Properties

Label 756.2.be.c.107.5
Level $756$
Weight $2$
Character 756.107
Analytic conductor $6.037$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(107,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.be (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 107.5
Character \(\chi\) \(=\) 756.107
Dual form 756.2.be.c.431.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.687910 - 1.23563i) q^{2} +(-1.05356 + 1.70000i) q^{4} +(0.303357 + 0.175143i) q^{5} +(-2.63538 - 0.234036i) q^{7} +(2.82533 + 0.132362i) q^{8} +(0.00772994 - 0.495319i) q^{10} +(0.356330 + 0.617181i) q^{11} +0.127465 q^{13} +(1.52372 + 3.41735i) q^{14} +(-1.78002 - 3.58211i) q^{16} +(5.30564 - 3.06321i) q^{17} +(-2.91768 - 1.68453i) q^{19} +(-0.617349 + 0.331184i) q^{20} +(0.517485 - 0.864856i) q^{22} +(2.38776 - 4.13571i) q^{23} +(-2.43865 - 4.22387i) q^{25} +(-0.0876844 - 0.157499i) q^{26} +(3.17439 - 4.23358i) q^{28} +3.39607i q^{29} +(-0.00202473 + 0.00116898i) q^{31} +(-3.20167 + 4.66362i) q^{32} +(-7.43480 - 4.44859i) q^{34} +(-0.758471 - 0.532565i) q^{35} +(2.17085 - 3.76003i) q^{37} +(-0.0743466 + 4.76398i) q^{38} +(0.833900 + 0.534990i) q^{40} -8.22678i q^{41} -7.55045i q^{43} +(-1.42462 - 0.0444762i) q^{44} +(-6.75277 - 0.105384i) q^{46} +(1.33348 - 2.30966i) q^{47} +(6.89045 + 1.23355i) q^{49} +(-3.54156 + 5.91891i) q^{50} +(-0.134292 + 0.216691i) q^{52} +(10.1596 - 5.86566i) q^{53} +0.249635i q^{55} +(-7.41484 - 1.01005i) q^{56} +(4.19629 - 2.33619i) q^{58} +(-5.13898 - 8.90098i) q^{59} +(-2.83849 + 4.91641i) q^{61} +(0.00283726 + 0.00169767i) q^{62} +(7.96496 + 0.747932i) q^{64} +(0.0386674 + 0.0223246i) q^{65} +(-7.79435 + 4.50007i) q^{67} +(-0.382342 + 12.2469i) q^{68} +(-0.136294 + 1.30355i) q^{70} -9.61361 q^{71} +(-2.15337 - 3.72974i) q^{73} +(-6.13935 - 0.0958106i) q^{74} +(5.93766 - 3.18532i) q^{76} +(-0.794621 - 1.70990i) q^{77} +(1.92240 + 1.10990i) q^{79} +(0.0874011 - 1.39842i) q^{80} +(-10.1653 + 5.65928i) q^{82} -5.12311 q^{83} +2.14600 q^{85} +(-9.32956 + 5.19403i) q^{86} +(0.925057 + 1.79090i) q^{88} +(7.79048 + 4.49784i) q^{89} +(-0.335919 - 0.0298314i) q^{91} +(4.51508 + 8.41642i) q^{92} +(-3.77120 - 0.0588532i) q^{94} +(-0.590066 - 1.02203i) q^{95} -17.3426 q^{97} +(-3.21580 - 9.36262i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 4 q^{4} - 2 q^{7} - 20 q^{10} + 8 q^{13} + 12 q^{16} + 42 q^{19} + 4 q^{22} + 6 q^{25} - 28 q^{28} - 30 q^{31} + 24 q^{34} + 12 q^{37} + 36 q^{40} - 12 q^{46} - 14 q^{49} + 84 q^{52} + 28 q^{58}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.687910 1.23563i −0.486426 0.873722i
\(3\) 0 0
\(4\) −1.05356 + 1.70000i −0.526780 + 0.850001i
\(5\) 0.303357 + 0.175143i 0.135665 + 0.0783264i 0.566297 0.824202i \(-0.308376\pi\)
−0.430631 + 0.902528i \(0.641709\pi\)
\(6\) 0 0
\(7\) −2.63538 0.234036i −0.996080 0.0884574i
\(8\) 2.82533 + 0.132362i 0.998904 + 0.0467970i
\(9\) 0 0
\(10\) 0.00772994 0.495319i 0.00244442 0.156634i
\(11\) 0.356330 + 0.617181i 0.107437 + 0.186087i 0.914731 0.404062i \(-0.132402\pi\)
−0.807294 + 0.590149i \(0.799069\pi\)
\(12\) 0 0
\(13\) 0.127465 0.0353524 0.0176762 0.999844i \(-0.494373\pi\)
0.0176762 + 0.999844i \(0.494373\pi\)
\(14\) 1.52372 + 3.41735i 0.407232 + 0.913325i
\(15\) 0 0
\(16\) −1.78002 3.58211i −0.445005 0.895528i
\(17\) 5.30564 3.06321i 1.28681 0.742938i 0.308723 0.951152i \(-0.400098\pi\)
0.978083 + 0.208214i \(0.0667649\pi\)
\(18\) 0 0
\(19\) −2.91768 1.68453i −0.669363 0.386457i 0.126472 0.991970i \(-0.459634\pi\)
−0.795835 + 0.605513i \(0.792968\pi\)
\(20\) −0.617349 + 0.331184i −0.138043 + 0.0740549i
\(21\) 0 0
\(22\) 0.517485 0.864856i 0.110328 0.184388i
\(23\) 2.38776 4.13571i 0.497881 0.862356i −0.502116 0.864801i \(-0.667445\pi\)
0.999997 + 0.00244454i \(0.000778122\pi\)
\(24\) 0 0
\(25\) −2.43865 4.22387i −0.487730 0.844773i
\(26\) −0.0876844 0.157499i −0.0171963 0.0308882i
\(27\) 0 0
\(28\) 3.17439 4.23358i 0.599904 0.800072i
\(29\) 3.39607i 0.630635i 0.948986 + 0.315318i \(0.102111\pi\)
−0.948986 + 0.315318i \(0.897889\pi\)
\(30\) 0 0
\(31\) −0.00202473 + 0.00116898i −0.000363652 + 0.000209955i −0.500182 0.865920i \(-0.666733\pi\)
0.499818 + 0.866130i \(0.333400\pi\)
\(32\) −3.20167 + 4.66362i −0.565981 + 0.824418i
\(33\) 0 0
\(34\) −7.43480 4.44859i −1.27506 0.762927i
\(35\) −0.758471 0.532565i −0.128205 0.0900200i
\(36\) 0 0
\(37\) 2.17085 3.76003i 0.356886 0.618145i −0.630553 0.776146i \(-0.717172\pi\)
0.987439 + 0.158001i \(0.0505051\pi\)
\(38\) −0.0743466 + 4.76398i −0.0120606 + 0.772819i
\(39\) 0 0
\(40\) 0.833900 + 0.534990i 0.131851 + 0.0845893i
\(41\) 8.22678i 1.28481i −0.766367 0.642404i \(-0.777937\pi\)
0.766367 0.642404i \(-0.222063\pi\)
\(42\) 0 0
\(43\) 7.55045i 1.15143i −0.817649 0.575717i \(-0.804723\pi\)
0.817649 0.575717i \(-0.195277\pi\)
\(44\) −1.42462 0.0444762i −0.214770 0.00670503i
\(45\) 0 0
\(46\) −6.75277 0.105384i −0.995642 0.0155380i
\(47\) 1.33348 2.30966i 0.194508 0.336898i −0.752231 0.658900i \(-0.771022\pi\)
0.946739 + 0.322001i \(0.104356\pi\)
\(48\) 0 0
\(49\) 6.89045 + 1.23355i 0.984351 + 0.176221i
\(50\) −3.54156 + 5.91891i −0.500852 + 0.837060i
\(51\) 0 0
\(52\) −0.134292 + 0.216691i −0.0186230 + 0.0300496i
\(53\) 10.1596 5.86566i 1.39553 0.805710i 0.401610 0.915811i \(-0.368451\pi\)
0.993920 + 0.110101i \(0.0351175\pi\)
\(54\) 0 0
\(55\) 0.249635i 0.0336608i
\(56\) −7.41484 1.01005i −0.990849 0.134974i
\(57\) 0 0
\(58\) 4.19629 2.33619i 0.551000 0.306757i
\(59\) −5.13898 8.90098i −0.669039 1.15881i −0.978173 0.207791i \(-0.933373\pi\)
0.309134 0.951018i \(-0.399961\pi\)
\(60\) 0 0
\(61\) −2.83849 + 4.91641i −0.363432 + 0.629482i −0.988523 0.151069i \(-0.951728\pi\)
0.625091 + 0.780552i \(0.285062\pi\)
\(62\) 0.00283726 + 0.00169767i 0.000360332 + 0.000215604i
\(63\) 0 0
\(64\) 7.96496 + 0.747932i 0.995620 + 0.0934915i
\(65\) 0.0386674 + 0.0223246i 0.00479610 + 0.00276903i
\(66\) 0 0
\(67\) −7.79435 + 4.50007i −0.952231 + 0.549771i −0.893773 0.448519i \(-0.851952\pi\)
−0.0584577 + 0.998290i \(0.518618\pi\)
\(68\) −0.382342 + 12.2469i −0.0463658 + 1.48515i
\(69\) 0 0
\(70\) −0.136294 + 1.30355i −0.0162903 + 0.155803i
\(71\) −9.61361 −1.14093 −0.570463 0.821323i \(-0.693236\pi\)
−0.570463 + 0.821323i \(0.693236\pi\)
\(72\) 0 0
