Properties

Label 756.2.b.c.55.3
Level $756$
Weight $2$
Character 756.55
Analytic conductor $6.037$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(55,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,8,0,0,-2,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.60771337450861625344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 11x^{8} - 26x^{6} + 44x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.3
Root \(1.15343 - 0.818285i\) of defining polynomial
Character \(\chi\) \(=\) 756.55
Dual form 756.2.b.c.55.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15343 - 0.818285i) q^{2} +(0.660819 + 1.88768i) q^{4} +2.16295i q^{5} +(1.94827 + 1.79004i) q^{7} +(0.782447 - 2.71805i) q^{8} +(1.76991 - 2.49482i) q^{10} -0.414503i q^{11} +2.36578i q^{13} +(-0.782447 - 3.65893i) q^{14} +(-3.12664 + 2.49482i) q^{16} -0.695686i q^{17} +5.21819 q^{19} +(-4.08295 + 1.42932i) q^{20} +(-0.339181 + 0.478101i) q^{22} +0.414503i q^{23} +0.321637 q^{25} +(1.93588 - 2.72877i) q^{26} +(-2.09155 + 4.86060i) q^{28} -9.73080 q^{29} -2.03509 q^{31} +(5.64785 - 0.319131i) q^{32} +(-0.569269 + 0.802428i) q^{34} +(-3.87176 + 4.21403i) q^{35} -7.43637 q^{37} +(-6.01883 - 4.26997i) q^{38} +(5.87901 + 1.69239i) q^{40} +10.5910i q^{41} +8.76500i q^{43} +(0.782447 - 0.273911i) q^{44} +(0.339181 - 0.478101i) q^{46} +5.11706 q^{47} +(0.591549 + 6.97496i) q^{49} +(-0.370987 - 0.263191i) q^{50} +(-4.46582 + 1.56335i) q^{52} -3.12979 q^{53} +0.896550 q^{55} +(6.38982 - 3.89489i) q^{56} +(11.2238 + 7.96257i) q^{58} +11.2147 q^{59} -3.97063i q^{61} +(2.34734 + 1.66528i) q^{62} +(-6.77555 - 4.25345i) q^{64} -5.11706 q^{65} +2.36578i q^{67} +(1.31323 - 0.459722i) q^{68} +(7.91409 - 1.69239i) q^{70} +4.04472i q^{71} -12.3451i q^{73} +(8.57736 + 6.08507i) q^{74} +(3.44827 + 9.85024i) q^{76} +(0.741974 - 0.807565i) q^{77} -7.61351i q^{79} +(-5.39618 - 6.76277i) q^{80} +(8.66646 - 12.2160i) q^{82} +12.8606 q^{83} +1.50474 q^{85} +(7.17227 - 10.1098i) q^{86} +(-1.12664 - 0.324326i) q^{88} +14.6931i q^{89} +(-4.23482 + 4.60918i) q^{91} +(-0.782447 + 0.273911i) q^{92} +(-5.90219 - 4.18722i) q^{94} +11.2867i q^{95} +3.97063i q^{97} +(5.02519 - 8.52921i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} - 2 q^{7} - 4 q^{10} - 12 q^{16} + 12 q^{19} - 4 q^{22} + 4 q^{25} - 24 q^{31} - 32 q^{34} + 12 q^{37} + 20 q^{40} + 4 q^{46} - 18 q^{49} - 28 q^{52} - 40 q^{55} + 8 q^{58} + 20 q^{64} + 44 q^{70}+ \cdots + 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15343 0.818285i −0.815601 0.578615i
\(3\) 0 0
\(4\) 0.660819 + 1.88768i 0.330409 + 0.943838i
\(5\) 2.16295i 0.967302i 0.875261 + 0.483651i \(0.160690\pi\)
−0.875261 + 0.483651i \(0.839310\pi\)
\(6\) 0 0
\(7\) 1.94827 + 1.79004i 0.736379 + 0.676570i
\(8\) 0.782447 2.71805i 0.276637 0.960975i
\(9\) 0 0
\(10\) 1.76991 2.49482i 0.559695 0.788932i
\(11\) 0.414503i 0.124977i −0.998046 0.0624886i \(-0.980096\pi\)
0.998046 0.0624886i \(-0.0199037\pi\)
\(12\) 0 0
\(13\) 2.36578i 0.656148i 0.944652 + 0.328074i \(0.106400\pi\)
−0.944652 + 0.328074i \(0.893600\pi\)
\(14\) −0.782447 3.65893i −0.209118 0.977890i
\(15\) 0 0
\(16\) −3.12664 + 2.49482i −0.781659 + 0.623706i
\(17\) 0.695686i 0.168729i −0.996435 0.0843643i \(-0.973114\pi\)
0.996435 0.0843643i \(-0.0268859\pi\)
\(18\) 0 0
\(19\) 5.21819 1.19713 0.598567 0.801073i \(-0.295737\pi\)
0.598567 + 0.801073i \(0.295737\pi\)
\(20\) −4.08295 + 1.42932i −0.912976 + 0.319605i
\(21\) 0 0
\(22\) −0.339181 + 0.478101i −0.0723137 + 0.101932i
\(23\) 0.414503i 0.0864298i 0.999066 + 0.0432149i \(0.0137600\pi\)
−0.999066 + 0.0432149i \(0.986240\pi\)
\(24\) 0 0
\(25\) 0.321637 0.0643274
\(26\) 1.93588 2.72877i 0.379657 0.535155i
\(27\) 0 0
\(28\) −2.09155 + 4.86060i −0.395266 + 0.918567i
\(29\) −9.73080 −1.80696 −0.903482 0.428626i \(-0.858998\pi\)
−0.903482 + 0.428626i \(0.858998\pi\)
\(30\) 0 0
\(31\) −2.03509 −0.365513 −0.182756 0.983158i \(-0.558502\pi\)
−0.182756 + 0.983158i \(0.558502\pi\)
\(32\) 5.64785 0.319131i 0.998407 0.0564148i
\(33\) 0 0
\(34\) −0.569269 + 0.802428i −0.0976289 + 0.137615i
\(35\) −3.87176 + 4.21403i −0.654447 + 0.712300i
\(36\) 0 0
\(37\) −7.43637 −1.22253 −0.611266 0.791425i \(-0.709339\pi\)
