i \(0.306764\pi\)
\(72\) 0 0
\(73\) −2.15337 + 3.72974i −0.252033 + 0.436534i −0.964085 0.265593i \(-0.914432\pi\)
0.712053 + 0.702126i \(0.247766\pi\)
\(74\) 6.13935 0.0958106i 0.713685 0.0111378i
\(75\) 0 0
\(76\) 5.93766 + 3.18532i 0.681096 + 0.365382i
\(77\) 0.794621 1.70990i 0.0905555 0.194861i
\(78\) 0 0
\(79\) 1.92240 1.10990i 0.216287 0.124874i −0.387943 0.921684i \(-0.626814\pi\)
0.604230 + 0.796810i \(0.293481\pi\)
\(80\) −0.0874011 1.39842i −0.00977174 0.156348i
\(81\) 0 0
\(82\) −10.1653 5.65928i −1.12256 0.624963i
\(83\) 5.12311 0.562334 0.281167 0.959659i \(-0.409278\pi\)
0.281167 + 0.959659i \(0.409278\pi\)
\(84\) 0 0
\(85\) 2.14600 0.232767
\(86\) 9.32956 + 5.19403i 1.00603 + 0.560087i
\(87\) 0 0
\(88\) 0.925057 1.79090i 0.0986114 0.190911i
\(89\) −7.79048 + 4.49784i −0.825789 + 0.476770i −0.852409 0.522876i \(-0.824859\pi\)
0.0266194 + 0.999646i \(0.491526\pi\)
\(90\) 0 0
\(91\) −0.335919 + 0.0298314i −0.0352138 + 0.00312718i
\(92\) −4.51508 + 8.41642i −0.470730 + 0.877472i
\(93\) 0 0
\(94\) −3.77120 + 0.0588532i −0.388969 + 0.00607024i
\(95\) 0.590066 1.02203i 0.0605395 0.104858i
\(96\) 0 0
\(97\) −17.3426 −1.76087 −0.880436 0.474165i \(-0.842750\pi\)
−0.880436 + 0.474165i \(0.842750\pi\)
\(98\) 3.21580 9.36262i 0.324845 0.945767i
\(99\) 0 0
\(100\) 9.74985 0.304386i 0.974985 0.0304386i
\(101\) −9.20243 5.31302i −0.915676 0.528666i −0.0334227 0.999441i \(-0.510641\pi\)
−0.882253 + 0.470776i \(0.843974\pi\)
\(102\) 0 0
\(103\) 9.00546 5.19931i 0.887335 0.512303i 0.0142649 0.999898i \(-0.495459\pi\)
0.873070 + 0.487595i \(0.162126\pi\)
\(104\) −0.360130 + 0.0168715i −0.0353137 + 0.00165439i
\(105\) 0 0
\(106\) −14.2367 + 8.51848i −1.38279 + 0.827388i
\(107\) 4.46519 + 7.73394i 0.431666 + 0.747668i 0.997017 0.0771828i \(-0.0245925\pi\)
−0.565351 + 0.824851i \(0.691259\pi\)
\(108\) 0 0
\(109\) 8.15380 14.1228i 0.780993 1.35272i −0.150371 0.988630i \(-0.548047\pi\)
0.931364 0.364089i \(-0.118620\pi\)
\(110\) −0.308456 0.171726i −0.0294101 0.0163735i
\(111\) 0 0
\(112\) 3.85269 9.85682i 0.364045 0.931382i
\(113\) 8.44061i 0.794025i 0.917813 + 0.397013i \(0.129953\pi\)
−0.917813 + 0.397013i \(0.870047\pi\)
\(114\) 0 0
\(115\) 1.44868 + 0.836398i 0.135090 + 0.0779945i
\(116\) 5.77334 3.57797i 0.536041 0.332206i
\(117\) 0 0
\(118\) −7.46316 12.4730i −0.687040 1.14823i
\(119\) 14.6993 + 6.83102i 1.34748 + 0.626198i
\(120\) 0 0
\(121\) 5.24606 + 9.08644i 0.476914 + 0.826040i
\(122\) −8.02749 + 0.125277i −0.726775 + 0.0113420i
\(123\) 0 0
\(124\) 0.000145909 0.00467364i 1.31030e−5 0.000419705i
\(125\) 3.45988i 0.309461i
\(126\) 0 0
\(127\) 9.21826i 0.817988i −0.912537 0.408994i \(-0.865880\pi\)
0.912537 0.408994i \(-0.134120\pi\)
\(128\) 4.55501 10.3563i 0.402609 0.915372i
\(129\) 0 0
\(130\) 0.000985297 0.0631359i 8.64162e−5 0.00553738i
\(131\) −9.60458 16.6356i −0.839156 1.45346i −0.890601 0.454786i \(-0.849716\pi\)
0.0514445 0.998676i \(-0.483617\pi\)
\(132\) 0 0
\(133\) 7.29497 5.12221i 0.632554 0.444152i
\(134\) −10.9222 + 6.53528i −0.943536 + 0.564563i
\(135\) 0 0
\(136\) 15.3956 + 7.95232i 1.32016 + 0.681906i
\(137\) −9.16525 5.29156i −0.783040 0.452088i 0.0544666 0.998516i \(-0.482654\pi\)
−0.837507 + 0.546427i \(0.815987\pi\)
\(138\) 0 0
\(139\) 11.6495i 0.988101i 0.869433 + 0.494050i \(0.164484\pi\)
−0.869433 + 0.494050i \(0.835516\pi\)
\(140\) −1.70446 0.728313i −0.144053 0.0615537i
\(141\) 0 0
\(142\) 6.61329 11.8789i 0.554975 0.996852i
\(143\) −0.0454195 + 0.0786690i −0.00379817 + 0.00657863i
\(144\) 0 0
\(145\) −0.594799 1.03022i −0.0493954 0.0855553i
\(146\) 3.12726 + 5.22649i 0.258814 + 0.432548i
\(147\) 0 0
\(148\) 4.10493 7.65188i 0.337424 0.628980i
\(149\) 13.7343 7.92950i 1.12516 0.649610i 0.182445 0.983216i \(-0.441599\pi\)
0.942712 + 0.333606i \(0.108266\pi\)
\(150\) 0 0
\(151\) 3.21821 + 1.85804i 0.261895 + 0.151205i 0.625199 0.780466i \(-0.285018\pi\)
−0.363304 + 0.931671i \(0.618351\pi\)
\(152\) 8.02045 5.14553i 0.650544 0.417358i
\(153\) 0 0
\(154\) −1.56618 2.15812i −0.126206 0.173906i
\(155\) 0.000818955 0 6.57800e−5 0
\(156\) 0 0
\(157\) 1.00586 1.74221i 0.0802766 0.139043i −0.823092 0.567908i \(-0.807753\pi\)
0.903369 + 0.428865i \(0.141086\pi\)
\(158\) −0.0489855 3.13889i −0.00389707 0.249717i
\(159\) 0 0
\(160\) −1.78805 0.853989i −0.141358 0.0675138i
\(161\) 7.26055 + 10.3404i 0.572212 + 0.814934i
\(162\) 0 0
\(163\) 14.0550 8.11468i 1.10088 0.635590i 0.164424 0.986390i \(-0.447423\pi\)
0.936451 + 0.350799i \(0.114090\pi\)
\(164\) −13.9855 + 8.66741i −1.09209 + 0.676811i
\(165\) 0 0
\(166\) 3.52424 6.33027i 0.273534 0.491324i
\(167\) −24.8179 −1.92047 −0.960235 0.279193i \(-0.909933\pi\)
−0.960235 + 0.279193i \(0.909933\pi\)
\(168\) 0 0
\(169\) −12.9838 −0.998750
\(170\) 1.47626 2.65166i 0.113224 0.203373i
\(171\) 0 0
\(172\) 12.8358 7.95486i 0.978720 0.606552i
\(173\) 4.32404 2.49649i 0.328751 0.189804i −0.326536 0.945185i \(-0.605881\pi\)
0.655286 + 0.755381i \(0.272548\pi\)
\(174\) 0 0
\(175\) 5.43823 11.7022i 0.411092 0.884605i
\(176\) −1.57654 2.37501i −0.118836 0.179023i
\(177\) 0 0
\(178\) 0.198512 + 12.7203i 0.0148791 + 0.953423i
\(179\) −9.75634 + 16.8985i −0.729223 + 1.26305i 0.227989 + 0.973664i \(0.426785\pi\)
−0.957212 + 0.289388i \(0.906548\pi\)
\(180\) 0 0
\(181\) −7.80817 −0.580377 −0.290188 0.956970i \(-0.593718\pi\)
−0.290188 + 0.956970i \(0.593718\pi\)
\(182\) −0.194221 + 0.435592i −0.0143966 + 0.0322882i
\(183\) 0 0
\(184\) 7.29361 + 11.3687i 0.537692 + 0.838112i