\(73\) −2.15337 3.72974i −0.252033 0.436534i 0.712053 0.702126i \(-0.247766\pi\)
−0.964085 + 0.265593i \(0.914432\pi\)
\(74\) −6.13935 0.0958106i −0.713685 0.0111378i
\(75\) 0 0
\(76\) 5.93766 3.18532i 0.681096 0.365382i
\(77\) −0.794621 1.70990i −0.0905555 0.194861i
\(78\) 0 0
\(79\) 1.92240 + 1.10990i 0.216287 + 0.124874i 0.604230 0.796810i \(-0.293481\pi\)
−0.387943 + 0.921684i \(0.626814\pi\)
\(80\) 0.0874011 1.39842i 0.00977174 0.156348i
\(81\) 0 0
\(82\) −10.1653 + 5.65928i −1.12256 + 0.624963i
\(83\) −5.12311 −0.562334 −0.281167 0.959659i \(-0.590722\pi\)
−0.281167 + 0.959659i \(0.590722\pi\)
\(84\) 0 0
\(85\) 2.14600 0.232767
\(86\) −9.32956 + 5.19403i −1.00603 + 0.560087i
\(87\) 0 0
\(88\) 0.925057 + 1.79090i 0.0986114 + 0.190911i
\(89\) 7.79048 + 4.49784i 0.825789 + 0.476770i 0.852409 0.522876i \(-0.175141\pi\)
−0.0266194 + 0.999646i \(0.508474\pi\)
\(90\) 0 0
\(91\) −0.335919 0.0298314i −0.0352138 0.00312718i
\(92\) 4.51508 + 8.41642i 0.470730 + 0.877472i
\(93\) 0 0
\(94\) −3.77120 0.0588532i −0.388969 0.00607024i
\(95\) −0.590066 1.02203i −0.0605395 0.104858i
\(96\) 0 0
\(97\) −17.3426 −1.76087 −0.880436 0.474165i \(-0.842750\pi\)
−0.880436 + 0.474165i \(0.842750\pi\)
\(98\) −3.21580 9.36262i −0.324845 0.945767i
\(99\) 0 0
\(100\) 9.74985 + 0.304386i 0.974985 + 0.0304386i
\(101\) 9.20243 5.31302i 0.915676 0.528666i 0.0334227 0.999441i \(-0.489359\pi\)
0.882253 + 0.470776i \(0.156026\pi\)
\(102\) 0 0
\(103\) 9.00546 + 5.19931i 0.887335 + 0.512303i 0.873070 0.487595i \(-0.162126\pi\)
0.0142649 + 0.999898i \(0.495459\pi\)
\(104\) 0.360130 + 0.0168715i 0.0353137 + 0.00165439i
\(105\) 0 0
\(106\) −14.2367 8.51848i −1.38279 0.827388i
\(107\) −4.46519 + 7.73394i −0.431666 + 0.747668i −0.997017 0.0771828i \(-0.975407\pi\)
0.565351 + 0.824851i \(0.308741\pi\)
\(108\) 0 0
\(109\) 8.15380 + 14.1228i 0.780993 + 1.35272i 0.931364 + 0.364089i \(0.118620\pi\)
−0.150371 + 0.988630i \(0.548047\pi\)
\(110\) 0.308456 0.171726i 0.0294101 0.0163735i
\(111\) 0 0
\(112\) 3.85269 + 9.85682i 0.364045 + 0.931382i
\(113\) 8.44061i 0.794025i 0.917813 + 0.397013i \(0.129953\pi\)
−0.917813 + 0.397013i \(0.870047\pi\)
\(114\) 0 0
\(115\) 1.44868 0.836398i 0.135090 0.0779945i
\(116\) −5.77334 3.57797i −0.536041 0.332206i
\(117\) 0 0
\(118\) −7.46316 + 12.4730i −0.687040 + 1.14823i
\(119\) −14.6993 + 6.83102i −1.34748 + 0.626198i
\(120\) 0 0
\(121\) 5.24606 9.08644i 0.476914 0.826040i
\(122\) 8.02749 + 0.125277i 0.726775 + 0.0113420i
\(123\) 0 0
\(124\) 0.000145909 0.00467364i 1.31030e−5 0.000419705i
\(125\) 3.45988i 0.309461i
\(126\) 0 0
\(127\) 9.21826i 0.817988i 0.912537 + 0.408994i \(0.134120\pi\)
−0.912537 + 0.408994i \(0.865880\pi\)
\(128\) −4.55501 10.3563i −0.402609 0.915372i
\(129\) 0 0
\(130\) 0.000985297 0.0631359i 8.64162e−5 0.00553738i
\(131\) 9.60458 16.6356i 0.839156 1.45346i −0.0514445 0.998676i \(-0.516383\pi\)
0.890601 0.454786i \(-0.150284\pi\)
\(132\) 0 0
\(133\) 7.29497 + 5.12221i 0.632554 + 0.444152i
\(134\) 10.9222 + 6.53528i 0.943536 + 0.564563i
\(135\) 0 0
\(136\) 15.3956 7.95232i 1.32016 0.681906i
\(137\) 9.16525 5.29156i 0.783040 0.452088i −0.0544666 0.998516i \(-0.517346\pi\)
0.837507 + 0.546427i \(0.184013\pi\)
\(138\) 0 0
\(139\) 11.6495i 0.988101i −0.869433 0.494050i \(-0.835516\pi\)
0.869433 0.494050i \(-0.164484\pi\)
\(140\) 1.70446 0.728313i 0.144053 0.0615537i
\(141\) 0 0
\(142\) 6.61329 + 11.8789i 0.554975 + 0.996852i
\(143\) 0.0454195 + 0.0786690i 0.00379817 + 0.00657863i
\(144\) 0 0
\(145\) −0.594799 + 1.03022i −0.0493954 + 0.0855553i
\(146\) −3.12726 + 5.22649i −0.258814 + 0.432548i
\(147\) 0 0
\(148\) 4.10493 + 7.65188i 0.337424 + 0.628980i
\(149\) −13.7343 7.92950i −1.12516 0.649610i −0.182445 0.983216i \(-0.558401\pi\)
−0.942712 + 0.333606i \(0.891734\pi\)
\(150\) 0 0
\(151\) 3.21821 1.85804i 0.261895 0.151205i −0.363304 0.931671i \(-0.618351\pi\)
0.625199 + 0.780466i \(0.285018\pi\)
\(152\) −8.02045 5.14553i −0.650544 0.417358i
\(153\) 0 0
\(154\) −1.56618 + 2.15812i −0.126206 + 0.173906i
\(155\) −0.000818955 0 −6.57800e−5 0
\(156\) 0 0
\(157\) 1.00586 + 1.74221i 0.0802766 + 0.139043i 0.903369 0.428865i \(-0.141086\pi\)
−0.823092 + 0.567908i \(0.807753\pi\)
\(158\) 0.0489855 3.13889i 0.00389707 0.249717i
\(159\) 0 0
\(160\) −1.78805 + 0.853989i −0.141358 + 0.0675138i
\(161\) −7.26055 + 10.3404i −0.572212 + 0.814934i
\(162\) 0 0
\(163\) 14.0550 + 8.11468i 1.10088 + 0.635590i 0.936451 0.350799i \(-0.114090\pi\)
0.164424 + 0.986390i \(0.447423\pi\)
\(164\) 13.9855 + 8.66741i 1.09209 + 0.676811i
\(165\) 0 0
\(166\) 3.52424 + 6.33027i 0.273534 + 0.491324i
\(167\) 24.8179 1.92047 0.960235 0.279193i \(-0.0900670\pi\)
0.960235 + 0.279193i \(0.0900670\pi\)
\(168\) 0 0
\(169\) −12.9838 −0.998750
\(170\) −1.47626 2.65166i −0.113224 0.203373i
\(171\) 0 0
\(172\) 12.8358 + 7.95486i 0.978720 + 0.606552i
\(173\) −4.32404 2.49649i −0.328751 0.189804i 0.326536 0.945185i \(-0.394119\pi\)
−0.655286 + 0.755381i \(0.727452\pi\)
\(174\) 0 0
\(175\) 5.43823 + 11.7022i 0.411092 + 0.884605i
\(176\) 1.57654 2.37501i 0.118836 0.179023i
\(177\) 0 0
\(178\) 0.198512 12.7203i 0.0148791 0.953423i
\(179\) 9.75634 + 16.8985i 0.729223 + 1.26305i 0.957212 + 0.289388i \(0.0934517\pi\)
−0.227989 + 0.973664i \(0.573215\pi\)
\(180\) 0 0
\(181\) −7.80817 −0.580377 −0.290188 0.956970i \(-0.593718\pi\)
−0.290188 + 0.956970i \(0.593718\pi\)
\(182\) 0.194221 + 0.435592i 0.0143966 + 0.0322882i
\(183\) 0 0
\(184\) 7.29361 11.3687i 0.537692 0.838112i
\(185\) 1.31709 0.760420i 0.0968341 0.0559072i
\(186\) 0 0
\(187\) 3.78111 + 2.18303i 0.276502 + 0.159639i
\(188\) 2.52152 + 4.70029i 0.183901 + 0.342804i
\(189\) 0 0
\(190\) −0.856932 + 1.43216i −0.0621684 + 0.103900i
\(191\) 6.21530 10.7652i 0.449723 0.778944i −0.548644 0.836056i \(-0.684856\pi\)
0.998368 + 0.0571120i \(0.0181892\pi\)
\(192\) 0 0
\(193\) 0.669942 + 1.16037i 0.0482235 + 0.0835256i 0.889130 0.457656i \(-0.151311\pi\)
−0.840906 + 0.541181i \(0.817977\pi\)
\(194\) 11.9301 + 21.4290i 0.856533 + 1.53851i
\(195\) 0 0
\(196\) −9.35655 + 10.4142i −0.668325 + 0.743870i
\(197\) 12.0610i 0.859312i 0.902993 + 0.429656i \(0.141365\pi\)
−0.902993 + 0.429656i \(0.858635\pi\)
\(198\) 0 0
\(199\) 10.2777 5.93383i 0.728566 0.420638i −0.0893311 0.996002i \(-0.528473\pi\)