−0.611266 + 0.791425i \(0.709339\pi\)
\(38\) −6.01883 4.26997i −0.976384 0.692680i
\(39\) 0 0
\(40\) 5.87901 + 1.69239i 0.929552 + 0.267591i
\(41\) 10.5910i 1.65404i 0.562175 + 0.827018i \(0.309965\pi\)
−0.562175 + 0.827018i \(0.690035\pi\)
\(42\) 0 0
\(43\) 8.76500i 1.33665i 0.743870 + 0.668325i \(0.232988\pi\)
−0.743870 + 0.668325i \(0.767012\pi\)
\(44\) 0.782447 0.273911i 0.117958 0.0412936i
\(45\) 0 0
\(46\) 0.339181 0.478101i 0.0500096 0.0704922i
\(47\) 5.11706 0.746400 0.373200 0.927751i \(-0.378260\pi\)
0.373200 + 0.927751i \(0.378260\pi\)
\(48\) 0 0
\(49\) 0.591549 + 6.97496i 0.0845070 + 0.996423i
\(50\) −0.370987 0.263191i −0.0524655 0.0372208i
\(51\) 0 0
\(52\) −4.46582 + 1.56335i −0.619298 + 0.216798i
\(53\) −3.12979 −0.429909 −0.214955 0.976624i \(-0.568960\pi\)
−0.214955 + 0.976624i \(0.568960\pi\)
\(54\) 0 0
\(55\) 0.896550 0.120891
\(56\) 6.38982 3.89489i 0.853876 0.520477i
\(57\) 0 0
\(58\) 11.2238 + 7.96257i 1.47376 + 1.04554i
\(59\) 11.2147 1.46004 0.730018 0.683428i \(-0.239512\pi\)
0.730018 + 0.683428i \(0.239512\pi\)
\(60\) 0 0
\(61\) 3.97063i 0.508387i −0.967153 0.254194i \(-0.918190\pi\)
0.967153 0.254194i \(-0.0818101\pi\)
\(62\) 2.34734 + 1.66528i 0.298112 + 0.211491i
\(63\) 0 0
\(64\) −6.77555 4.25345i −0.846944 0.531682i
\(65\) −5.11706 −0.634693
\(66\) 0 0
\(67\) 2.36578i 0.289026i 0.989503 + 0.144513i \(0.0461615\pi\)
−0.989503 + 0.144513i \(0.953839\pi\)
\(68\) 1.31323 0.459722i 0.159252 0.0557495i
\(69\) 0 0
\(70\) 7.91409 1.69239i 0.945915 0.202280i
\(71\) 4.04472i 0.480020i 0.970770 + 0.240010i \(0.0771507\pi\)
−0.970770 + 0.240010i \(0.922849\pi\)
\(72\) 0 0
\(73\) 12.3451i 1.44488i −0.691433 0.722440i \(-0.743020\pi\)
0.691433 0.722440i \(-0.256980\pi\)
\(74\) 8.57736 + 6.08507i 0.997098 + 0.707376i
\(75\) 0 0
\(76\) 3.44827 + 9.85024i 0.395544 + 1.12990i
\(77\) 0.741974 0.807565i 0.0845558 0.0920306i
\(78\) 0 0
\(79\) 7.61351i 0.856587i −0.903640 0.428293i \(-0.859115\pi\)
0.903640 0.428293i \(-0.140885\pi\)
\(80\) −5.39618 6.76277i −0.603311 0.756100i
\(81\) 0 0
\(82\) 8.66646 12.2160i 0.957051 1.34903i
\(83\) 12.8606 1.41163 0.705816 0.708395i \(-0.250580\pi\)
0.705816 + 0.708395i \(0.250580\pi\)
\(84\) 0 0
\(85\) 1.50474 0.163211
\(86\) 7.17227 10.1098i 0.773405 1.09017i
\(87\) 0 0
\(88\) −1.12664 0.324326i −0.120100 0.0345733i
\(89\) 14.6931i 1.55747i 0.627353 + 0.778735i \(0.284139\pi\)
−0.627353 + 0.778735i \(0.715861\pi\)
\(90\) 0 0
\(91\) −4.23482 + 4.60918i −0.443930 + 0.483174i
\(92\) −0.782447 + 0.273911i −0.0815757 + 0.0285572i
\(93\) 0 0
\(94\) −5.90219 4.18722i −0.608765 0.431878i
\(95\) 11.2867i 1.15799i
\(96\) 0 0
\(97\) 3.97063i 0.403157i 0.979472 + 0.201578i \(0.0646070\pi\)
−0.979472 + 0.201578i \(0.935393\pi\)
\(98\) 5.02519 8.52921i 0.507621 0.861580i
\(99\) 0 0
\(100\) 0.212544 + 0.607147i 0.0212544 + 0.0607147i
\(101\) 14.8410i 1.47674i −0.674398 0.738368i \(-0.735597\pi\)
0.674398 0.738368i \(-0.264403\pi\)
\(102\) 0 0
\(103\) 3.42509 0.337484 0.168742 0.985660i \(-0.446030\pi\)
0.168742 + 0.985660i \(0.446030\pi\)
\(104\) 6.43029 + 1.85109i 0.630542 + 0.181515i
\(105\) 0 0
\(106\) 3.61000 + 2.56106i 0.350634 + 0.248752i
\(107\) 14.5024i 1.40200i 0.713161 + 0.701000i \(0.247263\pi\)
−0.713161 + 0.701000i \(0.752737\pi\)
\(108\) 0 0
\(109\) −8.40128 −0.804697 −0.402349 0.915487i \(-0.631806\pi\)
−0.402349 + 0.915487i \(0.631806\pi\)
\(110\) −1.03411 0.733633i −0.0985986 0.0699492i
\(111\) 0 0
\(112\) −10.5574 0.736192i −0.997578 0.0695636i
\(113\) 4.61373 0.434024 0.217012 0.976169i \(-0.430369\pi\)
0.217012 + 0.976169i \(0.430369\pi\)
\(114\) 0 0
\(115\) −0.896550 −0.0836037
\(116\) −6.43029 18.3686i −0.597038 1.70548i
\(117\) 0 0
\(118\) −12.9355 9.17686i −1.19081 0.844799i
\(119\) 1.24530 1.35539i 0.114157 0.124248i
\(120\) 0 0
\(121\) 10.8282 0.984381
\(122\) −3.24911 + 4.57986i −0.294161 + 0.414641i
\(123\) 0 0
\(124\) −1.34482 3.84159i −0.120769 0.344985i
\(125\) 11.5104i 1.02953i
\(126\) 0 0
\(127\) 6.33641i 0.562265i −0.959669 0.281133i \(-0.909290\pi\)
0.959669 0.281133i \(-0.0907101\pi\)
\(128\) 4.33462 + 10.4504i 0.383130 + 0.923695i
\(129\) 0 0
