L(s) = 1 | + (0.687 − 1.23i)2-s + (−1.05 − 1.70i)4-s + (−0.303 + 0.175i)5-s + (−2.63 + 0.234i)7-s + (−2.82 + 0.132i)8-s + (0.00772 + 0.495i)10-s + (−0.356 + 0.617i)11-s + 0.127·13-s + (−1.52 + 3.41i)14-s + (−1.78 + 3.58i)16-s + (−5.30 − 3.06i)17-s + (−2.91 + 1.68i)19-s + (0.617 + 0.331i)20-s + (0.517 + 0.864i)22-s + (−2.38 − 4.13i)23-s + ⋯ |
L(s) = 1 | + (0.486 − 0.873i)2-s + (−0.526 − 0.850i)4-s + (−0.135 + 0.0783i)5-s + (−0.996 + 0.0884i)7-s + (−0.998 + 0.0467i)8-s + (0.00244 + 0.156i)10-s + (−0.107 + 0.186i)11-s + 0.0353·13-s + (−0.407 + 0.913i)14-s + (−0.445 + 0.895i)16-s + (−1.28 − 0.742i)17-s + (−0.669 + 0.386i)19-s + (0.138 + 0.0740i)20-s + (0.110 + 0.184i)22-s + (−0.497 − 0.862i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0994721 + 0.184092i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0994721 + 0.184092i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.687 + 1.23i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.63 - 0.234i)T \) |
good | 5 | \( 1 + (0.303 - 0.175i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.356 - 0.617i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 0.127T + 13T^{2} \) |
| 17 | \( 1 + (5.30 + 3.06i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.91 - 1.68i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.38 + 4.13i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 3.39iT - 29T^{2} \) |
| 31 | \( 1 + (0.00202 + 0.00116i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.17 - 3.76i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.22iT - 41T^{2} \) |
| 43 | \( 1 - 7.55iT - 43T^{2} \) |
| 47 | \( 1 + (1.33 + 2.30i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (10.1 + 5.86i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.13 + 8.90i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.83 + 4.91i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.79 + 4.50i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.61T + 71T^{2} \) |
| 73 | \( 1 + (2.15 - 3.72i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.92 + 1.10i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 5.12T + 83T^{2} \) |
| 89 | \( 1 + (7.79 - 4.49i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 17.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.836958481937967826863528572572, −9.250137592316889374079043480700, −8.299674244483105204210179651798, −6.86118765989705419815200799206, −6.20795815270565505941833369106, −5.05155091342515955448597313594, −4.08668106453768293985093633040, −3.09992864628176551458947456450, −2.03985666402771018734031362909, −0.084009004328161771787828099469,
2.55133137334395765918705383952, 3.80795900467121703851312212430, 4.50092582676263382781778517039, 5.89642313065537864619096920267, 6.36448974314717745184199447446, 7.31608503478607350096582441651, 8.250680014500491756308117356035, 9.020348062817317498338118932565, 9.856248696399495684611176062730, 10.92973809148156429637110766007