\(185\) −1.31709 0.760420i −0.0968341 0.0559072i
\(186\) 0 0
\(187\) 3.78111 2.18303i 0.276502 0.159639i
\(188\) −2.52152 + 4.70029i −0.183901 + 0.342804i
\(189\) 0 0
\(190\) −0.856932 1.43216i −0.0621684 0.103900i
\(191\) −6.21530 10.7652i −0.449723 0.778944i 0.548644 0.836056i \(-0.315144\pi\)
−0.998368 + 0.0571120i \(0.981811\pi\)
\(192\) 0 0
\(193\) 0.669942 1.16037i 0.0482235 0.0835256i −0.840906 0.541181i \(-0.817977\pi\)
0.889130 + 0.457656i \(0.151311\pi\)
\(194\) −11.9301 + 21.4290i −0.856533 + 1.53851i
\(195\) 0 0
\(196\) −9.35655 10.4142i −0.668325 0.743870i
\(197\) 12.0610i 0.859312i 0.902993 + 0.429656i \(0.141365\pi\)
−0.902993 + 0.429656i \(0.858635\pi\)
\(198\) 0 0
\(199\) 10.2777 + 5.93383i 0.728566 + 0.420638i 0.817897 0.575364i \(-0.195140\pi\)
−0.0893311 + 0.996002i \(0.528473\pi\)
\(200\) 6.33091 12.2566i 0.447663 0.866672i
\(201\) 0 0
\(202\) −12.8954 + 7.71591i −0.907315 + 0.542889i
\(203\) −0.794805 8.94995i −0.0557844 0.628163i
\(204\) 0 0
\(205\) 1.44086 + 2.49565i 0.100634 + 0.174304i
\(206\) −0.229471 14.7041i −0.0159880 1.02448i
\(207\) 0 0
\(208\) −0.226890 + 0.456594i −0.0157320 + 0.0316591i
\(209\) 2.40099i 0.166080i
\(210\) 0 0
\(211\) 2.47485i 0.170376i −0.996365 0.0851878i \(-0.972851\pi\)
0.996365 0.0851878i \(-0.0271490\pi\)
\(212\) 0.732136 + 23.4512i 0.0502833 + 1.61063i
\(213\) 0 0
\(214\) 12.6279 0.197071i 0.863227 0.0134715i
\(215\) −1.32241 2.29048i −0.0901876 0.156210i
\(216\) 0 0
\(217\) 0.00560952 + 0.00260684i 0.000380799 + 0.000176964i
\(218\) −11.8415 19.7903i −0.802006 1.34037i
\(219\) 0 0
\(220\) −0.424380 + 0.263005i −0.0286117 + 0.0177318i
\(221\) −0.676283 0.390452i −0.0454917 0.0262647i
\(222\) 0 0
\(223\) 7.76582i 0.520038i 0.965604 + 0.260019i \(0.0837288\pi\)
−0.965604 + 0.260019i \(0.916271\pi\)
\(224\) −9.52907 11.5411i −0.636688 0.771122i
\(225\) 0 0
\(226\) 10.4295 + 5.80637i 0.693757 + 0.386234i
\(227\) −8.03290 + 13.9134i −0.533163 + 0.923465i 0.466087 + 0.884739i \(0.345663\pi\)
−0.999250 + 0.0387259i \(0.987670\pi\)
\(228\) 0 0
\(229\) −5.54735 9.60830i −0.366579 0.634934i 0.622449 0.782660i \(-0.286138\pi\)
−0.989028 + 0.147726i \(0.952805\pi\)
\(230\) 2.03004 1.21467i 0.133857 0.0800930i
\(231\) 0 0
\(232\) −0.449511 9.59503i −0.0295119 0.629944i
\(233\) 3.11180 1.79660i 0.203861 0.117699i −0.394594 0.918855i \(-0.629115\pi\)
0.598455 + 0.801156i \(0.295782\pi\)
\(234\) 0 0
\(235\) 0.809041 + 0.467100i 0.0527760 + 0.0304703i
\(236\) −20.5459 + 0.641435i −1.33743 + 0.0417539i
\(237\) 0 0
\(238\) 18.5524 13.4637i 1.20257 0.872725i
\(239\) 6.15253 0.397974 0.198987 0.980002i \(-0.436235\pi\)
0.198987 + 0.980002i \(0.436235\pi\)
\(240\) 0 0
\(241\) −6.27143 + 10.8624i −0.403978 + 0.699711i −0.994202 0.107529i \(-0.965706\pi\)
0.590224 + 0.807240i \(0.299040\pi\)
\(242\) 14.8363 0.231535i 0.953713 0.0148836i
\(243\) 0 0
\(244\) −5.36739 + 10.0052i −0.343612 + 0.640516i
\(245\) −1.87422 + 1.58102i −0.119739 + 0.101008i
\(246\) 0 0
\(247\) −0.371903 + 0.214718i −0.0236636 + 0.0136622i
\(248\) 0.00587526 + 0.00303475i 0.000373079 + 0.000192707i
\(249\) 0 0
\(250\) −4.27513 2.38009i −0.270383 0.150530i
\(251\) 0.485661 0.0306547 0.0153273 0.999883i \(-0.495121\pi\)
0.0153273 + 0.999883i \(0.495121\pi\)
\(252\) 0 0
\(253\) 3.40331 0.213964
\(254\) −11.3904 6.34133i −0.714694 0.397890i
\(255\) 0 0
\(256\) −9.66306 12.7525i −0.603941 0.797029i
\(257\) 25.2361 14.5701i 1.57418 0.908855i 0.578535 0.815657i \(-0.303625\pi\)
0.995648 0.0931975i \(-0.0297088\pi\)
\(258\) 0 0
\(259\) −6.60101 9.40105i −0.410167 0.584153i
\(260\) 0.0786903 + 0.0422143i 0.00488017 + 0.00261802i
\(261\) 0 0
\(262\) −27.1626 + 0.423898i −1.67811 + 0.0261885i
\(263\) −11.6832 + 20.2359i −0.720416 + 1.24780i 0.240418 + 0.970670i \(0.422716\pi\)
−0.960833 + 0.277127i \(0.910618\pi\)
\(264\) 0 0
\(265\) 4.10932 0.252433
\(266\) −1.31088 12.5375i −0.0803749 0.768723i
\(267\) 0 0
\(268\) 0.561687 + 17.9915i 0.0343105 + 1.09901i
\(269\) 24.1233 + 13.9276i 1.47082 + 0.849180i 0.999463 0.0327619i \(-0.0104303\pi\)
0.471359 + 0.881941i \(0.343764\pi\)
\(270\) 0 0
\(271\) −24.8590 + 14.3523i −1.51008 + 0.871843i −0.510146 + 0.860088i \(0.670409\pi\)
−0.999931 + 0.0117552i \(0.996258\pi\)
\(272\) 20.4169 13.5528i 1.23796 0.821760i
\(273\) 0 0
\(274\) −12.8433 + 7.68474i −0.775890 + 0.464252i
\(275\) −1.73793 3.01018i −0.104801 0.181521i
\(276\) 0 0
\(277\) 13.4773 23.3434i 0.809773 1.40257i −0.103248 0.994656i \(-0.532924\pi\)
0.913021 0.407912i \(-0.133743\pi\)
\(278\) 14.3945 + 8.01383i 0.863325 + 0.480637i
\(279\) 0 0
\(280\) −2.07244 + 1.60506i −0.123852 + 0.0959209i
\(281\) 25.3505i 1.51228i 0.654409 + 0.756141i \(0.272918\pi\)
−0.654409 + 0.756141i \(0.727082\pi\)
\(282\) 0 0
\(283\) −2.20500 1.27306i −0.131074 0.0756754i 0.433029 0.901380i \(-0.357445\pi\)
−0.564103 + 0.825704i \(0.690778\pi\)
\(284\) −10.1285 16.3432i −0.601017 0.969788i
\(285\) 0 0
\(286\) 0.0659611 + 0.110239i 0.00390036 + 0.00651856i
\(287\) 1.92537 + 21.6807i 0.113651 + 1.27977i
\(288\) 0 0
\(289\) 10.2665 + 17.7822i 0.603914 + 1.04601i
\(290\) −1.68214 + 0.0262515i −0.0987787 + 0.00154154i
\(291\) 0 0
\(292\) 8.60928 0.268778i 0.503820 0.0157290i
\(293\) 4.66529i 0.272549i 0.990671 + 0.136274i \(0.0435129\pi\)
−0.990671 + 0.136274i \(0.956487\pi\)
\(294\) 0 0
\(295\) 3.60023i 0.209614i
\(296\) −6.63106 10.3360i −0.385422 0.600766i
\(297\) 0 0
\(298\) −0.349968 22.4253i −0.0202731 1.29906i