\(130\) 5.90219 + 4.18722i 0.517657 + 0.367243i
\(131\) −18.9583 −1.65639 −0.828196 0.560439i \(-0.810632\pi\)
−0.828196 + 0.560439i \(0.810632\pi\)
\(132\) 0 0
\(133\) 10.1665 + 9.34074i 0.881544 + 0.809945i
\(134\) 1.93588 2.72877i 0.167235 0.235730i
\(135\) 0 0
\(136\) −1.89091 0.544337i −0.162144 0.0466765i
\(137\) −1.98728 −0.169784 −0.0848922 0.996390i \(-0.527055\pi\)
−0.0848922 + 0.996390i \(0.527055\pi\)
\(138\) 0 0
\(139\) −13.6195 −1.15519 −0.577594 0.816324i \(-0.696008\pi\)
−0.577594 + 0.816324i \(0.696008\pi\)
\(140\) −10.5132 4.52392i −0.888531 0.382341i
\(141\) 0 0
\(142\) 3.30974 4.66532i 0.277747 0.391505i
\(143\) 0.980621 0.0820036
\(144\) 0 0
\(145\) 21.0473i 1.74788i
\(146\) −10.1018 + 14.2392i −0.836030 + 1.17845i
\(147\) 0 0
\(148\) −4.91409 14.0375i −0.403936 1.15387i
\(149\) −12.3573 −1.01235 −0.506173 0.862432i \(-0.668940\pi\)
−0.506173 + 0.862432i \(0.668940\pi\)
\(150\) 0 0
\(151\) 15.8623i 1.29086i −0.763820 0.645429i \(-0.776679\pi\)
0.763820 0.645429i \(-0.223321\pi\)
\(152\) 4.08295 14.1833i 0.331171 1.15042i
\(153\) 0 0
\(154\) −1.51664 + 0.324326i −0.122214 + 0.0261349i
\(155\) 4.40180i 0.353561i
\(156\) 0 0
\(157\) 8.37443i 0.668353i 0.942511 + 0.334176i \(0.108458\pi\)
−0.942511 + 0.334176i \(0.891542\pi\)
\(158\) −6.23002 + 8.78168i −0.495634 + 0.698633i
\(159\) 0 0
\(160\) 0.690264 + 12.2160i 0.0545702 + 0.965761i
\(161\) −0.741974 + 0.807565i −0.0584758 + 0.0636450i
\(162\) 0 0
\(163\) 17.0766i 1.33754i −0.743468 0.668772i \(-0.766820\pi\)
0.743468 0.668772i \(-0.233180\pi\)
\(164\) −19.9924 + 6.99873i −1.56114 + 0.546509i
\(165\) 0 0
\(166\) −14.8338 10.5236i −1.15133 0.816792i
\(167\) 7.74352 0.599212 0.299606 0.954063i \(-0.403145\pi\)
0.299606 + 0.954063i \(0.403145\pi\)
\(168\) 0 0
\(169\) 7.40310 0.569469
\(170\) −1.73561 1.23130i −0.133115 0.0944366i
\(171\) 0 0
\(172\) −16.5455 + 5.79207i −1.26158 + 0.441641i
\(173\) 4.25001i 0.323122i 0.986863 + 0.161561i \(0.0516529\pi\)
−0.986863 + 0.161561i \(0.948347\pi\)
\(174\) 0 0
\(175\) 0.626638 + 0.575742i 0.0473693 + 0.0435220i
\(176\) 1.03411 + 1.29600i 0.0779490 + 0.0976896i
\(177\) 0 0
\(178\) 12.0232 16.9476i 0.901176 1.27027i
\(179\) 8.85710i 0.662011i −0.943629 0.331005i \(-0.892612\pi\)
0.943629 0.331005i \(-0.107388\pi\)
\(180\) 0 0
\(181\) 23.9292i 1.77864i 0.457281 + 0.889322i \(0.348823\pi\)
−0.457281 + 0.889322i \(0.651177\pi\)
\(182\) 8.65621 1.85109i 0.641641 0.137212i
\(183\) 0 0
\(184\) 1.12664 + 0.324326i 0.0830568 + 0.0239096i
\(185\) 16.0845i 1.18256i
\(186\) 0 0
\(187\) −0.288364 −0.0210872
\(188\) 3.38145 + 9.65935i 0.246618 + 0.704481i
\(189\) 0 0
\(190\) 9.23573 13.0184i 0.670030 0.944457i
\(191\) 25.9224i 1.87568i −0.347068 0.937840i \(-0.612823\pi\)
0.347068 0.937840i \(-0.387177\pi\)
\(192\) 0 0
\(193\) 11.6896 0.841439 0.420720 0.907191i \(-0.361778\pi\)
0.420720 + 0.907191i \(0.361778\pi\)
\(194\) 3.24911 4.57986i 0.233272 0.328815i
\(195\) 0 0
\(196\) −12.7756 + 5.72584i −0.912540 + 0.408988i
\(197\) 11.7181 0.834878 0.417439 0.908705i \(-0.362928\pi\)
0.417439 + 0.908705i \(0.362928\pi\)
\(198\) 0 0
\(199\) −6.72292 −0.476575 −0.238288 0.971195i \(-0.576586\pi\)
−0.238288 + 0.971195i \(0.576586\pi\)
\(200\) 0.251664 0.874225i 0.0177953 0.0618170i
\(201\) 0 0
\(202\) −12.1442 + 17.1181i −0.854462 + 1.20443i
\(203\) −18.9583 17.4185i −1.33061 1.22254i
\(204\) 0 0
\(205\) −22.9078 −1.59995
\(206\) −3.95061 2.80270i −0.275252 0.195273i
\(207\) 0 0
\(208\) −5.90219 7.39693i −0.409243 0.512885i
\(209\) 2.16295i 0.149615i
\(210\) 0 0
\(211\) 6.39922i 0.440540i −0.975439 0.220270i \(-0.929306\pi\)
0.975439 0.220270i \(-0.0706939\pi\)
\(212\) −2.06822 5.90802i −0.142046 0.405765i
\(213\) 0 0
\(214\) 11.8671 16.7276i 0.811219 1.14347i
\(215\) −18.9583 −1.29294
\(216\) 0 0
\(217\) −3.96491 3.64288i −0.269156 0.247295i
\(218\) 9.69033 + 6.87465i 0.656312 + 0.465610i
\(219\) 0 0
\(220\) 0.592457 + 1.69239i 0.0399434 + 0.114101i
\(221\) 1.64584 0.110711
\(222\) 0 0
\(223\) −8.82637 −0.591058 −0.295529 0.955334i \(-0.595496\pi\)
−0.295529 + 0.955334i \(0.595496\pi\)
\(224\) 11.5748 + 9.48809i 0.773374 + 0.633949i
\(225\) 0 0
\(226\) −5.32164 3.77535i −0.353990 0.251133i