0.817897 + 0.575364i \(0.195140\pi\)
\(200\) −6.33091 12.2566i −0.447663 0.866672i
\(201\) 0 0
\(202\) −12.8954 7.71591i −0.907315 0.542889i
\(203\) 0.794805 8.94995i 0.0557844 0.628163i
\(204\) 0 0
\(205\) 1.44086 2.49565i 0.100634 0.174304i
\(206\) 0.229471 14.7041i 0.0159880 1.02448i
\(207\) 0 0
\(208\) −0.226890 0.456594i −0.0157320 0.0316591i
\(209\) 2.40099i 0.166080i
\(210\) 0 0
\(211\) 2.47485i 0.170376i 0.996365 + 0.0851878i \(0.0271490\pi\)
−0.996365 + 0.0851878i \(0.972851\pi\)
\(212\) −0.732136 + 23.4512i −0.0502833 + 1.61063i
\(213\) 0 0
\(214\) 12.6279 + 0.197071i 0.863227 + 0.0134715i
\(215\) 1.32241 2.29048i 0.0901876 0.156210i
\(216\) 0 0
\(217\) 0.00560952 0.00260684i 0.000380799 0.000176964i
\(218\) 11.8415 19.7903i 0.802006 1.34037i
\(219\) 0 0
\(220\) −0.424380 0.263005i −0.0286117 0.0177318i
\(221\) 0.676283 0.390452i 0.0454917 0.0262647i
\(222\) 0 0
\(223\) 7.76582i 0.520038i −0.965604 0.260019i \(-0.916271\pi\)
0.965604 0.260019i \(-0.0837288\pi\)
\(224\) 9.52907 11.5411i 0.636688 0.771122i
\(225\) 0 0
\(226\) 10.4295 5.80637i 0.693757 0.386234i
\(227\) 8.03290 + 13.9134i 0.533163 + 0.923465i 0.999250 + 0.0387259i \(0.0123299\pi\)
−0.466087 + 0.884739i \(0.654337\pi\)
\(228\) 0 0
\(229\) −5.54735 + 9.60830i −0.366579 + 0.634934i −0.989028 0.147726i \(-0.952805\pi\)
0.622449 + 0.782660i \(0.286138\pi\)
\(230\) −2.03004 1.21467i −0.133857 0.0800930i
\(231\) 0 0
\(232\) −0.449511 + 9.59503i −0.0295119 + 0.629944i
\(233\) −3.11180 1.79660i −0.203861 0.117699i 0.394594 0.918855i \(-0.370885\pi\)
−0.598455 + 0.801156i \(0.704218\pi\)
\(234\) 0 0
\(235\) 0.809041 0.467100i 0.0527760 0.0304703i
\(236\) 20.5459 + 0.641435i 1.33743 + 0.0417539i
\(237\) 0 0
\(238\) 18.5524 + 13.4637i 1.20257 + 0.872725i
\(239\) −6.15253 −0.397974 −0.198987 0.980002i \(-0.563765\pi\)
−0.198987 + 0.980002i \(0.563765\pi\)
\(240\) 0 0
\(241\) −6.27143 10.8624i −0.403978 0.699711i 0.590224 0.807240i \(-0.299040\pi\)
−0.994202 + 0.107529i \(0.965706\pi\)
\(242\) −14.8363 0.231535i −0.953713 0.0148836i
\(243\) 0 0
\(244\) −5.36739 10.0052i −0.343612 0.640516i
\(245\) 1.87422 + 1.58102i 0.119739 + 0.101008i
\(246\) 0 0
\(247\) −0.371903 0.214718i −0.0236636 0.0136622i
\(248\) −0.00587526 + 0.00303475i −0.000373079 + 0.000192707i
\(249\) 0 0
\(250\) −4.27513 + 2.38009i −0.270383 + 0.150530i
\(251\) −0.485661 −0.0306547 −0.0153273 0.999883i \(-0.504879\pi\)
−0.0153273 + 0.999883i \(0.504879\pi\)
\(252\) 0 0
\(253\) 3.40331 0.213964
\(254\) 11.3904 6.34133i 0.714694 0.397890i
\(255\) 0 0
\(256\) −9.66306 + 12.7525i −0.603941 + 0.797029i
\(257\) −25.2361 14.5701i −1.57418 0.908855i −0.995648 0.0931975i \(-0.970291\pi\)
−0.578535 0.815657i \(-0.696375\pi\)
\(258\) 0 0
\(259\) −6.60101 + 9.40105i −0.410167 + 0.584153i
\(260\) −0.0786903 + 0.0422143i −0.00488017 + 0.00261802i
\(261\) 0 0
\(262\) −27.1626 0.423898i −1.67811 0.0261885i
\(263\) 11.6832 + 20.2359i 0.720416 + 1.24780i 0.960833 + 0.277127i \(0.0893823\pi\)
−0.240418 + 0.970670i \(0.577284\pi\)
\(264\) 0 0
\(265\) 4.10932 0.252433
\(266\) 1.31088 12.5375i 0.0803749 0.768723i
\(267\) 0 0
\(268\) 0.561687 17.9915i 0.0343105 1.09901i
\(269\) −24.1233 + 13.9276i −1.47082 + 0.849180i −0.999463 0.0327619i \(-0.989570\pi\)
−0.471359 + 0.881941i \(0.656236\pi\)
\(270\) 0 0
\(271\) −24.8590 14.3523i −1.51008 0.871843i −0.999931 0.0117552i \(-0.996258\pi\)
−0.510146 0.860088i \(-0.670409\pi\)
\(272\) −20.4169 13.5528i −1.23796 0.821760i
\(273\) 0 0
\(274\) −12.8433 7.68474i −0.775890 0.464252i
\(275\) 1.73793 3.01018i 0.104801 0.181521i
\(276\) 0 0
\(277\) 13.4773 + 23.3434i 0.809773 + 1.40257i 0.913021 + 0.407912i \(0.133743\pi\)
−0.103248 + 0.994656i \(0.532924\pi\)
\(278\) −14.3945 + 8.01383i −0.863325 + 0.480637i
\(279\) 0 0
\(280\) −2.07244 1.60506i −0.123852 0.0959209i
\(281\) 25.3505i 1.51228i 0.654409 + 0.756141i \(0.272918\pi\)
−0.654409 + 0.756141i \(0.727082\pi\)
\(282\) 0 0
\(283\) −2.20500 + 1.27306i −0.131074 + 0.0756754i −0.564103 0.825704i \(-0.690778\pi\)
0.433029 + 0.901380i \(0.357445\pi\)
\(284\) 10.1285 16.3432i 0.601017 0.969788i
\(285\) 0 0
\(286\) 0.0659611 0.110239i 0.00390036 0.00651856i
\(287\) −1.92537 + 21.6807i −0.113651 + 1.27977i
\(288\) 0 0
\(289\) 10.2665 17.7822i 0.603914 1.04601i
\(290\) 1.68214 + 0.0262515i 0.0987787 + 0.00154154i
\(291\) 0 0
\(292\) 8.60928 + 0.268778i 0.503820 + 0.0157290i
\(293\) 4.66529i 0.272549i 0.990671 + 0.136274i \(0.0435129\pi\)
−0.990671 + 0.136274i \(0.956487\pi\)
\(294\) 0 0
\(295\) 3.60023i 0.209614i
\(296\) 6.63106 10.3360i 0.385422 0.600766i
\(297\) 0 0
\(298\) −0.349968 + 22.4253i −0.0202731 + 1.29906i
\(299\) 0.304355 0.527159i 0.0176013 0.0304864i
\(300\) 0 0
\(301\) −1.76708 + 19.8983i −0.101853 + 1.14692i
\(302\) −4.50969 2.69836i −0.259503 0.155273i
\(303\) 0 0
\(304\) −0.840623 + 13.4500i −0.0482130 + 0.771408i
\(305\) −1.72215 + 0.994285i −0.0986101 + 0.0569326i
\(306\) 0 0
\(307\) 16.7333i 0.955020i 0.878626 + 0.477510i \(0.158461\pi\)
−0.878626 + 0.477510i \(0.841539\pi\)
\(308\) 3.74402 + 0.450626i 0.213335 + 0.0256768i
\(309\) 0 0
\(310\) 0.000563367 0.00101192i 3.19971e−5 5.74734e-5i
\(311\) −15.6845 27.1664i −0.889389 1.54047i −0.840599 0.541657i \(-0.817797\pi\)
−0.0487894 0.998809i \(-0.515536\pi\)
\(312\) 0 0
\(313\) 11.3777 19.7068i 0.643107 1.11389i −0.341629 0.939835i \(-0.610979\pi\)
0.984735 0.174058i \(-0.0556882\pi\)
\(314\) 1.46078 2.44135i 0.0824364 0.137774i
\(315\) 0 0
\(316\) −3.91220 + 2.09875i −0.220079 + 0.118064i
\(317\) 5.10594 + 2.94792i 0.286778 + 0.165572i 0.636488 0.771287i \(-0.280386\pi\)
−0.349710 + 0.936858i \(0.613720\pi\)
\(318\) 0 0
\(319\) −2.09599 + 1.21012i −0.117353 + 0.0677538i
\(320\) 2.28523 + 1.62190i 0.127748 + 0.0906669i
\(321\) 0 0
\(322\) 17.7715 + 1.85812i 0.990364 + 0.103549i
\(323\) −20.6402 −1.14845
\(324\) 0 0
\(325\) −0.310842 0.538395i −0.0172424 0.0298648i
\(326\) 0.358141 22.9490i 0.0198356 1.27103i
\(327\) 0 0
\(328\) 1.08891 23.2434i 0.0601252 1.28340i
\(329\) −4.05477 + 5.77474i −0.223547 + 0.318372i
\(330\) 0 0
\(331\) 7.41160 + 4.27909i 0.407378 + 0.235200i 0.689663 0.724131i \(-0.257759\pi\)
−0.282284 + 0.959331i \(0.591092\pi\)