\(299\) −0.304355 0.527159i −0.0176013 0.0304864i
\(300\) 0 0
\(301\) −1.76708 19.8983i −0.101853 1.14692i
\(302\) 4.50969 2.69836i 0.259503 0.155273i
\(303\) 0 0
\(304\) −0.840623 13.4500i −0.0482130 0.771408i
\(305\) 1.72215 + 0.994285i 0.0986101 + 0.0569326i
\(306\) 0 0
\(307\) 16.7333i 0.955020i −0.878626 0.477510i \(-0.841539\pi\)
0.878626 0.477510i \(-0.158461\pi\)
\(308\) −3.74402 + 0.450626i −0.213335 + 0.0256768i
\(309\) 0 0
\(310\) 0.000563367 0.00101192i 3.19971e−5 5.74734e-5i
\(311\) 15.6845 27.1664i 0.889389 1.54047i 0.0487894 0.998809i \(-0.484464\pi\)
0.840599 0.541657i \(-0.182203\pi\)
\(312\) 0 0
\(313\) 11.3777 + 19.7068i 0.643107 + 1.11389i 0.984735 + 0.174058i \(0.0556882\pi\)
−0.341629 + 0.939835i \(0.610979\pi\)
\(314\) −1.46078 2.44135i −0.0824364 0.137774i
\(315\) 0 0
\(316\) −3.91220 2.09875i −0.220079 0.118064i
\(317\) −5.10594 + 2.94792i −0.286778 + 0.165572i −0.636488 0.771287i \(-0.719614\pi\)
0.349710 + 0.936858i \(0.386280\pi\)
\(318\) 0 0
\(319\) −2.09599 1.21012i −0.117353 0.0677538i
\(320\) −2.28523 + 1.62190i −0.127748 + 0.0906669i
\(321\) 0 0
\(322\) 17.7715 1.85812i 0.990364 0.103549i
\(323\) 20.6402 1.14845
\(324\) 0 0
\(325\) −0.310842 + 0.538395i −0.0172424 + 0.0298648i
\(326\) −0.358141 22.9490i −0.0198356 1.27103i
\(327\) 0 0
\(328\) 1.08891 + 23.2434i 0.0601252 + 1.28340i
\(329\) 4.05477 + 5.77474i 0.223547 + 0.318372i
\(330\) 0 0
\(331\) 7.41160 4.27909i 0.407378 0.235200i −0.282284 0.959331i \(-0.591092\pi\)
0.689663 + 0.724131i \(0.257759\pi\)
\(332\) −5.39751 8.70930i −0.296227 0.477985i
\(333\) 0 0
\(334\) −17.0725 + 30.6658i −0.934166 + 1.67796i
\(335\) 3.15262 0.172246
\(336\) 0 0
\(337\) −26.1588 −1.42496 −0.712479 0.701693i \(-0.752428\pi\)
−0.712479 + 0.701693i \(0.752428\pi\)
\(338\) −8.93165 + 16.0431i −0.485818 + 0.872630i
\(339\) 0 0
\(340\) −2.26094 3.64821i −0.122617 0.197852i
\(341\) 0.00144294 0.000833084i 7.81398e−5 4.51140e-5i
\(342\) 0 0
\(343\) −17.8703 + 4.86349i −0.964904 + 0.262604i
\(344\) −0.999393 21.3325i −0.0538837 1.15017i
\(345\) 0 0
\(346\) −0.110182 7.06027i −0.00592344 0.379562i
\(347\) −18.3826 + 31.8396i −0.986830 + 1.70924i −0.353324 + 0.935501i \(0.614949\pi\)
−0.633505 + 0.773738i \(0.718385\pi\)
\(348\) 0 0
\(349\) 9.93465 0.531790 0.265895 0.964002i \(-0.414333\pi\)
0.265895 + 0.964002i \(0.414333\pi\)
\(350\) −10.7186 14.7697i −0.572933 0.789474i
\(351\) 0 0
\(352\) −4.01915 + 0.314226i −0.214221 + 0.0167483i
\(353\) 10.7415 + 6.20163i 0.571715 + 0.330080i 0.757834 0.652447i \(-0.226258\pi\)
−0.186119 + 0.982527i \(0.559591\pi\)
\(354\) 0 0
\(355\) −2.91635 + 1.68376i −0.154784 + 0.0893646i
\(356\) 15.8541 + 8.50510i 0.840265 + 0.450769i
\(357\) 0 0
\(358\) 14.1688 + 23.6799i 0.748843 + 1.25152i
\(359\) 8.25328 + 14.2951i 0.435592 + 0.754467i 0.997344 0.0728388i \(-0.0232059\pi\)
−0.561752 + 0.827306i \(0.689873\pi\)
\(360\) 0 0
\(361\) −3.82474 + 6.62465i −0.201302 + 0.348666i
\(362\) −5.37132 + 9.64801i −0.282310 + 0.507088i
\(363\) 0 0
\(364\) 0.404624 + 0.539633i 0.0212081 + 0.0282845i
\(365\) 1.50859i 0.0789633i
\(366\) 0 0
\(367\) −10.7204 6.18944i −0.559602 0.323086i 0.193384 0.981123i \(-0.438054\pi\)
−0.752986 + 0.658037i \(0.771387\pi\)
\(368\) 19.0648 1.19155i 0.993824 0.0621140i
\(369\) 0 0
\(370\) −1.84563 + 1.10433i −0.0959500 + 0.0574114i
\(371\) 28.1472 + 13.0805i 1.46133 + 0.679106i
\(372\) 0 0
\(373\) 10.5698 + 18.3074i 0.547282 + 0.947920i 0.998459 + 0.0554855i \(0.0176707\pi\)
−0.451178 + 0.892434i \(0.648996\pi\)
\(374\) −0.0963479 6.17378i −0.00498203 0.319239i
\(375\) 0 0
\(376\) 4.07323 + 6.34904i 0.210061 + 0.327427i
\(377\) 0.432880i 0.0222945i
\(378\) 0 0
\(379\) 18.9297i 0.972352i 0.873861 + 0.486176i \(0.161609\pi\)
−0.873861 + 0.486176i \(0.838391\pi\)
\(380\) −2.35912 + 0.0736506i −0.121020 + 0.00377819i
\(381\) 0 0
\(382\) −17.5774 + 0.274312i −0.899337 + 0.0140350i
\(383\) −3.25973 5.64601i −0.166564 0.288498i 0.770645 0.637264i \(-0.219934\pi\)
−0.937210 + 0.348766i \(0.886601\pi\)
\(384\) 0 0
\(385\) 0.0584236 + 0.657883i 0.00297754 + 0.0335288i
\(386\) −0.972933 1.62603i −0.0495210 0.0827629i
\(387\) 0 0
\(388\) 18.2715 + 29.4824i 0.927593 + 1.49674i
\(389\) 14.7537 + 8.51806i 0.748043 + 0.431883i 0.824986 0.565153i \(-0.191183\pi\)
−0.0769436 + 0.997035i \(0.524516\pi\)
\(390\) 0 0
\(391\) 29.2568i 1.47958i
\(392\) −19.3045 + 4.39722i −0.975025 + 0.222093i
\(393\) 0 0
\(394\) 14.9030 + 8.29689i 0.750800 + 0.417991i
\(395\) −0.388783 + 0.673392i −0.0195618 + 0.0338820i
\(396\) 0 0
\(397\) −7.32945 12.6950i −0.367854 0.637142i 0.621375 0.783513i \(-0.286574\pi\)
−0.989230 + 0.146370i \(0.953241\pi\)
\(398\) 14.4021 8.61748i 0.721914 0.431955i
\(399\) 0 0
\(400\) −10.7895 16.2541i −0.539476 0.812704i
\(401\) −5.41239 + 3.12484i −0.270282 + 0.156047i −0.629016 0.777393i \(-0.716542\pi\)
0.358734 + 0.933440i \(0.383209\pi\)
\(402\) 0 0
\(403\) −0.000258082 0 0.000149004i −1.28560e−5 0 7.42241e-6i
\(404\) 0.663158 + 21.2417i 0.0329933 + 1.05682i
\(405\) 0 0
\(406\) −11.6056 5.17467i −0.575975 0.256815i
\(407\) −3.09416 −0.153372
\(408\) 0 0
\(409\) −14.5140 + 25.1389i −0.717670 + 1.24304i 0.244251 + 0.969712i \(0.421458\pi\)
−0.961921 + 0.273329i \(0.911875\pi\)
\(410\) 4.07488 0.0635925i 0.201244 0.00314061i
\(411\) 0 0
\(412\) −18.3266 9.83153i −0.902889 0.484365i
\(413\) −11.4600 + 24.6602i −0.563911 + 1.21345i
\(414\) 0 0
\(415\) −1.55413 + 0.897278i −0.0762893 + 0.0440456i