\(227\) 21.5847 1.43263 0.716314 0.697778i \(-0.245828\pi\)
0.716314 + 0.697778i \(0.245828\pi\)
\(228\) 0 0
\(229\) 22.6521i 1.49689i −0.663195 0.748447i \(-0.730800\pi\)
0.663195 0.748447i \(-0.269200\pi\)
\(230\) 1.03411 + 0.733633i 0.0681872 + 0.0483743i
\(231\) 0 0
\(232\) −7.61383 + 26.4488i −0.499872 + 1.73645i
\(233\) 22.5914 1.48001 0.740005 0.672601i \(-0.234823\pi\)
0.740005 + 0.672601i \(0.234823\pi\)
\(234\) 0 0
\(235\) 11.0680i 0.721994i
\(236\) 7.41091 + 21.1698i 0.482409 + 1.37804i
\(237\) 0 0
\(238\) −2.54547 + 0.544337i −0.164998 + 0.0352841i
\(239\) 4.68298i 0.302917i 0.988464 + 0.151458i \(0.0483970\pi\)
−0.988464 + 0.151458i \(0.951603\pi\)
\(240\) 0 0
\(241\) 2.36578i 0.152393i −0.997093 0.0761965i \(-0.975722\pi\)
0.997093 0.0761965i \(-0.0242776\pi\)
\(242\) −12.4896 8.86055i −0.802862 0.569577i
\(243\) 0 0
\(244\) 7.49526 2.62387i 0.479835 0.167976i
\(245\) −15.0865 + 1.27949i −0.963842 + 0.0817438i
\(246\) 0 0
\(247\) 12.3451i 0.785498i
\(248\) −1.59235 + 5.53147i −0.101114 + 0.351248i
\(249\) 0 0
\(250\) 9.41883 13.2765i 0.595699 0.839682i
\(251\) −10.2341 −0.645972 −0.322986 0.946404i \(-0.604687\pi\)
−0.322986 + 0.946404i \(0.604687\pi\)
\(252\) 0 0
\(253\) 0.171812 0.0108018
\(254\) −5.18499 + 7.30863i −0.325335 + 0.458584i
\(255\) 0 0
\(256\) 3.55173 15.6008i 0.221983 0.975051i
\(257\) 0.0758947i 0.00473418i −0.999997 0.00236709i \(-0.999247\pi\)
0.999997 0.00236709i \(-0.000753469\pi\)
\(258\) 0 0
\(259\) −14.4881 13.3114i −0.900247 0.827128i
\(260\) −3.38145 9.65935i −0.209709 0.599048i
\(261\) 0 0
\(262\) 21.8671 + 15.5133i 1.35095 + 0.958413i
\(263\) 15.2740i 0.941834i −0.882177 0.470917i \(-0.843923\pi\)
0.882177 0.470917i \(-0.156077\pi\)
\(264\) 0 0
\(265\) 6.76958i 0.415852i
\(266\) −4.08295 19.0930i −0.250342 1.17067i
\(267\) 0 0
\(268\) −4.46582 + 1.56335i −0.272793 + 0.0954968i
\(269\) 17.0040i 1.03675i −0.855153 0.518375i \(-0.826537\pi\)
0.855153 0.518375i \(-0.173463\pi\)
\(270\) 0 0
\(271\) 0.676548 0.0410974 0.0205487 0.999789i \(-0.493459\pi\)
0.0205487 + 0.999789i \(0.493459\pi\)
\(272\) 1.73561 + 2.17516i 0.105237 + 0.131888i
\(273\) 0 0
\(274\) 2.29219 + 1.62616i 0.138476 + 0.0982399i
\(275\) 0.133319i 0.00803947i
\(276\) 0 0
\(277\) −0.323452 −0.0194344 −0.00971718 0.999953i \(-0.503093\pi\)
−0.00971718 + 0.999953i \(0.503093\pi\)
\(278\) 15.7092 + 11.1446i 0.942173 + 0.668409i
\(279\) 0 0
\(280\) 8.42447 + 13.8209i 0.503459 + 0.825955i
\(281\) 3.63311 0.216733 0.108367 0.994111i \(-0.465438\pi\)
0.108367 + 0.994111i \(0.465438\pi\)
\(282\) 0 0
\(283\) 27.5862 1.63983 0.819915 0.572486i \(-0.194021\pi\)
0.819915 + 0.572486i \(0.194021\pi\)
\(284\) −7.63512 + 2.67283i −0.453061 + 0.158603i
\(285\) 0 0
\(286\) −1.13108 0.802428i −0.0668822 0.0474485i
\(287\) −18.9583 + 20.6342i −1.11907 + 1.21800i
\(288\) 0 0
\(289\) 16.5160 0.971531
\(290\) −17.2227 + 24.2766i −1.01135 + 1.42557i
\(291\) 0 0
\(292\) 23.3035 8.15785i 1.36373 0.477402i
\(293\) 20.4863i 1.19682i −0.801189 0.598412i \(-0.795799\pi\)
0.801189 0.598412i \(-0.204201\pi\)
\(294\) 0 0
\(295\) 24.2570i 1.41229i
\(296\) −5.81856 + 20.2124i −0.338197 + 1.17482i
\(297\) 0 0
\(298\) 14.2533 + 10.1118i 0.825670 + 0.585759i
\(299\) −0.980621 −0.0567108
\(300\) 0 0
\(301\) −15.6896 + 17.0766i −0.904336 + 0.984280i
\(302\) −12.9799 + 18.2961i −0.746910 + 1.05282i
\(303\) 0 0
\(304\) −16.3154 + 13.0184i −0.935751 + 0.746659i
\(305\) 8.58829 0.491764
\(306\) 0 0
\(307\) 20.6308 1.17746 0.588730 0.808330i \(-0.299628\pi\)
0.588730 + 0.808330i \(0.299628\pi\)
\(308\) 2.01473 + 0.866953i 0.114800 + 0.0493992i
\(309\) 0 0
\(310\) −3.60193 + 5.07718i −0.204576 + 0.288365i
\(311\) 16.4677 0.933795 0.466898 0.884311i \(-0.345372\pi\)
0.466898 + 0.884311i \(0.345372\pi\)
\(312\) 0 0
\(313\) 27.0559i 1.52929i −0.644452 0.764645i \(-0.722914\pi\)
0.644452 0.764645i \(-0.277086\pi\)
\(314\) 6.85268 9.65935i 0.386719 0.545109i
\(315\) 0 0
\(316\) 14.3718 5.03115i 0.808479 0.283024i
\(317\) 31.3155 1.75885 0.879427 0.476033i \(-0.157926\pi\)
0.879427 + 0.476033i \(0.157926\pi\)
\(318\) 0 0
\(319\) 4.03344i 0.225829i
\(320\) 9.20001 14.6552i 0.514296 0.819251i