\(332\) 5.39751 8.70930i 0.296227 0.477985i
\(333\) 0 0
\(334\) −17.0725 30.6658i −0.934166 1.67796i
\(335\) −3.15262 −0.172246
\(336\) 0 0
\(337\) −26.1588 −1.42496 −0.712479 0.701693i \(-0.752428\pi\)
−0.712479 + 0.701693i \(0.752428\pi\)
\(338\) 8.93165 + 16.0431i 0.485818 + 0.872630i
\(339\) 0 0
\(340\) −2.26094 + 3.64821i −0.122617 + 0.197852i
\(341\) −0.00144294 0.000833084i −7.81398e−5 4.51140e-5i
\(342\) 0 0
\(343\) −17.8703 4.86349i −0.964904 0.262604i
\(344\) 0.999393 21.3325i 0.0538837 1.15017i
\(345\) 0 0
\(346\) −0.110182 + 7.06027i −0.00592344 + 0.379562i
\(347\) 18.3826 + 31.8396i 0.986830 + 1.70924i 0.633505 + 0.773738i \(0.281615\pi\)
0.353324 + 0.935501i \(0.385051\pi\)
\(348\) 0 0
\(349\) 9.93465 0.531790 0.265895 0.964002i \(-0.414333\pi\)
0.265895 + 0.964002i \(0.414333\pi\)
\(350\) 10.7186 14.7697i 0.572933 0.789474i
\(351\) 0 0
\(352\) −4.01915 0.314226i −0.214221 0.0167483i
\(353\) −10.7415 + 6.20163i −0.571715 + 0.330080i −0.757834 0.652447i \(-0.773742\pi\)
0.186119 + 0.982527i \(0.440409\pi\)
\(354\) 0 0
\(355\) −2.91635 1.68376i −0.154784 0.0893646i
\(356\) −15.8541 + 8.50510i −0.840265 + 0.450769i
\(357\) 0 0
\(358\) 14.1688 23.6799i 0.748843 1.25152i
\(359\) −8.25328 + 14.2951i −0.435592 + 0.754467i −0.997344 0.0728388i \(-0.976794\pi\)
0.561752 + 0.827306i \(0.310127\pi\)
\(360\) 0 0
\(361\) −3.82474 6.62465i −0.201302 0.348666i
\(362\) 5.37132 + 9.64801i 0.282310 + 0.507088i
\(363\) 0 0
\(364\) 0.404624 0.539633i 0.0212081 0.0282845i
\(365\) 1.50859i 0.0789633i
\(366\) 0 0
\(367\) −10.7204 + 6.18944i −0.559602 + 0.323086i −0.752986 0.658037i \(-0.771387\pi\)
0.193384 + 0.981123i \(0.438054\pi\)
\(368\) −19.0648 1.19155i −0.993824 0.0621140i
\(369\) 0 0
\(370\) −1.84563 1.10433i −0.0959500 0.0574114i
\(371\) −28.1472 + 13.0805i −1.46133 + 0.679106i
\(372\) 0 0
\(373\) 10.5698 18.3074i 0.547282 0.947920i −0.451178 0.892434i \(-0.648996\pi\)
0.998459 0.0554855i \(-0.0176707\pi\)
\(374\) 0.0963479 6.17378i 0.00498203 0.319239i
\(375\) 0 0
\(376\) 4.07323 6.34904i 0.210061 0.327427i
\(377\) 0.432880i 0.0222945i
\(378\) 0 0
\(379\) 18.9297i 0.972352i −0.873861 0.486176i \(-0.838391\pi\)
0.873861 0.486176i \(-0.161609\pi\)
\(380\) 2.35912 + 0.0736506i 0.121020 + 0.00377819i
\(381\) 0 0
\(382\) −17.5774 0.274312i −0.899337 0.0140350i
\(383\) 3.25973 5.64601i 0.166564 0.288498i −0.770645 0.637264i \(-0.780066\pi\)
0.937210 + 0.348766i \(0.113399\pi\)
\(384\) 0 0
\(385\) 0.0584236 0.657883i 0.00297754 0.0335288i
\(386\) 0.972933 1.62603i 0.0495210 0.0827629i
\(387\) 0 0
\(388\) 18.2715 29.4824i 0.927593 1.49674i
\(389\) −14.7537 + 8.51806i −0.748043 + 0.431883i −0.824986 0.565153i \(-0.808817\pi\)
0.0769436 + 0.997035i \(0.475484\pi\)
\(390\) 0 0
\(391\) 29.2568i 1.47958i
\(392\) 19.3045 + 4.39722i 0.975025 + 0.222093i
\(393\) 0 0
\(394\) 14.9030 8.29689i 0.750800 0.417991i
\(395\) 0.388783 + 0.673392i 0.0195618 + 0.0338820i
\(396\) 0 0
\(397\) −7.32945 + 12.6950i −0.367854 + 0.637142i −0.989230 0.146370i \(-0.953241\pi\)
0.621375 + 0.783513i \(0.286574\pi\)
\(398\) −14.4021 8.61748i −0.721914 0.431955i
\(399\) 0 0
\(400\) −10.7895 + 16.2541i −0.539476 + 0.812704i
\(401\) 5.41239 + 3.12484i 0.270282 + 0.156047i 0.629016 0.777393i \(-0.283458\pi\)
−0.358734 + 0.933440i \(0.616791\pi\)
\(402\) 0 0
\(403\) −0.000258082 0 0.000149004i −1.28560e−5 0 7.42241e-6i
\(404\) −0.663158 + 21.2417i −0.0329933 + 1.05682i
\(405\) 0 0
\(406\) −11.6056 + 5.17467i −0.575975 + 0.256815i
\(407\) 3.09416 0.153372
\(408\) 0 0
\(409\) −14.5140 25.1389i −0.717670 1.24304i −0.961921 0.273329i \(-0.911875\pi\)
0.244251 0.969712i \(-0.421458\pi\)
\(410\) −4.07488 0.0635925i −0.201244 0.00314061i
\(411\) 0 0
\(412\) −18.3266 + 9.83153i −0.902889 + 0.484365i
\(413\) 11.4600 + 24.6602i 0.563911 + 1.21345i
\(414\) 0 0
\(415\) −1.55413 0.897278i −0.0762893 0.0440456i
\(416\) −0.408101 + 0.594447i −0.0200088 + 0.0291452i
\(417\) 0 0
\(418\) −2.96673 + 1.65166i −0.145108 + 0.0807854i
\(419\) 5.94826 0.290591 0.145296 0.989388i \(-0.453587\pi\)
0.145296 + 0.989388i \(0.453587\pi\)
\(420\) 0 0
\(421\) 26.2986 1.28172 0.640858 0.767660i \(-0.278579\pi\)
0.640858 + 0.767660i \(0.278579\pi\)
\(422\) 3.05799 1.70247i 0.148861 0.0828750i
\(423\) 0 0
\(424\) 29.4806 15.2277i 1.43171 0.739520i
\(425\) −25.8772 14.9402i −1.25523 0.724706i
\(426\) 0 0
\(427\) 8.63112 12.2923i 0.417689 0.594866i
\(428\) −8.44337 15.7390i −0.408126 0.760774i
\(429\) 0 0
\(430\) −3.73989 0.0583646i −0.180353 0.00281459i
\(431\) 3.94092 + 6.82587i 0.189827 + 0.328790i 0.945193 0.326514i \(-0.105874\pi\)
−0.755365 + 0.655304i \(0.772541\pi\)
\(432\) 0 0
\(433\) −28.8906 −1.38839 −0.694196 0.719786i \(-0.744240\pi\)
−0.694196 + 0.719786i \(0.744240\pi\)
\(434\) −0.00707993 0.00513801i −0.000339848 0.000246633i
\(435\) 0 0
\(436\) −32.5993 1.01774i −1.56122 0.0487407i
\(437\) −13.9334 + 8.04447i −0.666527 + 0.384819i
\(438\) 0 0
\(439\) −22.8209 13.1757i −1.08918 0.628840i −0.155824 0.987785i \(-0.549803\pi\)
−0.933359 + 0.358945i \(0.883136\pi\)
\(440\) −0.0330422 + 0.705300i −0.00157522 + 0.0336239i
\(441\) 0 0
\(442\) −0.947676 0.567040i −0.0450764 0.0269713i
\(443\) 11.8798 20.5764i 0.564425 0.977613i −0.432678 0.901549i \(-0.642431\pi\)
0.997103 0.0760641i \(-0.0242354\pi\)
\(444\) 0 0
\(445\) 1.57553 + 2.72890i 0.0746873 + 0.129362i
\(446\) −9.59567 + 5.34218i −0.454368 + 0.252960i
\(447\) 0 0
\(448\) −20.8157 3.83518i −0.983447 0.181195i
\(449\) 36.0964i 1.70350i −0.523951 0.851748i \(-0.675543\pi\)
0.523951 0.851748i \(-0.324457\pi\)
\(450\) 0 0
\(451\) 5.07741 2.93145i 0.239086 0.138036i
\(452\) −14.3491 8.89269i −0.674923 0.418277i
\(453\) 0 0
\(454\) 11.6659 19.4969i 0.547507 0.915033i
\(455\) −0.0966784 0.0678834i −0.00453235 0.00318242i
\(456\) 0 0
\(457\) 9.98422 17.2932i 0.467042 0.808941i −0.532249 0.846588i \(-0.678653\pi\)
0.999291 + 0.0376473i \(0.0119863\pi\)
\(458\) 15.6884 + 0.244832i 0.733070 + 0.0114403i
\(459\) 0 0
\(460\) −0.104397 + 3.34396i −0.00486754 + 0.155913i
\(461\) 3.90222i 0.181744i 0.995863 + 0.0908722i \(0.0289655\pi\)
−0.995863 + 0.0908722i \(0.971035\pi\)
\(462\) 0 0
\(463\) 11.0279i 0.512510i 0.966609 + 0.256255i \(0.0824887\pi\)
−0.966609 + 0.256255i \(0.917511\pi\)