\(416\) 0.408101 + 0.594447i 0.0200088 + 0.0291452i
\(417\) 0 0
\(418\) −2.96673 1.65166i −0.145108 0.0807854i
\(419\) −5.94826 −0.290591 −0.145296 0.989388i \(-0.546413\pi\)
−0.145296 + 0.989388i \(0.546413\pi\)
\(420\) 0 0
\(421\) 26.2986 1.28172 0.640858 0.767660i \(-0.278579\pi\)
0.640858 + 0.767660i \(0.278579\pi\)
\(422\) −3.05799 1.70247i −0.148861 0.0828750i
\(423\) 0 0
\(424\) 29.4806 + 15.2277i 1.43171 + 0.739520i
\(425\) 25.8772 14.9402i 1.25523 0.724706i
\(426\) 0 0
\(427\) 8.63112 + 12.2923i 0.417689 + 0.594866i
\(428\) 8.44337 15.7390i 0.408126 0.760774i
\(429\) 0 0
\(430\) −3.73989 + 0.0583646i −0.180353 + 0.00281459i
\(431\) −3.94092 + 6.82587i −0.189827 + 0.328790i −0.945193 0.326514i \(-0.894126\pi\)
0.755365 + 0.655304i \(0.227459\pi\)
\(432\) 0 0
\(433\) −28.8906 −1.38839 −0.694196 0.719786i \(-0.744240\pi\)
−0.694196 + 0.719786i \(0.744240\pi\)
\(434\) 0.00707993 0.00513801i 0.000339848 0.000246633i
\(435\) 0 0
\(436\) −32.5993 + 1.01774i −1.56122 + 0.0487407i
\(437\) 13.9334 + 8.04447i 0.666527 + 0.384819i
\(438\) 0 0
\(439\) −22.8209 + 13.1757i −1.08918 + 0.628840i −0.933359 0.358945i \(-0.883136\pi\)
−0.155824 + 0.987785i \(0.549803\pi\)
\(440\) 0.0330422 + 0.705300i 0.00157522 + 0.0336239i
\(441\) 0 0
\(442\) −0.947676 + 0.567040i −0.0450764 + 0.0269713i
\(443\) −11.8798 20.5764i −0.564425 0.977613i −0.997103 0.0760641i \(-0.975765\pi\)
0.432678 0.901549i \(-0.357569\pi\)
\(444\) 0 0
\(445\) 1.57553 2.72890i 0.0746873 0.129362i
\(446\) 9.59567 + 5.34218i 0.454368 + 0.252960i
\(447\) 0 0
\(448\) −20.8157 + 3.83518i −0.983447 + 0.181195i
\(449\) 36.0964i 1.70350i −0.523951 0.851748i \(-0.675543\pi\)
0.523951 0.851748i \(-0.324457\pi\)
\(450\) 0 0
\(451\) 5.07741 + 2.93145i 0.239086 + 0.138036i
\(452\) 14.3491 8.89269i 0.674923 0.418277i
\(453\) 0 0
\(454\) 11.6659 + 19.4969i 0.547507 + 0.915033i
\(455\) 0.0966784 0.0678834i 0.00453235 0.00318242i
\(456\) 0 0
\(457\) 9.98422 + 17.2932i 0.467042 + 0.808941i 0.999291 0.0376473i \(-0.0119863\pi\)
−0.532249 + 0.846588i \(0.678653\pi\)
\(458\) −15.6884 + 0.244832i −0.733070 + 0.0114403i
\(459\) 0 0
\(460\) −0.104397 3.34396i −0.00486754 0.155913i
\(461\) 3.90222i 0.181744i 0.995863 + 0.0908722i \(0.0289655\pi\)
−0.995863 + 0.0908722i \(0.971035\pi\)
\(462\) 0 0
\(463\) 11.0279i 0.512510i −0.966609 0.256255i \(-0.917511\pi\)
0.966609 0.256255i \(-0.0824887\pi\)
\(464\) −12.1651 6.04508i −0.564752 0.280636i
\(465\) 0 0
\(466\) −0.0792928 5.08092i −0.00367317 0.235369i
\(467\) −19.2572 33.3545i −0.891119 1.54346i −0.838536 0.544847i \(-0.816588\pi\)
−0.0525832 0.998617i \(-0.516745\pi\)
\(468\) 0 0
\(469\) 21.5942 + 10.0352i 0.997129 + 0.463384i
\(470\) 1.13371 0.678353i 0.0522942 0.0312901i
\(471\) 0 0
\(472\) −13.3412 + 25.8284i −0.614077 + 1.18885i
\(473\) −4.66000 2.69045i −0.214267 0.123707i
\(474\) 0 0
\(475\) 16.4319i 0.753946i
\(476\) −3.87383 32.1857i −0.177557 1.47523i
\(477\) 0 0
\(478\) 4.23239 7.60225i 0.193585 0.347719i
\(479\) −7.41054 + 12.8354i −0.338596 + 0.586466i −0.984169 0.177233i \(-0.943285\pi\)
0.645573 + 0.763699i \(0.276619\pi\)
\(480\) 0 0
\(481\) 0.276708 + 0.479272i 0.0126168 + 0.0218529i
\(482\) 9.10777 + 15.2215i 0.414847 + 0.693322i
\(483\) 0 0
\(484\) 9.91993 18.4914i 0.450906 0.840519i
\(485\) 5.26099 3.03743i 0.238889 0.137923i
\(486\) 0 0
\(487\) 7.45460 + 4.30391i 0.337800 + 0.195029i 0.659299 0.751881i \(-0.270853\pi\)
−0.321499 + 0.946910i \(0.604187\pi\)
\(488\) 8.67042 + 13.5148i 0.392491 + 0.611785i
\(489\) 0 0
\(490\) 0.664264 + 3.40344i 0.0300084 + 0.153752i
\(491\) 8.74870 0.394823 0.197412 0.980321i \(-0.436746\pi\)
0.197412 + 0.980321i \(0.436746\pi\)
\(492\) 0 0
\(493\) 10.4029 18.0184i 0.468523 0.811506i
\(494\) 0.00947658 + 0.607240i 0.000426371 + 0.0273210i
\(495\) 0 0
\(496\) 0.00779148 0.00517201i 0.000349848 0.000232230i
\(497\) −25.3355 + 2.24993i −1.13645 + 0.100923i
\(498\) 0 0
\(499\) −25.1145 + 14.4998i −1.12428 + 0.649102i −0.942490 0.334236i \(-0.891522\pi\)
−0.181788 + 0.983338i \(0.558189\pi\)
\(500\) −5.88181 + 3.64520i −0.263043 + 0.163018i
\(501\) 0 0
\(502\) 0.334091 0.600097i 0.0149112 0.0267837i
\(503\) −27.7583 −1.23768 −0.618841 0.785516i \(-0.712397\pi\)
−0.618841 + 0.785516i \(0.712397\pi\)
\(504\) 0 0
\(505\) 3.72216 0.165634
\(506\) 2.34117 4.20523i 0.104078 0.186945i
\(507\) 0 0
\(508\) −15.6711 + 9.71199i −0.695291 + 0.430900i
\(509\) 18.3756 10.6092i 0.814484 0.470243i −0.0340265 0.999421i \(-0.510833\pi\)
0.848511 + 0.529178i \(0.177500\pi\)
\(510\) 0 0
\(511\) 4.80205 10.3333i 0.212430 0.457117i
\(512\) −22.4046 + 3.16741i −0.990154 + 0.139981i
\(513\) 0 0
\(514\) −0.643049 41.2053i −0.0283637 1.81749i
\(515\) −1.82125 + 3.15449i −0.0802537 + 0.139003i
\(516\) 0 0
\(517\) 1.90064 0.0835899
\(518\) −16.1571 + 1.68933i −0.709902 + 0.0742249i
\(519\) 0 0
\(520\) 0.106293 0.0681925i 0.00466126 0.00299044i
\(521\) 20.9834 + 12.1148i 0.919300 + 0.530758i 0.883412 0.468598i \(-0.155241\pi\)
0.0358883 + 0.999356i \(0.488574\pi\)
\(522\) 0 0
\(523\) 18.7115 10.8031i 0.818195 0.472385i −0.0315989 0.999501i \(-0.510060\pi\)
0.849794 + 0.527116i \(0.176727\pi\)
\(524\) −18.1616 + 33.8545i −0.793393 + 1.47894i
\(525\) 0 0
\(526\) 16.9671 + 28.3565i 0.739799 + 1.23640i
\(527\) 0.00716166 + 0.0124044i 0.000311967 + 0.000540343i
\(528\) 0 0
\(529\) 0.0972459 0.168435i 0.00422808 0.00732325i
\(530\) 2.82684 5.07759i 0.122790 0.220557i
\(531\) 0 0
\(532\) −16.3935 7.00491i −0.710747 0.303701i