\(321\) 0 0
\(322\) 1.51664 0.324326i 0.0845189 0.0180740i
\(323\) 3.63022i 0.201991i
\(324\) 0 0
\(325\) 0.760922i 0.0422083i
\(326\) −13.9735 + 19.6967i −0.773923 + 1.09090i
\(327\) 0 0
\(328\) 28.7868 + 8.28689i 1.58949 + 0.457567i
\(329\) 9.96944 + 9.15972i 0.549633 + 0.504992i
\(330\) 0 0
\(331\) 21.1101i 1.16031i 0.814505 + 0.580157i \(0.197009\pi\)
−0.814505 + 0.580157i \(0.802991\pi\)
\(332\) 8.49851 + 24.2766i 0.466416 + 1.33235i
\(333\) 0 0
\(334\) −8.93164 6.33641i −0.488717 0.346713i
\(335\) −5.11706 −0.279575
\(336\) 0 0
\(337\) −11.8727 −0.646750 −0.323375 0.946271i \(-0.604817\pi\)
−0.323375 + 0.946271i \(0.604817\pi\)
\(338\) −8.53898 6.05785i −0.464460 0.329503i
\(339\) 0 0
\(340\) 0.994357 + 2.84045i 0.0539266 + 0.154045i
\(341\) 0.843550i 0.0456808i
\(342\) 0 0
\(343\) −11.3329 + 14.6480i −0.611920 + 0.790919i
\(344\) 23.8237 + 6.85814i 1.28449 + 0.369766i
\(345\) 0 0
\(346\) 3.47772 4.90210i 0.186963 0.263539i
\(347\) 19.8052i 1.06320i 0.846996 + 0.531599i \(0.178409\pi\)
−0.846996 + 0.531599i \(0.821591\pi\)
\(348\) 0 0
\(349\) 15.4718i 0.828185i 0.910235 + 0.414092i \(0.135901\pi\)
−0.910235 + 0.414092i \(0.864099\pi\)
\(350\) −0.251664 1.17685i −0.0134520 0.0629052i
\(351\) 0 0
\(352\) −0.132280 2.34105i −0.00705057 0.124778i
\(353\) 27.4471i 1.46086i −0.682986 0.730431i \(-0.739319\pi\)
0.682986 0.730431i \(-0.260681\pi\)
\(354\) 0 0
\(355\) −8.74854 −0.464324
\(356\) −27.7359 + 9.70951i −1.47000 + 0.514603i
\(357\) 0 0
\(358\) −7.24763 + 10.2161i −0.383049 + 0.539936i
\(359\) 8.33761i 0.440042i 0.975495 + 0.220021i \(0.0706126\pi\)
−0.975495 + 0.220021i \(0.929387\pi\)
\(360\) 0 0
\(361\) 8.22947 0.433130
\(362\) 19.5809 27.6008i 1.02915 1.45066i
\(363\) 0 0
\(364\) −11.4991 4.94814i −0.602716 0.259353i
\(365\) 26.7018 1.39764
\(366\) 0 0
\(367\) 16.3091 0.851329 0.425665 0.904881i \(-0.360040\pi\)
0.425665 + 0.904881i \(0.360040\pi\)
\(368\) −1.03411 1.29600i −0.0539067 0.0675587i
\(369\) 0 0
\(370\) −13.1617 + 18.5524i −0.684246 + 0.964495i
\(371\) −6.09768 5.60243i −0.316576 0.290864i
\(372\) 0 0
\(373\) 1.42509 0.0737882 0.0368941 0.999319i \(-0.488254\pi\)
0.0368941 + 0.999319i \(0.488254\pi\)
\(374\) 0.332608 + 0.235964i 0.0171988 + 0.0122014i
\(375\) 0 0
\(376\) 4.00383 13.9084i 0.206482 0.717272i
\(377\) 23.0209i 1.18564i
\(378\) 0 0
\(379\) 27.4465i 1.40983i −0.709292 0.704915i \(-0.750985\pi\)
0.709292 0.704915i \(-0.249015\pi\)
\(380\) −21.3056 + 7.45845i −1.09295 + 0.382611i
\(381\) 0 0
\(382\) −21.2119 + 29.8998i −1.08530 + 1.52981i
\(383\) −6.09768 −0.311577 −0.155789 0.987790i \(-0.549792\pi\)
−0.155789 + 0.987790i \(0.549792\pi\)
\(384\) 0 0
\(385\) 1.74672 + 1.60486i 0.0890213 + 0.0817910i
\(386\) −13.4832 9.56547i −0.686279 0.486869i
\(387\) 0 0
\(388\) −7.49526 + 2.62387i −0.380514 + 0.133207i
\(389\) 4.61373 0.233926 0.116963 0.993136i \(-0.462684\pi\)
0.116963 + 0.993136i \(0.462684\pi\)
\(390\) 0 0
\(391\) 0.288364 0.0145832
\(392\) 19.4211 + 3.84968i 0.980915 + 0.194438i
\(393\) 0 0
\(394\) −13.5160 9.58873i −0.680927 0.483073i
\(395\) 16.4677 0.828578
\(396\) 0 0
\(397\) 26.2120i 1.31554i 0.753218 + 0.657771i \(0.228500\pi\)
−0.753218 + 0.657771i \(0.771500\pi\)
\(398\) 7.75444 + 5.50127i 0.388695 + 0.275754i
\(399\) 0 0
\(400\) −1.00564 + 0.802428i −0.0502821 + 0.0401214i
\(401\) −21.0814 −1.05275 −0.526377 0.850251i \(-0.676450\pi\)
−0.526377 + 0.850251i \(0.676450\pi\)
\(402\) 0 0
\(403\) 4.81457i 0.239831i
\(404\) 28.0150 9.80722i 1.39380 0.487927i
\(405\) 0 0
\(406\) 7.61383 + 35.6043i 0.377868 + 1.76701i
\(407\) 3.08240i 0.152789i
\(408\) 0 0
\(409\) 0.843933i 0.0417298i 0.999782 + 0.0208649i \(0.00664199\pi\)
−0.999782 + 0.0208649i \(0.993358\pi\)
\(410\) 26.4227 + 18.7451i 1.30492 + 0.925757i
\(411\) 0 0
\(412\) 2.26336 + 6.46545i 0.111508 + 0.318530i
\(413\) 21.8494 + 20.0748i 1.07514 + 0.987816i
\(414\) 0 0
\(415\) 27.8168i 1.36547i
\(416\) 0.754992 + 13.3615i 0.0370165 + 0.655103i
\(417\) 0 0
\(418\) −1.76991 + 2.49482i −0.0865692 + 0.122026i
\(419\) −1.64584 −0.0804044 −0.0402022 0.999192i \(-0.512800\pi\)
−0.0402022 + 0.999192i \(0.512800\pi\)
\(420\) 0 0
\(421\) −28.8822 −1.40763 −0.703817 0.710382i \(-0.748522\pi\)