\(464\) 12.1651 6.04508i 0.564752 0.280636i
\(465\) 0 0
\(466\) −0.0792928 + 5.08092i −0.00367317 + 0.235369i
\(467\) 19.2572 33.3545i 0.891119 1.54346i 0.0525832 0.998617i \(-0.483255\pi\)
0.838536 0.544847i \(-0.183412\pi\)
\(468\) 0 0
\(469\) 21.5942 10.0352i 0.997129 0.463384i
\(470\) −1.13371 0.678353i −0.0522942 0.0312901i
\(471\) 0 0
\(472\) −13.3412 25.8284i −0.614077 1.18885i
\(473\) 4.66000 2.69045i 0.214267 0.123707i
\(474\) 0 0
\(475\) 16.4319i 0.753946i
\(476\) 3.87383 32.1857i 0.177557 1.47523i
\(477\) 0 0
\(478\) 4.23239 + 7.60225i 0.193585 + 0.347719i
\(479\) 7.41054 + 12.8354i 0.338596 + 0.586466i 0.984169 0.177233i \(-0.0567146\pi\)
−0.645573 + 0.763699i \(0.723381\pi\)
\(480\) 0 0
\(481\) 0.276708 0.479272i 0.0126168 0.0218529i
\(482\) −9.10777 + 15.2215i −0.414847 + 0.693322i
\(483\) 0 0
\(484\) 9.91993 + 18.4914i 0.450906 + 0.840519i
\(485\) −5.26099 3.03743i −0.238889 0.137923i
\(486\) 0 0
\(487\) 7.45460 4.30391i 0.337800 0.195029i −0.321499 0.946910i \(-0.604187\pi\)
0.659299 + 0.751881i \(0.270853\pi\)
\(488\) −8.67042 + 13.5148i −0.392491 + 0.611785i
\(489\) 0 0
\(490\) 0.664264 3.40344i 0.0300084 0.153752i
\(491\) −8.74870 −0.394823 −0.197412 0.980321i \(-0.563254\pi\)
−0.197412 + 0.980321i \(0.563254\pi\)
\(492\) 0 0
\(493\) 10.4029 + 18.0184i 0.468523 + 0.811506i
\(494\) −0.00947658 + 0.607240i −0.000426371 + 0.0273210i
\(495\) 0 0
\(496\) 0.00779148 + 0.00517201i 0.000349848 + 0.000232230i
\(497\) 25.3355 + 2.24993i 1.13645 + 0.100923i
\(498\) 0 0
\(499\) −25.1145 14.4998i −1.12428 0.649102i −0.181788 0.983338i \(-0.558189\pi\)
−0.942490 + 0.334236i \(0.891522\pi\)
\(500\) 5.88181 + 3.64520i 0.263043 + 0.163018i
\(501\) 0 0
\(502\) 0.334091 + 0.600097i 0.0149112 + 0.0267837i
\(503\) 27.7583 1.23768 0.618841 0.785516i \(-0.287603\pi\)
0.618841 + 0.785516i \(0.287603\pi\)
\(504\) 0 0
\(505\) 3.72216 0.165634
\(506\) −2.34117 4.20523i −0.104078 0.186945i
\(507\) 0 0
\(508\) −15.6711 9.71199i −0.695291 0.430900i
\(509\) −18.3756 10.6092i −0.814484 0.470243i 0.0340265 0.999421i \(-0.489167\pi\)
−0.848511 + 0.529178i \(0.822500\pi\)
\(510\) 0 0
\(511\) 4.80205 + 10.3333i 0.212430 + 0.457117i
\(512\) 22.4046 + 3.16741i 0.990154 + 0.139981i
\(513\) 0 0
\(514\) −0.643049 + 41.2053i −0.0283637 + 1.81749i
\(515\) 1.82125 + 3.15449i 0.0802537 + 0.139003i
\(516\) 0 0
\(517\) 1.90064 0.0835899
\(518\) 16.1571 + 1.68933i 0.709902 + 0.0742249i
\(519\) 0 0
\(520\) 0.106293 + 0.0681925i 0.00466126 + 0.00299044i
\(521\) −20.9834 + 12.1148i −0.919300 + 0.530758i −0.883412 0.468598i \(-0.844759\pi\)
−0.0358883 + 0.999356i \(0.511426\pi\)
\(522\) 0 0
\(523\) 18.7115 + 10.8031i 0.818195 + 0.472385i 0.849794 0.527116i \(-0.176727\pi\)
−0.0315989 + 0.999501i \(0.510060\pi\)
\(524\) 18.1616 + 33.8545i 0.793393 + 1.47894i
\(525\) 0 0
\(526\) 16.9671 28.3565i 0.739799 1.23640i
\(527\) −0.00716166 + 0.0124044i −0.000311967 + 0.000540343i
\(528\) 0 0
\(529\) 0.0972459 + 0.168435i 0.00422808 + 0.00732325i
\(530\) −2.82684 5.07759i −0.122790 0.220557i
\(531\) 0 0
\(532\) −16.3935 + 7.00491i −0.710747 + 0.303701i
\(533\) 1.04863i 0.0454210i
\(534\) 0 0
\(535\) −2.70909 + 1.56409i −0.117124 + 0.0676217i
\(536\) −22.6172 + 11.6825i −0.976915 + 0.504607i
\(537\) 0 0
\(538\) 33.8040 + 20.2265i 1.45739 + 0.872027i
\(539\) 1.69395 + 4.69221i 0.0729636 + 0.202108i
\(540\) 0 0
\(541\) −20.2054 + 34.9967i −0.868696 + 1.50463i −0.00536596 + 0.999986i \(0.501708\pi\)
−0.863330 + 0.504640i \(0.831625\pi\)
\(542\) −0.633441 + 40.5896i −0.0272086 + 1.74347i
\(543\) 0 0
\(544\) −2.70126 + 34.5509i −0.115816 + 1.48136i
\(545\) 5.71233i 0.244689i
\(546\) 0 0
\(547\) 21.7198i 0.928670i 0.885660 + 0.464335i \(0.153707\pi\)
−0.885660 + 0.464335i \(0.846293\pi\)
\(548\) −0.660479 + 21.1559i −0.0282143 + 0.903736i
\(549\) 0 0
\(550\) −4.91500 0.0767034i −0.209576 0.00327064i
\(551\) 5.72078 9.90868i 0.243713 0.422124i
\(552\) 0 0
\(553\) −4.80651 3.37492i −0.204394 0.143516i
\(554\) 19.5726 32.7111i 0.831560 1.38976i
\(555\) 0 0
\(556\) 19.8042 + 12.2735i 0.839887 + 0.520512i
\(557\) 36.2866 20.9501i 1.53751 0.887684i 0.538530 0.842606i \(-0.318980\pi\)
0.998983 0.0450775i \(-0.0143535\pi\)
\(558\) 0 0
\(559\) 0.962418i 0.0407059i
\(560\) −0.557615 + 3.66490i −0.0235635 + 0.154870i
\(561\) 0 0
\(562\) 31.3238 17.4388i 1.32131 0.735613i
\(563\) 1.21907 + 2.11148i 0.0513775 + 0.0889885i 0.890570 0.454845i \(-0.150305\pi\)
−0.839193 + 0.543834i \(0.816972\pi\)
\(564\) 0 0
\(565\) −1.47831 + 2.56052i −0.0621932 + 0.107722i
\(566\) 3.08987 + 1.84881i 0.129877 + 0.0777114i
\(567\) 0 0
\(568\) −27.1616 1.27248i −1.13968 0.0533919i
\(569\) −7.19227 4.15246i −0.301515 0.174080i 0.341608 0.939843i \(-0.389028\pi\)
−0.643123 + 0.765762i \(0.722362\pi\)
\(570\) 0 0
\(571\) −40.3829 + 23.3151i −1.68997 + 0.975705i −0.735442 + 0.677588i \(0.763025\pi\)
−0.954529 + 0.298117i \(0.903641\pi\)
\(572\) −0.181590 0.00566915i −0.00759265 0.000237039i
\(573\) 0 0
\(574\) 28.1138 12.5353i 1.17345 0.523214i
\(575\) −23.2916 −0.971327
\(576\) 0 0
\(577\) −4.32922 7.49843i −0.180228 0.312164i 0.761730 0.647894i \(-0.224350\pi\)
−0.941958 + 0.335730i \(0.891017\pi\)
\(578\) −29.0346 0.453114i −1.20768 0.0188471i
\(579\) 0 0
\(580\) −1.12472 2.09656i −0.0467016 0.0870550i
\(581\) 13.5013 + 1.19899i 0.560130 + 0.0497426i
\(582\) 0 0
\(583\) 7.24034 + 4.18021i 0.299864 + 0.173127i
\(584\) −5.59030 10.8228i −0.231328 0.447850i
\(585\) 0 0
\(586\) 5.76457 3.20930i 0.238132 0.132575i
\(587\) 16.5890 0.684700 0.342350 0.939573i \(-0.388777\pi\)
0.342350 + 0.939573i \(0.388777\pi\)
\(588\) 0 0
\(589\) 0.00787670 0.000324554
\(590\) −4.44855 + 2.47663i −0.183144 + 0.101961i
\(591\) 0 0
\(592\) −17.3330 1.08331i −0.712382 0.0445239i
\(593\) 35.4794 + 20.4840i 1.45696 + 0.841178i 0.998861 0.0477210i \(-0.0151958\pi\)
0.458103 + 0.888899i \(0.348529\pi\)
\(594\) 0 0
\(595\) −5.65553 0.502243i −0.231854 0.0205899i
\(596\) 27.9501 14.9941i 1.14488 0.614184i
\(597\) 0 0
\(598\) −0.860742 0.0134327i −0.0351983 0.000549305i
\(599\) 10.5150 + 18.2125i 0.429632 + 0.744144i 0.996840 0.0794302i \(-0.0253101\pi\)
−0.567209 + 0.823574i \(0.691977\pi\)
\(600\) 0 0
\(601\) −1.20122 −0.0489988 −0.0244994 0.999700i \(-0.507799\pi\)