\(533\) 1.04863i 0.0454210i
\(534\) 0 0
\(535\) −2.70909 1.56409i −0.117124 0.0676217i
\(536\) 22.6172 + 11.6825i 0.976915 + 0.504607i
\(537\) 0 0
\(538\) 33.8040 20.2265i 1.45739 0.872027i
\(539\) −1.69395 + 4.69221i −0.0729636 + 0.202108i
\(540\) 0 0
\(541\) −20.2054 34.9967i −0.868696 1.50463i −0.863330 0.504640i \(-0.831625\pi\)
−0.00536596 0.999986i \(-0.501708\pi\)
\(542\) 0.633441 + 40.5896i 0.0272086 + 1.74347i
\(543\) 0 0
\(544\) −2.70126 34.5509i −0.115816 1.48136i
\(545\) 5.71233i 0.244689i
\(546\) 0 0
\(547\) 21.7198i 0.928670i −0.885660 0.464335i \(-0.846293\pi\)
0.885660 0.464335i \(-0.153707\pi\)
\(548\) 0.660479 + 21.1559i 0.0282143 + 0.903736i
\(549\) 0 0
\(550\) −4.91500 + 0.0767034i −0.209576 + 0.00327064i
\(551\) −5.72078 9.90868i −0.243713 0.422124i
\(552\) 0 0
\(553\) −4.80651 + 3.37492i −0.204394 + 0.143516i
\(554\) −19.5726 32.7111i −0.831560 1.38976i
\(555\) 0 0
\(556\) 19.8042 12.2735i 0.839887 0.520512i
\(557\) −36.2866 20.9501i −1.53751 0.887684i −0.998983 0.0450775i \(-0.985647\pi\)
−0.538530 0.842606i \(-0.681020\pi\)
\(558\) 0 0
\(559\) 0.962418i 0.0407059i
\(560\) 0.557615 + 3.66490i 0.0235635 + 0.154870i
\(561\) 0 0
\(562\) 31.3238 + 17.4388i 1.32131 + 0.735613i
\(563\) −1.21907 + 2.11148i −0.0513775 + 0.0889885i −0.890570 0.454845i \(-0.849695\pi\)
0.839193 + 0.543834i \(0.183028\pi\)
\(564\) 0 0
\(565\) −1.47831 2.56052i −0.0621932 0.107722i
\(566\) −3.08987 + 1.84881i −0.129877 + 0.0777114i
\(567\) 0 0
\(568\) −27.1616 + 1.27248i −1.13968 + 0.0533919i
\(569\) 7.19227 4.15246i 0.301515 0.174080i −0.341608 0.939843i \(-0.610972\pi\)
0.643123 + 0.765762i \(0.277638\pi\)
\(570\) 0 0
\(571\) −40.3829 23.3151i −1.68997 0.975705i −0.954529 0.298117i \(-0.903641\pi\)
−0.735442 0.677588i \(-0.763025\pi\)
\(572\) 0.181590 0.00566915i 0.00759265 0.000237039i
\(573\) 0 0
\(574\) 28.1138 + 12.5353i 1.17345 + 0.523214i
\(575\) 23.2916 0.971327
\(576\) 0 0
\(577\) −4.32922 + 7.49843i −0.180228 + 0.312164i −0.941958 0.335730i \(-0.891017\pi\)
0.761730 + 0.647894i \(0.224350\pi\)
\(578\) 29.0346 0.453114i 1.20768 0.0188471i
\(579\) 0 0
\(580\) −1.12472 + 2.09656i −0.0467016 + 0.0870550i
\(581\) −13.5013 + 1.19899i −0.560130 + 0.0497426i
\(582\) 0 0
\(583\) 7.24034 4.18021i 0.299864 0.173127i
\(584\) 5.59030 10.8228i 0.231328 0.447850i
\(585\) 0 0
\(586\) 5.76457 + 3.20930i 0.238132 + 0.132575i
\(587\) −16.5890 −0.684700 −0.342350 0.939573i \(-0.611223\pi\)
−0.342350 + 0.939573i \(0.611223\pi\)
\(588\) 0 0
\(589\) 0.00787670 0.000324554
\(590\) 4.44855 + 2.47663i 0.183144 + 0.101961i
\(591\) 0 0
\(592\) −17.3330 + 1.08331i −0.712382 + 0.0445239i
\(593\) −35.4794 + 20.4840i −1.45696 + 0.841178i −0.998861 0.0477210i \(-0.984804\pi\)
−0.458103 + 0.888899i \(0.651471\pi\)
\(594\) 0 0
\(595\) −5.65553 + 0.502243i −0.231854 + 0.0205899i
\(596\) −27.9501 14.9941i −1.14488 0.614184i
\(597\) 0 0
\(598\) −0.860742 + 0.0134327i −0.0351983 + 0.000549305i
\(599\) −10.5150 + 18.2125i −0.429632 + 0.744144i −0.996840 0.0794302i \(-0.974690\pi\)
0.567209 + 0.823574i \(0.308023\pi\)
\(600\) 0 0
\(601\) −1.20122 −0.0489988 −0.0244994 0.999700i \(-0.507799\pi\)
−0.0244994 + 0.999700i \(0.507799\pi\)
\(602\) −25.8025 11.5048i −1.05163 0.468900i
\(603\) 0 0
\(604\) −0.231915 7.42853i −0.00943650 0.302263i
\(605\) −3.18286 1.83762i −0.129401 0.0747100i
\(606\) 0 0
\(607\) 26.7657 15.4532i 1.08638 0.627224i 0.153773 0.988106i \(-0.450858\pi\)
0.932612 + 0.360882i \(0.117524\pi\)
\(608\) −17.1974 8.21366i −0.697449 0.333108i
\(609\) 0 0
\(610\) 2.41325 1.44396i 0.0977098 0.0584644i
\(611\) −0.169972 0.294400i −0.00687634 0.0119102i
\(612\) 0 0
\(613\) 2.49089 4.31434i 0.100606 0.174255i −0.811329 0.584590i \(-0.801255\pi\)
0.911934 + 0.410336i \(0.134589\pi\)
\(614\) −20.6762 11.5110i −0.834422 0.464546i
\(615\) 0 0
\(616\) −2.01874 + 4.93621i −0.0813374 + 0.198886i
\(617\) 15.4858i 0.623435i 0.950175 + 0.311718i \(0.100904\pi\)
−0.950175 + 0.311718i \(0.899096\pi\)
\(618\) 0 0
\(619\) 21.9439 + 12.6693i 0.881998 + 0.509222i 0.871317 0.490721i \(-0.163267\pi\)
0.0106814 + 0.999943i \(0.496600\pi\)
\(620\) −0.000862818 0.00139223i −3.46516e−5 5.59131e-5i
\(621\) 0 0
\(622\) −22.7781 38.0683i −0.913318 1.52640i
\(623\) 19.4782 13.6768i 0.780379 0.547948i
\(624\) 0 0
\(625\) −11.5873 20.0697i −0.463491 0.802790i
\(626\) 32.1771 0.502156i 1.28606 0.0200702i
\(627\) 0 0
\(628\) −4.02149 + 0.125549i −0.160475 + 0.00500996i
\(629\) 26.5991i 1.06058i
\(630\) 0 0
\(631\) 12.6823i 0.504876i 0.967613 + 0.252438i \(0.0812323\pi\)
−0.967613 + 0.252438i \(0.918768\pi\)
\(632\) −5.28452 + 3.39029i −0.210207 + 0.134858i
\(633\) 0 0
\(634\) 0.130106 + 8.33695i 0.00516718 + 0.331103i
\(635\) 1.61451 + 2.79642i 0.0640701 + 0.110973i
\(636\) 0 0
\(637\) 0.878291 0.157234i 0.0347992 0.00622985i
\(638\) −2.93712 + 1.75742i −0.116282 + 0.0695768i
\(639\) 0 0
\(640\) 0.432034 + 3.93942i 0.0170776 + 0.155719i
\(641\) −14.7613 8.52242i −0.583035 0.336615i 0.179304 0.983794i \(-0.442615\pi\)
−0.762338 + 0.647179i \(0.775949\pi\)
\(642\) 0 0
\(643\) 37.1996i 1.46701i 0.679685 + 0.733504i \(0.262117\pi\)
−0.679685 + 0.733504i \(0.737883\pi\)
\(644\) 9.92921 23.2371i 0.391266 0.915672i
\(645\) 0 0
\(646\) 14.1986 25.5037i 0.558637 1.00343i
\(647\) 7.31238 12.6654i 0.287479 0.497929i −0.685728 0.727858i \(-0.740516\pi\)
0.973207 + 0.229929i \(0.0738494\pi\)
\(648\) 0 0
\(649\) 3.66235 + 6.34337i 0.143760 + 0.248999i