−0.703817 + 0.710382i \(0.748522\pi\)
\(422\) −5.23639 + 7.38107i −0.254903 + 0.359305i
\(423\) 0 0
\(424\) −2.44889 + 8.50690i −0.118929 + 0.413132i
\(425\) 0.223758i 0.0108539i
\(426\) 0 0
\(427\) 7.10757 7.73588i 0.343959 0.374366i
\(428\) −27.3758 + 9.58346i −1.32326 + 0.463234i
\(429\) 0 0
\(430\) 21.8671 + 15.5133i 1.05453 + 0.748116i
\(431\) 35.5181i 1.71085i −0.517930 0.855423i \(-0.673297\pi\)
0.517930 0.855423i \(-0.326703\pi\)
\(432\) 0 0
\(433\) 21.0473i 1.01147i 0.862690 + 0.505733i \(0.168778\pi\)
−0.862690 + 0.505733i \(0.831222\pi\)
\(434\) 1.59235 + 7.44625i 0.0764351 + 0.357431i
\(435\) 0 0
\(436\) −5.55173 15.8589i −0.265879 0.759504i
\(437\) 2.16295i 0.103468i
\(438\) 0 0
\(439\) 30.2295 1.44277 0.721387 0.692532i \(-0.243505\pi\)
0.721387 + 0.692532i \(0.243505\pi\)
\(440\) 0.701502 2.43686i 0.0334428 0.116173i
\(441\) 0 0
\(442\) −1.89836 1.34676i −0.0902960 0.0640591i
\(443\) 2.14448i 0.101887i −0.998702 0.0509437i \(-0.983777\pi\)
0.998702 0.0509437i \(-0.0162229\pi\)
\(444\) 0 0
\(445\) −31.7806 −1.50654
\(446\) 10.1806 + 7.22249i 0.482067 + 0.341995i
\(447\) 0 0
\(448\) −5.58681 20.4154i −0.263952 0.964536i
\(449\) −27.2051 −1.28389 −0.641944 0.766751i \(-0.721872\pi\)
−0.641944 + 0.766751i \(0.721872\pi\)
\(450\) 0 0
\(451\) 4.39000 0.206717
\(452\) 3.04884 + 8.70923i 0.143405 + 0.409648i
\(453\) 0 0
\(454\) −24.8965 17.6625i −1.16845 0.828940i
\(455\) −9.96944 9.15972i −0.467375 0.429414i
\(456\) 0 0
\(457\) 32.2057 1.50652 0.753259 0.657724i \(-0.228481\pi\)
0.753259 + 0.657724i \(0.228481\pi\)
\(458\) −18.5359 + 26.1277i −0.866125 + 1.22087i
\(459\) 0 0
\(460\) −0.592457 1.69239i −0.0276234 0.0789083i
\(461\) 23.8169i 1.10926i −0.832096 0.554631i \(-0.812859\pi\)
0.832096 0.554631i \(-0.187141\pi\)
\(462\) 0 0
\(463\) 18.6815i 0.868202i −0.900864 0.434101i \(-0.857066\pi\)
0.900864 0.434101i \(-0.142934\pi\)
\(464\) 30.4247 24.2766i 1.41243 1.12701i
\(465\) 0 0
\(466\) −26.0577 18.4862i −1.20710 0.856356i
\(467\) −26.7018 −1.23561 −0.617806 0.786331i \(-0.711978\pi\)
−0.617806 + 0.786331i \(0.711978\pi\)
\(468\) 0 0
\(469\) −4.23482 + 4.60918i −0.195546 + 0.212832i
\(470\) 9.05675 12.7662i 0.417757 0.588859i
\(471\) 0 0
\(472\) 8.77494 30.4822i 0.403899 1.40306i
\(473\) 3.63311 0.167051
\(474\) 0 0
\(475\) 1.67836 0.0770086
\(476\) 3.38145 + 1.45506i 0.154989 + 0.0666926i
\(477\) 0 0
\(478\) 3.83202 5.40151i 0.175272 0.247059i
\(479\) 37.9165 1.73245 0.866225 0.499654i \(-0.166539\pi\)
0.866225 + 0.499654i \(0.166539\pi\)
\(480\) 0 0
\(481\) 17.5928i 0.802163i
\(482\) −1.93588 + 2.72877i −0.0881769 + 0.124292i
\(483\) 0 0
\(484\) 7.15547 + 20.4401i 0.325249 + 0.929096i
\(485\) −8.58829 −0.389974
\(486\) 0 0
\(487\) 32.6942i 1.48152i 0.671772 + 0.740758i \(0.265533\pi\)
−0.671772 + 0.740758i \(0.734467\pi\)
\(488\) −10.7924 3.10681i −0.488547 0.140639i
\(489\) 0 0
\(490\) 18.4483 + 10.8693i 0.833408 + 0.491023i
\(491\) 36.8850i 1.66460i −0.554327 0.832299i \(-0.687024\pi\)
0.554327 0.832299i \(-0.312976\pi\)
\(492\) 0 0
\(493\) 6.76958i 0.304886i
\(494\) 10.1018 14.2392i 0.454501 0.640653i
\(495\) 0 0
\(496\) 6.36298 5.07718i 0.285706 0.227972i
\(497\) −7.24019 + 7.88023i −0.324767 + 0.353477i
\(498\) 0 0
\(499\) 8.24881i 0.369268i −0.982807 0.184634i \(-0.940890\pi\)
0.982807 0.184634i \(-0.0591099\pi\)
\(500\) −21.7280 + 7.60632i −0.971705 + 0.340165i
\(501\) 0 0
\(502\) 11.8044 + 8.37443i 0.526855 + 0.373769i
\(503\) 11.2147 0.500041 0.250020 0.968241i \(-0.419563\pi\)
0.250020 + 0.968241i \(0.419563\pi\)
\(504\) 0 0
\(505\) 32.1004 1.42845
\(506\) −0.198174 0.140592i −0.00880992 0.00625006i
\(507\) 0 0
\(508\) 11.9611 4.18722i 0.530687 0.185778i
\(509\) 24.3647i 1.07995i 0.841682 + 0.539973i \(0.181566\pi\)
−0.841682 + 0.539973i \(0.818434\pi\)
\(510\) 0 0
\(511\) 22.0981 24.0516i 0.977562 1.06398i
\(512\) −16.8626 + 15.0882i −0.745228 + 0.666809i
\(513\) 0 0
\(514\) −0.0621035 + 0.0875395i −0.00273927 + 0.00386120i
\(515\) 7.40830i 0.326449i
\(516\) 0 0
\(517\) 2.12104i 0.0932831i
\(518\) 5.81856 + 27.2092i 0.255653 + 1.19550i
\(519\) 0 0
\(520\) −4.00383 + 13.9084i −0.175579 + 0.609924i