−0.0244994 + 0.999700i \(0.507799\pi\)
\(602\) 25.8025 11.5048i 1.05163 0.468900i
\(603\) 0 0
\(604\) −0.231915 + 7.42853i −0.00943650 + 0.302263i
\(605\) 3.18286 1.83762i 0.129401 0.0747100i
\(606\) 0 0
\(607\) 26.7657 + 15.4532i 1.08638 + 0.627224i 0.932612 0.360882i \(-0.117524\pi\)
0.153773 + 0.988106i \(0.450858\pi\)
\(608\) 17.1974 8.21366i 0.697449 0.333108i
\(609\) 0 0
\(610\) 2.41325 + 1.44396i 0.0977098 + 0.0584644i
\(611\) 0.169972 0.294400i 0.00687634 0.0119102i
\(612\) 0 0
\(613\) 2.49089 + 4.31434i 0.100606 + 0.174255i 0.911934 0.410336i \(-0.134589\pi\)
−0.811329 + 0.584590i \(0.801255\pi\)
\(614\) 20.6762 11.5110i 0.834422 0.464546i
\(615\) 0 0
\(616\) −2.01874 4.93621i −0.0813374 0.198886i
\(617\) 15.4858i 0.623435i 0.950175 + 0.311718i \(0.100904\pi\)
−0.950175 + 0.311718i \(0.899096\pi\)
\(618\) 0 0
\(619\) 21.9439 12.6693i 0.881998 0.509222i 0.0106814 0.999943i \(-0.496600\pi\)
0.871317 + 0.490721i \(0.163267\pi\)
\(620\) 0.000862818 0.00139223i 3.46516e−5 5.59131e-5i
\(621\) 0 0
\(622\) −22.7781 + 38.0683i −0.913318 + 1.52640i
\(623\) −19.4782 13.6768i −0.780379 0.547948i
\(624\) 0 0
\(625\) −11.5873 + 20.0697i −0.463491 + 0.802790i
\(626\) −32.1771 0.502156i −1.28606 0.0200702i
\(627\) 0 0
\(628\) −4.02149 0.125549i −0.160475 0.00500996i
\(629\) 26.5991i 1.06058i
\(630\) 0 0
\(631\) 12.6823i 0.504876i −0.967613 0.252438i \(-0.918768\pi\)
0.967613 0.252438i \(-0.0812323\pi\)
\(632\) 5.28452 + 3.39029i 0.210207 + 0.134858i
\(633\) 0 0
\(634\) 0.130106 8.33695i 0.00516718 0.331103i
\(635\) −1.61451 + 2.79642i −0.0640701 + 0.110973i
\(636\) 0 0
\(637\) 0.878291 + 0.157234i 0.0347992 + 0.00622985i
\(638\) 2.93712 + 1.75742i 0.116282 + 0.0695768i
\(639\) 0 0
\(640\) 0.432034 3.93942i 0.0170776 0.155719i
\(641\) 14.7613 8.52242i 0.583035 0.336615i −0.179304 0.983794i \(-0.557385\pi\)
0.762338 + 0.647179i \(0.224051\pi\)
\(642\) 0 0
\(643\) 37.1996i 1.46701i −0.679685 0.733504i \(-0.737883\pi\)
0.679685 0.733504i \(-0.262117\pi\)
\(644\) −9.92921 23.2371i −0.391266 0.915672i
\(645\) 0 0
\(646\) 14.1986 + 25.5037i 0.558637 + 1.00343i
\(647\) −7.31238 12.6654i −0.287479 0.497929i 0.685728 0.727858i \(-0.259484\pi\)
−0.973207 + 0.229929i \(0.926151\pi\)
\(648\) 0 0
\(649\) 3.66235 6.34337i 0.143760 0.248999i
\(650\) −0.451425 + 0.754453i −0.0177063 + 0.0295921i
\(651\) 0 0
\(652\) −28.6028 + 15.3443i −1.12017 + 0.600929i
\(653\) 35.1095 + 20.2705i 1.37394 + 0.793245i 0.991422 0.130703i \(-0.0417235\pi\)
0.382519 + 0.923948i \(0.375057\pi\)
\(654\) 0 0
\(655\) 5.82723 3.36435i 0.227689 0.131456i
\(656\) −29.4692 + 14.6438i −1.15058 + 0.571746i
\(657\) 0 0
\(658\) 9.92476 + 1.03770i 0.386907 + 0.0404537i
\(659\) −2.98301 −0.116201 −0.0581007 0.998311i \(-0.518504\pi\)
−0.0581007 + 0.998311i \(0.518504\pi\)
\(660\) 0 0
\(661\) 15.4040 + 26.6805i 0.599146 + 1.03775i 0.992947 + 0.118556i \(0.0378264\pi\)
−0.393801 + 0.919196i \(0.628840\pi\)
\(662\) 0.188858 12.1016i 0.00734016 0.470343i
\(663\) 0 0
\(664\) −14.4745 0.678105i −0.561718 0.0263156i
\(665\) 1.31586 + 2.83152i 0.0510268 + 0.109802i
\(666\) 0 0
\(667\) 14.0452 + 8.10900i 0.543832 + 0.313982i
\(668\) −26.1472 + 42.1906i −1.01167 + 1.63240i
\(669\) 0 0
\(670\) 2.16872 + 3.89548i 0.0837850 + 0.150495i
\(671\) −4.04576 −0.156185
\(672\) 0 0
\(673\) 15.4848 0.596894 0.298447 0.954426i \(-0.403531\pi\)
0.298447 + 0.954426i \(0.403531\pi\)
\(674\) 17.9949 + 32.3225i 0.693136 + 1.24502i
\(675\) 0 0
\(676\) 13.6792 22.0724i 0.526122 0.848939i
\(677\) −25.3739 14.6496i −0.975199 0.563032i −0.0743819 0.997230i \(-0.523698\pi\)
−0.900817 + 0.434198i \(0.857032\pi\)
\(678\) 0 0
\(679\) 45.7043 + 4.05879i 1.75397 + 0.155762i
\(680\) 6.06316 + 0.284049i 0.232512 + 0.0108928i
\(681\) 0 0
\(682\) −3.67682e−5 0.00235603i −1.40793e−6 9.02171e-5i
\(683\) −1.53968 2.66681i −0.0589143 0.102043i 0.835064 0.550153i \(-0.185431\pi\)
−0.893978 + 0.448110i \(0.852097\pi\)
\(684\) 0 0
\(685\) 3.70712 0.141642
\(686\) 6.28366 + 25.4267i 0.239911 + 0.970795i
\(687\) 0 0
\(688\) −27.0466 + 13.4400i −1.03114 + 0.512394i
\(689\) 1.29499 0.747665i 0.0493354 0.0284838i
\(690\) 0 0
\(691\) 19.1882 + 11.0783i 0.729952 + 0.421438i 0.818405 0.574642i \(-0.194859\pi\)
−0.0884525 + 0.996080i \(0.528192\pi\)
\(692\) 8.79967 4.72068i 0.334513 0.179453i
\(693\) 0 0
\(694\) 26.6964 44.6169i 1.01338 1.69363i
\(695\) 2.04034 3.53397i 0.0773944 0.134051i
\(696\) 0 0
\(697\) −25.2004 43.6483i −0.954532 1.65330i
\(698\) −6.83414 12.2756i −0.258676 0.464636i
\(699\) 0 0
\(700\) −25.6233 3.08399i −0.968470 0.116564i
\(701\) 33.1595i 1.25242i −0.779656 0.626208i \(-0.784606\pi\)
0.779656 0.626208i \(-0.215394\pi\)
\(702\) 0 0
\(703\) −12.6677 + 7.31372i −0.477773 + 0.275842i
\(704\) 2.37654 + 5.18233i 0.0895693 + 0.195317i
\(705\) 0 0
\(706\) 15.0521 + 9.00641i 0.566495 + 0.338961i
\(707\) −25.4953 + 11.8481i −0.958850 + 0.445595i
\(708\) 0 0
\(709\) −7.67372 + 13.2913i −0.288193 + 0.499164i −0.973378 0.229204i \(-0.926388\pi\)
0.685186 + 0.728368i \(0.259721\pi\)
\(710\) −0.0743126 + 4.76181i −0.00278890 + 0.178707i
\(711\) 0 0
\(712\) 21.4153 + 13.7390i 0.802573 + 0.514892i
\(713\) 0.0111649i 0.000418130i
\(714\) 0 0
\(715\) 0.0318197i 0.00118999i
\(716\) −39.0064 1.21776i −1.45774 0.0455099i
\(717\) 0 0
\(718\) 23.3410 + 0.364259i 0.871077 + 0.0135940i
\(719\) 14.9962 25.9742i 0.559264 0.968674i −0.438294 0.898832i \(-0.644417\pi\)
0.997558 0.0698422i \(-0.0222496\pi\)
\(720\) 0 0
\(721\) −22.5160 15.8098i −0.838539 0.588786i
\(722\) −5.55454 + 9.28313i −0.206718 + 0.345482i
\(723\) 0 0
\(724\) 8.22638 13.2739i 0.305731 0.493321i
\(725\) 14.3446 8.28184i 0.532744 0.307580i
\(726\) 0 0
\(727\) 41.1692i 1.52688i 0.645879 + 0.763440i \(0.276491\pi\)
−0.645879 + 0.763440i \(0.723509\pi\)
\(728\) −0.945132 0.128746i −0.0350289 0.00477166i
\(729\) 0 0
\(730\) −1.86406 + 1.03777i −0.0689920 + 0.0384098i
\(731\) −23.1286 40.0600i −0.855444 1.48167i
\(732\) 0 0
\(733\) −16.3313 + 28.2866i −0.603209 + 1.04479i 0.389123 + 0.921186i \(0.372778\pi\)
−0.992332 + 0.123603i \(0.960555\pi\)
\(734\) 15.0225 + 8.98870i 0.554492 + 0.331779i
\(735\) 0 0
\(736\) 11.6426 + 24.3768i 0.429151 + 0.898540i
\(737\) −5.55471 3.20702i −0.204611 0.118132i
\(738\) 0 0