\(650\) 0.451425 + 0.754453i 0.0177063 + 0.0295921i
\(651\) 0 0
\(652\) −28.6028 15.3443i −1.12017 0.600929i
\(653\) −35.1095 + 20.2705i −1.37394 + 0.793245i −0.991422 0.130703i \(-0.958277\pi\)
−0.382519 + 0.923948i \(0.624943\pi\)
\(654\) 0 0
\(655\) 5.82723 + 3.36435i 0.227689 + 0.131456i
\(656\) 29.4692 + 14.6438i 1.15058 + 0.571746i
\(657\) 0 0
\(658\) 9.92476 1.03770i 0.386907 0.0404537i
\(659\) 2.98301 0.116201 0.0581007 0.998311i \(-0.481496\pi\)
0.0581007 + 0.998311i \(0.481496\pi\)
\(660\) 0 0
\(661\) 15.4040 26.6805i 0.599146 1.03775i −0.393801 0.919196i \(-0.628840\pi\)
0.992947 0.118556i \(-0.0378264\pi\)
\(662\) −0.188858 12.1016i −0.00734016 0.470343i
\(663\) 0 0
\(664\) −14.4745 + 0.678105i −0.561718 + 0.0263156i
\(665\) −1.31586 + 2.83152i −0.0510268 + 0.109802i
\(666\) 0 0
\(667\) 14.0452 8.10900i 0.543832 0.313982i
\(668\) 26.1472 + 42.1906i 1.01167 + 1.63240i
\(669\) 0 0
\(670\) 2.16872 3.89548i 0.0837850 0.150495i
\(671\) 4.04576 0.156185
\(672\) 0 0
\(673\) 15.4848 0.596894 0.298447 0.954426i \(-0.403531\pi\)
0.298447 + 0.954426i \(0.403531\pi\)
\(674\) −17.9949 + 32.3225i −0.693136 + 1.24502i
\(675\) 0 0
\(676\) 13.6792 + 22.0724i 0.526122 + 0.848939i
\(677\) 25.3739 14.6496i 0.975199 0.563032i 0.0743819 0.997230i \(-0.476302\pi\)
0.900817 + 0.434198i \(0.142968\pi\)
\(678\) 0 0
\(679\) 45.7043 4.05879i 1.75397 0.155762i
\(680\) −6.06316 + 0.284049i −0.232512 + 0.0108928i
\(681\) 0 0
\(682\) −3.67682e−5 0.00235603i −1.40793e−6 9.02171e-5i
\(683\) 1.53968 2.66681i 0.0589143 0.102043i −0.835064 0.550153i \(-0.814569\pi\)
0.893978 + 0.448110i \(0.147903\pi\)
\(684\) 0 0
\(685\) 3.70712 0.141642
\(686\) −6.28366 + 25.4267i −0.239911 + 0.970795i
\(687\) 0 0
\(688\) −27.0466 13.4400i −1.03114 0.512394i
\(689\) −1.29499 0.747665i −0.0493354 0.0284838i
\(690\) 0 0
\(691\) 19.1882 11.0783i 0.729952 0.421438i −0.0884525 0.996080i \(-0.528192\pi\)
0.818405 + 0.574642i \(0.194859\pi\)
\(692\) −8.79967 4.72068i −0.334513 0.179453i
\(693\) 0 0
\(694\) 26.6964 + 44.6169i 1.01338 + 1.69363i
\(695\) −2.04034 3.53397i −0.0773944 0.134051i
\(696\) 0 0
\(697\) −25.2004 + 43.6483i −0.954532 + 1.65330i
\(698\) 6.83414 12.2756i 0.258676 0.464636i
\(699\) 0 0
\(700\) −25.6233 + 3.08399i −0.968470 + 0.116564i
\(701\) 33.1595i 1.25242i −0.779656 0.626208i \(-0.784606\pi\)
0.779656 0.626208i \(-0.215394\pi\)
\(702\) 0 0
\(703\) −12.6677 7.31372i −0.477773 0.275842i
\(704\) −2.37654 + 5.18233i −0.0895693 + 0.195317i
\(705\) 0 0
\(706\) 15.0521 9.00641i 0.566495 0.338961i
\(707\) 25.4953 + 11.8481i 0.958850 + 0.445595i
\(708\) 0 0
\(709\) −7.67372 13.2913i −0.288193 0.499164i 0.685186 0.728368i \(-0.259721\pi\)
−0.973378 + 0.229204i \(0.926388\pi\)
\(710\) 0.0743126 + 4.76181i 0.00278890 + 0.178707i
\(711\) 0 0
\(712\) 21.4153 13.7390i 0.802573 0.514892i
\(713\) 0.0111649i 0.000418130i
\(714\) 0 0
\(715\) 0.0318197i 0.00118999i
\(716\) 39.0064 1.21776i 1.45774 0.0455099i
\(717\) 0 0
\(718\) 23.3410 0.364259i 0.871077 0.0135940i
\(719\) −14.9962 25.9742i −0.559264 0.968674i −0.997558 0.0698422i \(-0.977750\pi\)
0.438294 0.898832i \(-0.355583\pi\)
\(720\) 0 0
\(721\) −22.5160 + 15.8098i −0.838539 + 0.588786i
\(722\) 5.55454 + 9.28313i 0.206718 + 0.345482i
\(723\) 0 0
\(724\) 8.22638 + 13.2739i 0.305731 + 0.493321i
\(725\) −14.3446 8.28184i −0.532744 0.307580i
\(726\) 0 0
\(727\) 41.1692i 1.52688i −0.645879 0.763440i \(-0.723509\pi\)
0.645879 0.763440i \(-0.276491\pi\)
\(728\) 0.945132 0.128746i 0.0350289 0.00477166i
\(729\) 0 0
\(730\) −1.86406 1.03777i −0.0689920 0.0384098i
\(731\) 23.1286 40.0600i 0.855444 1.48167i
\(732\) 0 0
\(733\) −16.3313 28.2866i −0.603209 1.04479i −0.992332 0.123603i \(-0.960555\pi\)
0.389123 0.921186i \(-0.372778\pi\)
\(734\) −15.0225 + 8.98870i −0.554492 + 0.331779i
\(735\) 0 0
\(736\) 11.6426 24.3768i 0.429151 0.898540i
\(737\) 5.55471 3.20702i 0.204611 0.118132i
\(738\) 0 0
\(739\) 15.9487 + 9.20799i 0.586683 + 0.338721i 0.763785 0.645471i \(-0.223339\pi\)
−0.177102 + 0.984192i \(0.556672\pi\)
\(740\) 0.0949137 + 3.04020i 0.00348910 + 0.111760i
\(741\) 0 0
\(742\) 35.5254 25.7813i 1.30418 0.946462i
\(743\) 22.5175 0.826088 0.413044 0.910711i \(-0.364466\pi\)
0.413044 + 0.910711i \(0.364466\pi\)
\(744\) 0 0
\(745\) −2.77759 + 4.81093i −0.101763 + 0.176259i
\(746\) 29.8922 0.466496i 1.09443 0.0170797i
\(747\) 0 0
\(748\) −7.69479 4.12795i −0.281349 0.150933i
\(749\) −13.5775 19.3368i −0.496111 0.706553i
\(750\) 0 0
\(751\) 27.5078 15.8816i 1.00377 0.579529i 0.0944107 0.995533i \(-0.469903\pi\)
0.909362 + 0.416005i \(0.136570\pi\)
\(752\) 10.6471 0.665443i 0.388259 0.0242662i
\(753\) 0 0
\(754\) 0.534880 + 0.297783i 0.0194792 + 0.0108446i
\(755\) −1.30169 −0.0473733
\(756\) 0 0
\(757\) −7.32709 −0.266308 −0.133154 0.991095i \(-0.542510\pi\)
−0.133154 + 0.991095i \(0.542510\pi\)
\(758\) 23.3901 + 13.0219i 0.849565 + 0.472977i
\(759\) 0 0
\(760\) −1.53185 + 2.96566i −0.0555662 + 0.107576i
\(761\) −4.23458 + 2.44483i −0.153503 + 0.0886252i −0.574784 0.818305i \(-0.694914\pi\)
0.421281 + 0.906930i \(0.361581\pi\)
\(762\) 0 0
\(763\) −18.1831 + 39.1272i −0.658273 + 1.41650i
\(764\) −11.7527 + 21.9078i −0.425198 + 0.792598i
\(765\) 0 0
\(766\) −9.21877 + 0.143868i −0.333088 + 0.00519816i
\(767\) 0.655040 1.13456i 0.0236521 0.0409667i
\(768\) 0 0
\(769\) 10.3531 0.373343 0.186672 0.982422i \(-0.440230\pi\)
0.186672 + 0.982422i \(0.440230\pi\)
\(770\) 0.853089 + 0.380374i 0.0307432 + 0.0137077i
\(771\) 0 0