\(521\) 3.52991i 0.154648i 0.997006 + 0.0773242i \(0.0246376\pi\)
−0.997006 + 0.0773242i \(0.975362\pi\)
\(522\) 0 0
\(523\) −2.28655 −0.0999838 −0.0499919 0.998750i \(-0.515920\pi\)
−0.0499919 + 0.998750i \(0.515920\pi\)
\(524\) −12.5280 35.7871i −0.547287 1.56336i
\(525\) 0 0
\(526\) −12.4985 + 17.6175i −0.544959 + 0.768161i
\(527\) 1.41578i 0.0616724i
\(528\) 0 0
\(529\) 22.8282 0.992530
\(530\) −5.53945 + 7.80826i −0.240618 + 0.339169i
\(531\) 0 0
\(532\) −10.9141 + 25.3635i −0.473186 + 1.09965i
\(533\) −25.0560 −1.08529
\(534\) 0 0
\(535\) −31.3680 −1.35616
\(536\) 6.43029 + 1.85109i 0.277746 + 0.0799551i
\(537\) 0 0
\(538\) −13.9141 + 19.6129i −0.599879 + 0.845574i
\(539\) 2.89114 0.245199i 0.124530 0.0105615i
\(540\) 0 0
\(541\) 0.216372 0.00930255 0.00465127 0.999989i \(-0.498519\pi\)
0.00465127 + 0.999989i \(0.498519\pi\)
\(542\) −0.780353 0.553609i −0.0335190 0.0237795i
\(543\) 0 0
\(544\) −0.222015 3.92913i −0.00951880 0.168460i
\(545\) 18.1716i 0.778385i
\(546\) 0 0
\(547\) 32.8761i 1.40568i 0.711347 + 0.702841i \(0.248085\pi\)
−0.711347 + 0.702841i \(0.751915\pi\)
\(548\) −1.31323 3.75133i −0.0560984 0.160249i
\(549\) 0 0
\(550\) −0.109093 + 0.153775i −0.00465176 + 0.00655700i
\(551\) −50.7771 −2.16318
\(552\) 0 0
\(553\) 13.6285 14.8332i 0.579541 0.630772i
\(554\) 0.373081 + 0.264676i 0.0158507 + 0.0112450i
\(555\) 0 0
\(556\) −9.00000 25.7091i −0.381685 1.09031i
\(557\) 1.48395 0.0628769 0.0314385 0.999506i \(-0.489991\pi\)
0.0314385 + 0.999506i \(0.489991\pi\)
\(558\) 0 0
\(559\) −20.7360 −0.877040
\(560\) 1.59235 22.8351i 0.0672890 0.964958i
\(561\) 0 0
\(562\) −4.19056 2.97292i −0.176768 0.125405i
\(563\) −7.60767 −0.320625 −0.160312 0.987066i \(-0.551250\pi\)
−0.160312 + 0.987066i \(0.551250\pi\)
\(564\) 0 0
\(565\) 9.97929i 0.419832i
\(566\) −31.8189 22.5734i −1.33745 0.948830i
\(567\) 0 0
\(568\) 10.9937 + 3.16478i 0.461287 + 0.132791i
\(569\) 0.477293 0.0200092 0.0100046 0.999950i \(-0.496815\pi\)
0.0100046 + 0.999950i \(0.496815\pi\)
\(570\) 0 0
\(571\) 3.97063i 0.166166i 0.996543 + 0.0830829i \(0.0264766\pi\)
−0.996543 + 0.0830829i \(0.973523\pi\)
\(572\) 0.648012 + 1.85109i 0.0270948 + 0.0773981i
\(573\) 0 0
\(574\) 38.7518 8.28689i 1.61747 0.345888i
\(575\) 0.133319i 0.00555981i
\(576\) 0 0
\(577\) 10.7402i 0.447121i −0.974690 0.223560i \(-0.928232\pi\)
0.974690 0.223560i \(-0.0717680\pi\)
\(578\) −19.0501 13.5148i −0.792381 0.562142i
\(579\) 0 0
\(580\) 39.7304 13.9084i 1.64971 0.577515i
\(581\) 25.0560 + 23.0209i 1.03950 + 0.955068i
\(582\) 0 0
\(583\) 1.29730i 0.0537289i
\(584\) −33.5545 9.65935i −1.38849 0.399707i
\(585\) 0 0
\(586\) −16.7637 + 23.6296i −0.692500 + 0.976130i
\(587\) −1.64584 −0.0679310 −0.0339655 0.999423i \(-0.510814\pi\)
−0.0339655 + 0.999423i \(0.510814\pi\)
\(588\) 0 0
\(589\) −10.6195 −0.437568
\(590\) 19.8491 27.9788i 0.817175 1.15187i
\(591\) 0 0
\(592\) 23.2508 18.5524i 0.955604 0.762500i
\(593\) 8.28019i 0.340027i −0.985442 0.170013i \(-0.945619\pi\)
0.985442 0.170013i \(-0.0543811\pi\)
\(594\) 0 0
\(595\) 2.93164 + 2.69353i 0.120185 + 0.110424i
\(596\) −8.16590 23.3265i −0.334488 0.955490i
\(597\) 0 0
\(598\) 1.13108 + 0.802428i 0.0462533 + 0.0328137i
\(599\) 19.0006i 0.776343i 0.921587 + 0.388171i \(0.126893\pi\)
−0.921587 + 0.388171i \(0.873107\pi\)
\(600\) 0 0
\(601\) 27.8168i 1.13467i −0.823486 0.567336i \(-0.807974\pi\)
0.823486 0.567336i \(-0.192026\pi\)
\(602\) 32.0705 6.85814i 1.30710 0.279517i
\(603\) 0 0
\(604\) 29.9429 10.4821i 1.21836 0.426511i
\(605\) 23.4209i 0.952193i
\(606\) 0 0
\(607\) 19.1166 0.775917 0.387958 0.921677i \(-0.373180\pi\)
0.387958 + 0.921677i \(0.373180\pi\)
\(608\) 29.4715 1.66528i 1.19523 0.0675361i
\(609\) 0 0
\(610\) −9.90602 7.02767i −0.401083 0.284542i
\(611\) 12.1058i 0.489749i
\(612\) 0 0
\(613\) −0.345440 −0.0139522 −0.00697609 0.999976i \(-0.502221\pi\)
−0.00697609 + 0.999976i \(0.502221\pi\)
\(614\) −23.7962 16.8818i −0.960337 0.681296i
\(615\) 0 0
\(616\) −1.61444 2.64860i −0.0650478 0.106715i
\(617\) 13.3379 0.536963 0.268481 0.963285i \(-0.413478\pi\)
0.268481 + 0.963285i \(0.413478\pi\)
\(618\) 0 0
\(619\) −21.4589 −0.862508 −0.431254 0.902231i \(-0.641929\pi\)