\(739\) 15.9487 9.20799i 0.586683 0.338721i −0.177102 0.984192i \(-0.556672\pi\)
0.763785 + 0.645471i \(0.223339\pi\)
\(740\) −0.0949137 + 3.04020i −0.00348910 + 0.111760i
\(741\) 0 0
\(742\) 35.5254 + 25.7813i 1.30418 + 0.946462i
\(743\) −22.5175 −0.826088 −0.413044 0.910711i \(-0.635534\pi\)
−0.413044 + 0.910711i \(0.635534\pi\)
\(744\) 0 0
\(745\) −2.77759 4.81093i −0.101763 0.176259i
\(746\) −29.8922 0.466496i −1.09443 0.0170797i
\(747\) 0 0
\(748\) −7.69479 + 4.12795i −0.281349 + 0.150933i
\(749\) 13.5775 19.3368i 0.496111 0.706553i
\(750\) 0 0
\(751\) 27.5078 + 15.8816i 1.00377 + 0.579529i 0.909362 0.416005i \(-0.136570\pi\)
0.0944107 + 0.995533i \(0.469903\pi\)
\(752\) −10.6471 0.665443i −0.388259 0.0242662i
\(753\) 0 0
\(754\) 0.534880 0.297783i 0.0194792 0.0108446i
\(755\) 1.30169 0.0473733
\(756\) 0 0
\(757\) −7.32709 −0.266308 −0.133154 0.991095i \(-0.542510\pi\)
−0.133154 + 0.991095i \(0.542510\pi\)
\(758\) −23.3901 + 13.0219i −0.849565 + 0.472977i
\(759\) 0 0
\(760\) −1.53185 2.96566i −0.0555662 0.107576i
\(761\) 4.23458 + 2.44483i 0.153503 + 0.0886252i 0.574784 0.818305i \(-0.305086\pi\)
−0.421281 + 0.906930i \(0.638419\pi\)
\(762\) 0 0
\(763\) −18.1831 39.1272i −0.658273 1.41650i
\(764\) 11.7527 + 21.9078i 0.425198 + 0.792598i
\(765\) 0 0
\(766\) −9.21877 0.143868i −0.333088 0.00519816i
\(767\) −0.655040 1.13456i −0.0236521 0.0409667i
\(768\) 0 0
\(769\) 10.3531 0.373343 0.186672 0.982422i \(-0.440230\pi\)
0.186672 + 0.982422i \(0.440230\pi\)
\(770\) −0.853089 + 0.380374i −0.0307432 + 0.0137077i
\(771\) 0 0
\(772\) −2.67846 0.0836205i −0.0964000 0.00300957i
\(773\) 5.48545 3.16703i 0.197298 0.113910i −0.398097 0.917344i \(-0.630329\pi\)
0.595395 + 0.803433i \(0.296996\pi\)
\(774\) 0 0
\(775\) 0.00987522 + 0.00570146i 0.000354728 + 0.000204802i
\(776\) −48.9985 2.29550i −1.75894 0.0824036i
\(777\) 0 0
\(778\) 20.6744 + 12.3705i 0.741212 + 0.443503i
\(779\) −13.8582 + 24.0031i −0.496522 + 0.860002i
\(780\) 0 0
\(781\) −3.42561 5.93334i −0.122578 0.212312i
\(782\) −36.1506 + 20.1260i −1.29274 + 0.719706i
\(783\) 0 0
\(784\) −7.84644 26.8781i −0.280230 0.959933i
\(785\) 0.704680i 0.0251511i
\(786\) 0 0
\(787\) −1.48926 + 0.859826i −0.0530865 + 0.0306495i −0.526308 0.850294i \(-0.676424\pi\)
0.473222 + 0.880943i \(0.343091\pi\)
\(788\) −20.5038 12.7070i −0.730417 0.452669i
\(789\) 0 0
\(790\) 0.564615 0.943625i 0.0200881 0.0335727i
\(791\) 1.97541 22.2442i 0.0702374 0.790913i
\(792\) 0 0
\(793\) −0.361808 + 0.626670i −0.0128482 + 0.0222537i
\(794\) 20.7283 + 0.323485i 0.735619 + 0.0114801i
\(795\) 0 0
\(796\) −0.740645 + 23.7238i −0.0262515 + 0.840866i
\(797\) 3.60991i 0.127870i −0.997954 0.0639348i \(-0.979635\pi\)
0.997954 0.0639348i \(-0.0203650\pi\)
\(798\) 0 0
\(799\) 16.3390i 0.578031i
\(800\) 27.5062 + 2.15050i 0.972492 + 0.0760317i
\(801\) 0 0
\(802\) 0.137915 8.83732i 0.00486995 0.312056i
\(803\) 1.53462 2.65804i 0.0541555 0.0938001i
\(804\) 0 0
\(805\) −4.01358 + 1.86518i −0.141460 + 0.0657390i
\(806\) 0.000361651 0 0.000216393i 1.27386e−5 0 7.62211e-6i
\(807\) 0 0
\(808\) 26.7031 13.7930i 0.939412 0.485235i
\(809\) 9.63889 5.56502i 0.338885 0.195656i −0.320894 0.947115i \(-0.603983\pi\)
0.659779 + 0.751460i \(0.270650\pi\)
\(810\) 0 0
\(811\) 40.8908i 1.43587i 0.696110 + 0.717936i \(0.254913\pi\)
−0.696110 + 0.717936i \(0.745087\pi\)
\(812\) 14.3776 + 10.7805i 0.504553 + 0.378321i
\(813\) 0 0
\(814\) −2.12850 3.82323i −0.0746039 0.134004i
\(815\) 2.84246 + 4.92329i 0.0995670 + 0.172455i
\(816\) 0 0
\(817\) −12.7189 + 22.0298i −0.444979 + 0.770727i
\(818\) −21.0781 + 35.2272i −0.736979 + 1.23169i
\(819\) 0 0
\(820\) 2.72457 + 5.07879i 0.0951463 + 0.177359i
\(821\) 28.0807 + 16.2124i 0.980024 + 0.565817i 0.902277 0.431156i \(-0.141894\pi\)
0.0777465 + 0.996973i \(0.475228\pi\)
\(822\) 0 0
\(823\) 8.66266 5.00139i 0.301961 0.174337i −0.341362 0.939932i \(-0.610888\pi\)
0.643324 + 0.765594i \(0.277555\pi\)
\(824\) 24.7552 + 15.8817i 0.862388 + 0.553266i
\(825\) 0 0
\(826\) 22.5874 31.1243i 0.785916 1.08295i
\(827\) −28.0825 −0.976525 −0.488263 0.872697i \(-0.662369\pi\)
−0.488263 + 0.872697i \(0.662369\pi\)
\(828\) 0 0
\(829\) 22.9592 + 39.7666i 0.797407 + 1.38115i 0.921299 + 0.388854i \(0.127129\pi\)
−0.123892 + 0.992296i \(0.539538\pi\)
\(830\) −0.0396013 + 2.53758i −0.00137458 + 0.0880805i
\(831\) 0 0
\(832\) 1.01525 + 0.0953351i 0.0351976 + 0.00330515i
\(833\) 40.3369 14.5622i 1.39759 0.504549i
\(834\) 0 0
\(835\) 7.52869 + 4.34669i 0.260541 + 0.150423i
\(836\) 4.08168 + 2.52958i 0.141168 + 0.0874875i
\(837\) 0 0
\(838\) −4.09186 7.34984i −0.141351 0.253896i
\(839\) −22.9019 −0.790662 −0.395331 0.918539i \(-0.629370\pi\)
−0.395331 + 0.918539i \(0.629370\pi\)
\(840\) 0 0
\(841\) 17.4667 0.602299
\(842\) −18.0911 32.4953i −0.623459 1.11986i
\(843\) 0 0
\(844\) −4.20725 2.60740i −0.144819 0.0897505i
\(845\) −3.93871 2.27402i −0.135496 0.0782285i
\(846\) 0 0
\(847\) −15.9519 + 22.7185i −0.548114 + 0.780615i
\(848\) −39.0958 25.9519i −1.34255 0.891192i
\(849\) 0 0
\(850\) −0.659386 + 42.2521i −0.0226168 + 1.44924i
\(851\) −10.3669 17.9561i −0.355374 0.615526i
\(852\) 0 0
\(853\) 10.6107 0.363304 0.181652 0.983363i \(-0.441856\pi\)
0.181652 + 0.983363i \(0.441856\pi\)
\(854\) −21.1262 2.20888i −0.722923 0.0755862i
\(855\) 0 0
\(856\) −13.6393 + 21.2599i −0.466182 + 0.726648i
\(857\) 27.1454 15.6724i 0.927268 0.535358i 0.0413213 0.999146i \(-0.486843\pi\)
0.885946 + 0.463788i \(0.153510\pi\)
\(858\) 0 0
\(859\) 8.41769 + 4.85995i 0.287208 + 0.165819i 0.636682 0.771127i \(-0.280306\pi\)
−0.349474 + 0.936946i \(0.613640\pi\)
\(860\) 2.50059 + 4.66126i 0.0852693 + 0.158948i
\(861\) 0 0
\(862\) 5.72325 9.56509i 0.194935 0.325788i
\(863\) 22.7910 39.4752i 0.775815 1.34375i −0.158520 0.987356i \(-0.550672\pi\)
0.934335 0.356395i \(-0.115994\pi\)
\(864\) 0 0
\(865\) −0.874485 1.51465i −0.0297334 0.0514997i
\(866\) 19.8741 + 35.6981i 0.675350 + 1.21307i
\(867\) 0 0
\(868\) −0.00147833 + 0.0122827i −5.01777e−5 + 0.000416901i
\(869\) 1.58196i 0.0536644i
\(870\) 0 0
\(871\) −0.993506 + 0.573601i −0.0336637 + 0.0194357i
\(872\) 21.1678 + 40.9808i 0.716834 + 1.38779i
\(873\) 0 0
\(874\) 19.5249 + 11.6827i 0.660441 + 0.395173i
\(875\) −0.809738 + 9.11811i −0.0273741 + 0.308248i