\(772\) −2.67846 + 0.0836205i −0.0964000 + 0.00300957i
\(773\) −5.48545 3.16703i −0.197298 0.113910i 0.398097 0.917344i \(-0.369671\pi\)
−0.595395 + 0.803433i \(0.703004\pi\)
\(774\) 0 0
\(775\) 0.00987522 0.00570146i 0.000354728 0.000204802i
\(776\) 48.9985 2.29550i 1.75894 0.0824036i
\(777\) 0 0
\(778\) 20.6744 12.3705i 0.741212 0.443503i
\(779\) 13.8582 + 24.0031i 0.496522 + 0.860002i
\(780\) 0 0
\(781\) −3.42561 + 5.93334i −0.122578 + 0.212312i
\(782\) 36.1506 + 20.1260i 1.29274 + 0.719706i
\(783\) 0 0
\(784\) −7.84644 + 26.8781i −0.280230 + 0.959933i
\(785\) 0.704680i 0.0251511i
\(786\) 0 0
\(787\) −1.48926 0.859826i −0.0530865 0.0306495i 0.473222 0.880943i \(-0.343091\pi\)
−0.526308 + 0.850294i \(0.676424\pi\)
\(788\) 20.5038 12.7070i 0.730417 0.452669i
\(789\) 0 0
\(790\) 0.564615 + 0.943625i 0.0200881 + 0.0335727i
\(791\) −1.97541 22.2442i −0.0702374 0.790913i
\(792\) 0 0
\(793\) −0.361808 0.626670i −0.0128482 0.0222537i
\(794\) −20.7283 + 0.323485i −0.735619 + 0.0114801i
\(795\) 0 0
\(796\) −0.740645 23.7238i −0.0262515 0.840866i
\(797\) 3.60991i 0.127870i −0.997954 0.0639348i \(-0.979635\pi\)
0.997954 0.0639348i \(-0.0203650\pi\)
\(798\) 0 0
\(799\) 16.3390i 0.578031i
\(800\) −27.5062 + 2.15050i −0.972492 + 0.0760317i
\(801\) 0 0
\(802\) 0.137915 + 8.83732i 0.00486995 + 0.312056i
\(803\) −1.53462 2.65804i −0.0541555 0.0938001i
\(804\) 0 0
\(805\) −4.01358 1.86518i −0.141460 0.0657390i
\(806\) −0.000361651 0 0.000216393i −1.27386e−5 0 7.62211e-6i
\(807\) 0 0
\(808\) 26.7031 + 13.7930i 0.939412 + 0.485235i
\(809\) −9.63889 5.56502i −0.338885 0.195656i 0.320894 0.947115i \(-0.396017\pi\)
−0.659779 + 0.751460i \(0.729350\pi\)
\(810\) 0 0
\(811\) 40.8908i 1.43587i −0.696110 0.717936i \(-0.745087\pi\)
0.696110 0.717936i \(-0.254913\pi\)
\(812\) −14.3776 + 10.7805i −0.504553 + 0.378321i
\(813\) 0 0
\(814\) −2.12850 + 3.82323i −0.0746039 + 0.134004i
\(815\) −2.84246 + 4.92329i −0.0995670 + 0.172455i
\(816\) 0 0
\(817\) −12.7189 22.0298i −0.444979 0.770727i
\(818\) 21.0781 + 35.2272i 0.736979 + 1.23169i
\(819\) 0 0
\(820\) 2.72457 5.07879i 0.0951463 0.177359i
\(821\) −28.0807 + 16.2124i −0.980024 + 0.565817i −0.902277 0.431156i \(-0.858106\pi\)
−0.0777465 + 0.996973i \(0.524772\pi\)
\(822\) 0 0
\(823\) 8.66266 + 5.00139i 0.301961 + 0.174337i 0.643324 0.765594i \(-0.277555\pi\)
−0.341362 + 0.939932i \(0.610888\pi\)
\(824\) −24.7552 + 15.8817i −0.862388 + 0.553266i
\(825\) 0 0
\(826\) 22.5874 + 31.1243i 0.785916 + 1.08295i
\(827\) 28.0825 0.976525 0.488263 0.872697i \(-0.337631\pi\)
0.488263 + 0.872697i \(0.337631\pi\)
\(828\) 0 0
\(829\) 22.9592 39.7666i 0.797407 1.38115i −0.123892 0.992296i \(-0.539538\pi\)
0.921299 0.388854i \(-0.127129\pi\)
\(830\) 0.0396013 + 2.53758i 0.00137458 + 0.0880805i
\(831\) 0 0
\(832\) 1.01525 0.0953351i 0.0351976 0.00330515i
\(833\) −40.3369 14.5622i −1.39759 0.504549i
\(834\) 0 0
\(835\) 7.52869 4.34669i 0.260541 0.150423i
\(836\) −4.08168 + 2.52958i −0.141168 + 0.0874875i
\(837\) 0 0
\(838\) −4.09186 + 7.34984i −0.141351 + 0.253896i
\(839\) 22.9019 0.790662 0.395331 0.918539i \(-0.370630\pi\)
0.395331 + 0.918539i \(0.370630\pi\)
\(840\) 0 0
\(841\) 17.4667 0.602299
\(842\) 18.0911 32.4953i 0.623459 1.11986i
\(843\) 0 0
\(844\) −4.20725 + 2.60740i −0.144819 + 0.0897505i
\(845\) 3.93871 2.27402i 0.135496 0.0782285i
\(846\) 0 0
\(847\) −15.9519 22.7185i −0.548114 0.780615i
\(848\) 39.0958 25.9519i 1.34255 0.891192i
\(849\) 0 0
\(850\) −0.659386 42.2521i −0.0226168 1.44924i
\(851\) 10.3669 17.9561i 0.355374 0.615526i
\(852\) 0 0
\(853\) 10.6107 0.363304 0.181652 0.983363i \(-0.441856\pi\)
0.181652 + 0.983363i \(0.441856\pi\)
\(854\) 21.1262 2.20888i 0.722923 0.0755862i
\(855\) 0 0
\(856\) −13.6393 21.2599i −0.466182 0.726648i
\(857\) −27.1454 15.6724i −0.927268 0.535358i −0.0413213 0.999146i \(-0.513157\pi\)
−0.885946 + 0.463788i \(0.846490\pi\)
\(858\) 0 0
\(859\) 8.41769 4.85995i 0.287208 0.165819i −0.349474 0.936946i \(-0.613640\pi\)
0.636682 + 0.771127i \(0.280306\pi\)
\(860\) −2.50059 + 4.66126i −0.0852693 + 0.158948i
\(861\) 0 0
\(862\) 5.72325 + 9.56509i 0.194935 + 0.325788i
\(863\) −22.7910 39.4752i −0.775815 1.34375i −0.934335 0.356395i \(-0.884006\pi\)
0.158520 0.987356i \(-0.449328\pi\)
\(864\) 0 0
\(865\) −0.874485 + 1.51465i −0.0297334 + 0.0514997i
\(866\) −19.8741 + 35.6981i −0.675350 + 1.21307i
\(867\) 0 0
\(868\) −0.00147833 0.0122827i −5.01777e−5 0.000416901i
\(869\) 1.58196i 0.0536644i
\(870\) 0 0
\(871\) −0.993506 0.573601i −0.0336637 0.0194357i
\(872\) −21.1678 + 40.9808i −0.716834 + 1.38779i
\(873\) 0 0
\(874\) 19.5249 11.6827i 0.660441 0.395173i
\(875\) 0.809738 + 9.11811i 0.0273741 + 0.308248i
\(876\) 0 0
\(877\) −4.86133 8.42007i −0.164155 0.284326i 0.772200 0.635380i \(-0.219157\pi\)
−0.936355 + 0.351054i \(0.885823\pi\)
\(878\) 0.581507 + 37.2618i 0.0196249 + 1.25753i
\(879\) 0 0
\(880\) 0.894220 + 0.444355i 0.0301442 + 0.0149792i
\(881\) 7.59560i 0.255902i −0.991780 0.127951i \(-0.959160\pi\)
0.991780 0.127951i \(-0.0408401\pi\)
\(882\) 0 0
\(883\) 12.2076i 0.410817i 0.978676 + 0.205409i \(0.0658524\pi\)
−0.978676 + 0.205409i \(0.934148\pi\)
\(884\) 0.0487352 + 1.56105i 0.00163914 + 0.0525037i
\(885\) 0 0
\(886\) −33.5970 + 0.524314i −1.12871 + 0.0176147i
\(887\) 14.1560 + 24.5189i 0.475312 + 0.823264i 0.999600 0.0282768i \(-0.00900198\pi\)
−0.524288 + 0.851541i \(0.675669\pi\)
\(888\) 0 0
\(889\) 2.15741 + 24.2936i 0.0723571 + 0.814782i
\(890\) −2.28809 3.82401i −0.0766968 0.128181i
\(891\) 0 0
\(892\) 13.2019 8.18176i 0.442033 0.273946i
\(893\) 7.78136 + 4.49257i 0.260393 + 0.150338i
\(894\) 0 0
\(895\) 6.83503i 0.228470i
\(896\) −9.58043 + 28.3587i −0.320060 + 0.947397i
\(897\) 0 0
\(898\) −44.6018 24.8311i −1.48838 0.828624i
\(899\) 0.00396994 0.00687614i 0.000132405 0.000229332i
\(900\) 0 0
\(901\) 35.9355 + 62.2421i 1.19719 + 2.07359i
\(902\) 7.11498 4.25723i 0.236903 0.141750i
\(903\) 0 0
\(904\) −1.11722 23.8475i −0.0371580 0.793156i
\(905\) 2.36866 1.36755i 0.0787370 0.0454588i
\(906\) 0 0
\(907\) 5.89877 + 3.40566i 0.195865 + 0.113083i 0.594725 0.803929i \(-0.297261\pi\)
−0.398860 + 0.917012i \(0.630594\pi\)
\(908\) 32.1160 1.00265i 1.06581 0.0332740i
\(909\) 0 0
\(910\) −0.0173727 0.166156i −0.000575900 0.00550803i
\(911\) −33.1107 −1.09701 −0.548503 0.836148i \(-0.684802\pi\)
−0.548503 + 0.836148i \(0.684802\pi\)
\(912\) 0 0
\(913\) −1.82552 + 3.16189i −0.0604158 + 0.104643i
\(914\) 28.2362 0.440653i 0.933970 0.0145755i
\(915\) 0 0
\(916\) −10.4897 + 19.5534i −0.346588 + 0.646064i
\(917\) 29.2051 + 41.5934i 0.964436 + 1.37353i
\(918\) 0 0
\(919\) −38.7490 + 22.3718i −1.27821 + 0.737976i −0.976520 0.215429i \(-0.930885\pi\)
−0.301693 + 0.953405i \(0.597552\pi\)
\(920\) −4.20372 2.17135i −0.138592 0.0715872i
\(921\) 0 0
\(922\) 4.82170 + 2.68437i 0.158794 + 0.0884052i
\(923\) 1.22540 0.0403345
\(924\) 0 0
\(925\) −21.1758 −0.696256
\(926\) −13.6264 7.58620i −0.447791 0.249298i
\(927\) 0 0
\(928\) −15.8380 + 10.8731i −0.519907 + 0.356927i
\(929\) 35.1764 20.3091i 1.15410 0.666319i 0.204216 0.978926i \(-0.434535\pi\)
0.949883 + 0.312606i \(0.101202\pi\)
\(930\) 0 0
\(931\) −18.0262 + 15.2063i −0.590786 + 0.498365i
\(932\) −6.33268 3.39724i −0.207434 0.111280i
\(933\) 0 0
\(934\) −54.4611 + 0.849918i −1.78202 + 0.0278102i
\(935\) −0.764685 + 1.32447i −0.0250079 + 0.0433149i
\(936\) 0 0
\(937\) 15.8390 0.517437 0.258718 0.965953i \(-0.416700\pi\)
0.258718 + 0.965953i \(0.416700\pi\)
\(938\) 27.2547 19.7792i 0.889898 0.645812i
\(939\) 0 0
\(940\) −0.0583023 1.86749i −0.00190161 0.0609109i
\(941\) −35.2983 20.3795i −1.15069 0.664352i −0.201636 0.979461i \(-0.564626\pi\)
−0.949056 + 0.315109i \(0.897959\pi\)
\(942\) 0 0
\(943\) −34.0236 + 19.6435i −1.10796 + 0.639682i
\(944\) 22.7368 + 34.2524i 0.740021 + 1.11482i
\(945\) 0 0
\(946\) −6.53006 + 3.90724i −0.212310 + 0.127035i
\(947\) −10.9987 19.0503i −0.357411 0.619053i 0.630117 0.776500i \(-0.283007\pi\)
−0.987527 + 0.157447i \(0.949674\pi\)
\(948\) 0 0
\(949\) −0.274479 + 0.475412i −0.00890997 + 0.0154325i
\(950\) −20.3037 11.3036i −0.658739 0.366739i
\(951\) 0 0
\(952\) −42.4345 17.3542i −1.37531 0.562454i
\(953\) 23.9613i 0.776184i −0.921621 0.388092i \(-0.873134\pi\)
0.921621 0.388092i \(-0.126866\pi\)
\(954\) 0 0
\(955\) 3.77091 + 2.17714i 0.122024 + 0.0704504i
\(956\) −6.48206 10.4593i −0.209645 0.338279i
\(957\) 0 0
\(958\) 10.7621 + 17.9863i 0.347706 + 0.581111i
\(959\) 25.3923 + 11.8003i 0.819961 + 0.381050i
\(960\) 0 0
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0.782552 0.0122125i 0.0252305 0.000393747i
\(963\) 0 0
\(964\) 25.0735 0.782784i 0.807563 0.0252118i
\(965\) 0.469343i 0.0151087i
\(966\) 0 0
\(967\) 53.1580i 1.70945i −0.519084 0.854723i \(-0.673727\pi\)
0.519084 0.854723i \(-0.326273\pi\)
\(968\) −16.0245 24.9778i −0.515048 0.802817i
\(969\) 0 0
\(970\) −0.134057 8.59011i −0.00430431 0.275812i
\(971\) −20.7550 35.9488i −0.666060 1.15365i −0.978997 0.203876i \(-0.934646\pi\)
0.312936 0.949774i \(-0.398687\pi\)
\(972\) 0 0
\(973\) −2.72641 30.7010i −0.0874048 0.984227i
\(974\) 10.4461 6.25042i 0.334716 0.200276i
\(975\) 0 0
\(976\) 22.6637 1.41648i 0.725448 0.0453405i
\(977\) −22.0401 12.7249i −0.705127 0.407105i 0.104127 0.994564i \(-0.466795\pi\)
−0.809254 + 0.587459i \(0.800128\pi\)
\(978\) 0 0
\(979\) 6.41085i 0.204892i
\(980\) 4.66234 + 1.52048i 0.148933 + 0.0485698i
\(981\) 0 0
\(982\) 6.01832 10.8102i 0.192052 0.344966i
\(983\) 11.7347 20.3252i 0.374280 0.648273i −0.615939 0.787794i \(-0.711223\pi\)
0.990219 + 0.139522i \(0.0445564\pi\)
\(984\) 0 0
\(985\) −2.11241 3.65879i −0.0673068 0.116579i
\(986\) −15.1078 25.2491i −0.481129 0.804096i
\(987\) 0 0
\(988\) 0.756843 + 0.406017i 0.0240784 + 0.0129171i
\(989\) 31.2265 18.0286i 0.992945 0.573277i
\(990\) 0 0
\(991\) 48.6218 + 28.0718i 1.54452 + 0.891731i 0.998545 + 0.0539326i \(0.0171756\pi\)
0.545979 + 0.837799i \(0.316158\pi\)
\(992\) −0.00103085 0.0131853i −3.27296e−5 0.000418632i
\(993\) 0 0
\(994\) −14.6485 + 32.8531i −0.464621 + 1.04204i
\(995\) −4.15708 −0.131788
\(996\) 0 0
\(997\) −12.9528 + 22.4350i −0.410221 + 0.710523i −0.994914 0.100732i \(-0.967882\pi\)
0.584693 + 0.811255i \(0.301215\pi\)
\(998\) 0.639951 + 41.0068i 0.0202573 + 1.29805i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.c.431.10 yes 28
3.2 odd 2 inner 756.2.be.c.431.5 yes 28
4.3 odd 2 756.2.be.d.431.14 yes 28
7.2 even 3 756.2.be.d.107.1 yes 28
12.11 even 2 756.2.be.d.431.1 yes 28
21.2 odd 6 756.2.be.d.107.14 yes 28
28.23 odd 6 inner 756.2.be.c.107.5 28
84.23 even 6 inner 756.2.be.c.107.10 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.5 28 28.23 odd 6 inner
756.2.be.c.107.10 yes 28 84.23 even 6 inner
756.2.be.c.431.5 yes 28 3.2 odd 2 inner
756.2.be.c.431.10 yes 28 1.1 even 1 trivial
756.2.be.d.107.1 yes 28 7.2 even 3
756.2.be.d.107.14 yes 28 21.2 odd 6
756.2.be.d.431.1 yes 28 12.11 even 2
756.2.be.d.431.14 yes 28 4.3 odd 2