\(876\) 0 0
\(877\) −4.86133 + 8.42007i −0.164155 + 0.284326i −0.936355 0.351054i \(-0.885823\pi\)
0.772200 + 0.635380i \(0.219157\pi\)
\(878\) −0.581507 + 37.2618i −0.0196249 + 1.25753i
\(879\) 0 0
\(880\) 0.894220 0.444355i 0.0301442 0.0149792i
\(881\) 7.59560i 0.255902i −0.991780 0.127951i \(-0.959160\pi\)
0.991780 0.127951i \(-0.0408401\pi\)
\(882\) 0 0
\(883\) 12.2076i 0.410817i −0.978676 0.205409i \(-0.934148\pi\)
0.978676 0.205409i \(-0.0658524\pi\)
\(884\) −0.0487352 + 1.56105i −0.00163914 + 0.0525037i
\(885\) 0 0
\(886\) −33.5970 0.524314i −1.12871 0.0176147i
\(887\) −14.1560 + 24.5189i −0.475312 + 0.823264i −0.999600 0.0282768i \(-0.990998\pi\)
0.524288 + 0.851541i \(0.324331\pi\)
\(888\) 0 0
\(889\) 2.15741 24.2936i 0.0723571 0.814782i
\(890\) 2.28809 3.82401i 0.0766968 0.128181i
\(891\) 0 0
\(892\) 13.2019 + 8.18176i 0.442033 + 0.273946i
\(893\) −7.78136 + 4.49257i −0.260393 + 0.150338i
\(894\) 0 0
\(895\) 6.83503i 0.228470i
\(896\) 9.58043 + 28.3587i 0.320060 + 0.947397i
\(897\) 0 0
\(898\) −44.6018 + 24.8311i −1.48838 + 0.828624i
\(899\) −0.00396994 0.00687614i −0.000132405 0.000229332i
\(900\) 0 0
\(901\) 35.9355 62.2421i 1.19719 2.07359i
\(902\) −7.11498 4.25723i −0.236903 0.141750i
\(903\) 0 0
\(904\) −1.11722 + 23.8475i −0.0371580 + 0.793156i
\(905\) −2.36866 1.36755i −0.0787370 0.0454588i
\(906\) 0 0
\(907\) 5.89877 3.40566i 0.195865 0.113083i −0.398860 0.917012i \(-0.630594\pi\)
0.594725 + 0.803929i \(0.297261\pi\)
\(908\) −32.1160 1.00265i −1.06581 0.0332740i
\(909\) 0 0
\(910\) −0.0173727 + 0.166156i −0.000575900 + 0.00550803i
\(911\) 33.1107 1.09701 0.548503 0.836148i \(-0.315198\pi\)
0.548503 + 0.836148i \(0.315198\pi\)
\(912\) 0 0
\(913\) −1.82552 3.16189i −0.0604158 0.104643i
\(914\) −28.2362 0.440653i −0.933970 0.0145755i
\(915\) 0 0
\(916\) −10.4897 19.5534i −0.346588 0.646064i
\(917\) −29.2051 + 41.5934i −0.964436 + 1.37353i
\(918\) 0 0
\(919\) −38.7490 22.3718i −1.27821 0.737976i −0.301693 0.953405i \(-0.597552\pi\)
−0.976520 + 0.215429i \(0.930885\pi\)
\(920\) 4.20372 2.17135i 0.138592 0.0715872i
\(921\) 0 0
\(922\) 4.82170 2.68437i 0.158794 0.0884052i
\(923\) −1.22540 −0.0403345
\(924\) 0 0
\(925\) −21.1758 −0.696256
\(926\) 13.6264 7.58620i 0.447791 0.249298i
\(927\) 0 0
\(928\) −15.8380 10.8731i −0.519907 0.356927i
\(929\) −35.1764 20.3091i −1.15410 0.666319i −0.204216 0.978926i \(-0.565465\pi\)
−0.949883 + 0.312606i \(0.898798\pi\)
\(930\) 0 0
\(931\) −18.0262 15.2063i −0.590786 0.498365i
\(932\) 6.33268 3.39724i 0.207434 0.111280i
\(933\) 0 0
\(934\) −54.4611 0.849918i −1.78202 0.0278102i
\(935\) 0.764685 + 1.32447i 0.0250079 + 0.0433149i
\(936\) 0 0
\(937\) 15.8390 0.517437 0.258718 0.965953i \(-0.416700\pi\)
0.258718 + 0.965953i \(0.416700\pi\)
\(938\) −27.2547 19.7792i −0.889898 0.645812i
\(939\) 0 0
\(940\) −0.0583023 + 1.86749i −0.00190161 + 0.0609109i
\(941\) 35.2983 20.3795i 1.15069 0.664352i 0.201636 0.979461i \(-0.435374\pi\)
0.949056 + 0.315109i \(0.102041\pi\)
\(942\) 0 0
\(943\) −34.0236 19.6435i −1.10796 0.639682i
\(944\) −22.7368 + 34.2524i −0.740021 + 1.11482i
\(945\) 0 0
\(946\) −6.53006 3.90724i −0.212310 0.127035i
\(947\) 10.9987 19.0503i 0.357411 0.619053i −0.630117 0.776500i \(-0.716993\pi\)
0.987527 + 0.157447i \(0.0503264\pi\)
\(948\) 0 0
\(949\) −0.274479 0.475412i −0.00890997 0.0154325i
\(950\) 20.3037 11.3036i 0.658739 0.366739i
\(951\) 0 0
\(952\) −42.4345 + 17.3542i −1.37531 + 0.562454i
\(953\) 23.9613i 0.776184i −0.921621 0.388092i \(-0.873134\pi\)
0.921621 0.388092i \(-0.126866\pi\)
\(954\) 0 0
\(955\) 3.77091 2.17714i 0.122024 0.0704504i
\(956\) 6.48206 10.4593i 0.209645 0.338279i
\(957\) 0 0
\(958\) 10.7621 17.9863i 0.347706 0.581111i
\(959\) −25.3923 + 11.8003i −0.819961 + 0.381050i
\(960\) 0 0
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) −0.782552 0.0122125i −0.0252305 0.000393747i
\(963\) 0 0
\(964\) 25.0735 + 0.782784i 0.807563 + 0.0252118i
\(965\) 0.469343i 0.0151087i
\(966\) 0 0
\(967\) 53.1580i 1.70945i 0.519084 + 0.854723i \(0.326273\pi\)
−0.519084 + 0.854723i \(0.673727\pi\)
\(968\) 16.0245 24.9778i 0.515048 0.802817i
\(969\) 0 0
\(970\) −0.134057 + 8.59011i −0.00430431 + 0.275812i
\(971\) 20.7550 35.9488i 0.666060 1.15365i −0.312936 0.949774i \(-0.601313\pi\)
0.978997 0.203876i \(-0.0653540\pi\)
\(972\) 0 0
\(973\) −2.72641 + 30.7010i −0.0874048 + 0.984227i
\(974\) −10.4461 6.25042i −0.334716 0.200276i
\(975\) 0 0
\(976\) 22.6637 + 1.41648i 0.725448 + 0.0453405i
\(977\) 22.0401 12.7249i 0.705127 0.407105i −0.104127 0.994564i \(-0.533205\pi\)
0.809254 + 0.587459i \(0.199872\pi\)
\(978\) 0 0
\(979\) 6.41085i 0.204892i
\(980\) −4.66234 + 1.52048i −0.148933 + 0.0485698i
\(981\) 0 0
\(982\) 6.01832 + 10.8102i 0.192052 + 0.344966i
\(983\) −11.7347 20.3252i −0.374280 0.648273i 0.615939 0.787794i \(-0.288777\pi\)
−0.990219 + 0.139522i \(0.955444\pi\)
\(984\) 0 0
\(985\) −2.11241 + 3.65879i −0.0673068 + 0.116579i
\(986\) 15.1078 25.2491i 0.481129 0.804096i
\(987\) 0 0
\(988\) 0.756843 0.406017i 0.0240784 0.0129171i
\(989\) −31.2265 18.0286i −0.992945 0.573277i
\(990\) 0 0
\(991\) 48.6218 28.0718i 1.54452 0.891731i 0.545979 0.837799i \(-0.316158\pi\)
0.998545 0.0539326i \(-0.0171756\pi\)
\(992\) 0.00103085 0.0131853i 3.27296e−5 0.000418632i
\(993\) 0 0
\(994\) −14.6485 32.8531i −0.464621 1.04204i
\(995\) 4.15708 0.131788
\(996\) 0 0
\(997\) −12.9528 22.4350i −0.410221 0.710523i 0.584693 0.811255i \(-0.301215\pi\)
−0.994914 + 0.100732i \(0.967882\pi\)
\(998\) −0.639951 + 41.0068i −0.0202573 + 1.29805i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.be.c.107.5 28
3.2 odd 2 inner 756.2.be.c.107.10 yes 28
4.3 odd 2 756.2.be.d.107.1 yes 28
7.4 even 3 756.2.be.d.431.14 yes 28
12.11 even 2 756.2.be.d.107.14 yes 28
21.11 odd 6 756.2.be.d.431.1 yes 28
28.11 odd 6 inner 756.2.be.c.431.10 yes 28
84.11 even 6 inner 756.2.be.c.431.5 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.be.c.107.5 28 1.1 even 1 trivial
756.2.be.c.107.10 yes 28 3.2 odd 2 inner
756.2.be.c.431.5 yes 28 84.11 even 6 inner
756.2.be.c.431.10 yes 28 28.11 odd 6 inner
756.2.be.d.107.1 yes 28 4.3 odd 2
756.2.be.d.107.14 yes 28 12.11 even 2
756.2.be.d.431.1 yes 28 21.11 odd 6
756.2.be.d.431.14 yes 28 7.4 even 3