−0.431254 + 0.902231i \(0.641929\pi\)
\(620\) 8.30917 2.90879i 0.333704 0.116820i
\(621\) 0 0
\(622\) −18.9944 13.4752i −0.761604 0.540308i
\(623\) −26.3013 + 28.6263i −1.05374 + 1.14689i
\(624\) 0 0
\(625\) −23.2884 −0.931535
\(626\) −22.1394 + 31.2072i −0.884870 + 1.24729i
\(627\) 0 0
\(628\) −15.8082 + 5.53398i −0.630816 + 0.220830i
\(629\) 5.17338i 0.206276i
\(630\) 0 0
\(631\) 33.4753i 1.33263i −0.745670 0.666316i \(-0.767870\pi\)
0.745670 0.666316i \(-0.232130\pi\)
\(632\) −20.6939 5.95717i −0.823158 0.236963i
\(633\) 0 0
\(634\) −36.1204 25.6250i −1.43452 1.01770i
\(635\) 13.7054 0.543880
\(636\) 0 0
\(637\) −16.5012 + 1.39947i −0.653801 + 0.0554491i
\(638\) 3.30051 4.65231i 0.130668 0.184187i
\(639\) 0 0
\(640\) −22.6037 + 9.37557i −0.893491 + 0.370602i
\(641\) −3.12979 −0.123619 −0.0618096 0.998088i \(-0.519687\pi\)
−0.0618096 + 0.998088i \(0.519687\pi\)
\(642\) 0 0
\(643\) −2.40128 −0.0946974 −0.0473487 0.998878i \(-0.515077\pi\)
−0.0473487 + 0.998878i \(0.515077\pi\)
\(644\) −2.01473 0.866953i −0.0793915 0.0341627i
\(645\) 0 0
\(646\) −2.97055 + 4.18722i −0.116875 + 0.164744i
\(647\) 44.6794 1.75653 0.878265 0.478174i \(-0.158701\pi\)
0.878265 + 0.478174i \(0.158701\pi\)
\(648\) 0 0
\(649\) 4.64854i 0.182471i
\(650\) 0.622651 0.877673i 0.0244224 0.0344252i
\(651\) 0 0
\(652\) 32.2351 11.2845i 1.26242 0.441937i
\(653\) −37.4132 −1.46409 −0.732046 0.681255i \(-0.761434\pi\)
−0.732046 + 0.681255i \(0.761434\pi\)
\(654\) 0 0
\(655\) 41.0058i 1.60223i
\(656\) −26.4227 33.1142i −1.03163 1.29289i
\(657\) 0 0
\(658\) −4.00383 18.7230i −0.156085 0.729898i
\(659\) 34.3505i 1.33810i 0.743216 + 0.669052i \(0.233300\pi\)
−0.743216 + 0.669052i \(0.766700\pi\)
\(660\) 0 0
\(661\) 17.0766i 0.664203i −0.943244 0.332102i \(-0.892242\pi\)
0.943244 0.332102i \(-0.107758\pi\)
\(662\) 17.2741 24.3491i 0.671375 0.946353i
\(663\) 0 0
\(664\) 10.0627 34.9557i 0.390509 1.35654i
\(665\) −20.2036 + 21.9896i −0.783461 + 0.852719i
\(666\) 0 0
\(667\) 4.03344i 0.156175i
\(668\) 5.11706 + 14.6173i 0.197985 + 0.565559i
\(669\) 0 0
\(670\) 5.90219 + 4.18722i 0.228022 + 0.161766i
\(671\) −1.64584 −0.0635369
\(672\) 0 0
\(673\) −22.0333 −0.849320 −0.424660 0.905353i \(-0.639606\pi\)
−0.424660 + 0.905353i \(0.639606\pi\)
\(674\) 13.6944 + 9.71529i 0.527490 + 0.374219i
\(675\) 0 0
\(676\) 4.89211 + 13.9747i 0.188158 + 0.537487i
\(677\) 10.3672i 0.398446i 0.979954 + 0.199223i \(0.0638417\pi\)
−0.979954 + 0.199223i \(0.936158\pi\)
\(678\) 0 0
\(679\) −7.10757 + 7.73588i −0.272764 + 0.296876i
\(680\) 1.17738 4.08994i 0.0451503 0.156842i
\(681\) 0 0
\(682\) 0.690264 0.972979i 0.0264316 0.0372573i
\(683\) 11.8919i 0.455032i 0.973774 + 0.227516i \(0.0730604\pi\)
−0.973774 + 0.227516i \(0.926940\pi\)
\(684\) 0 0
\(685\) 4.29838i 0.164233i
\(686\) 25.0580 7.62197i 0.956721 0.291008i
\(687\) 0 0
\(688\) −21.8671 27.4050i −0.833676 1.04480i
\(689\) 7.40438i 0.282084i
\(690\) 0 0
\(691\) −45.2389 −1.72097 −0.860485 0.509475i \(-0.829840\pi\)
−0.860485 + 0.509475i \(0.829840\pi\)
\(692\) −8.02264 + 2.80849i −0.304975 + 0.106763i
\(693\) 0 0
\(694\) 16.2063 22.8440i 0.615182 0.867145i
\(695\) 29.4583i 1.11742i
\(696\) 0 0
\(697\) 7.36801 0.279083
\(698\) 12.6603 17.8457i 0.479200 0.675468i
\(699\) 0 0
\(700\) −0.672720 + 1.56335i −0.0254264 + 0.0590891i
\(701\) −18.3191 −0.691902 −0.345951 0.938253i \(-0.612444\pi\)
−0.345951 + 0.938253i \(0.612444\pi\)
\(702\) 0 0
\(703\) −38.8044 −1.46354
\(704\) −1.76307 + 2.80849i −0.0664481 + 0.105849i
\(705\) 0 0
\(706\) −22.4596 + 31.6584i −0.845277 + 1.19148i
\(707\) 26.5659 28.9144i 0.999115 1.08744i
\(708\) 0 0
\(709\) 5.79491 0.217633 0.108816 0.994062i \(-0.465294\pi\)
0.108816 + 0.994062i \(0.465294\pi\)
\(710\) 10.0909 + 7.15880i 0.378703 + 0.268665i
\(711\) 0 0
\(712\) 39.9367 + 11.4966i 1.49669 + 0.430853i
\(713\) 0.843550i 0.0315912i
\(714\) 0 0
\(715\) 2.12104i 0.0793223i
\(716\) 16.7193 5.85293i 0.624831 0.218734i
\(717\) 0 0
\(718\) 6.82254 9.61688i 0.254615 0.358899i
\(719\) 7.60767 0.283718 0.141859 0.989887i \(-0.454692\pi\)
0.141859 + 0.989887i \(0.454692\pi\)
\(720\) 0 0
\(721\) 6.67301 + 6.13103i 0.248516 + 0.228331i
\(722\) −9.49215 6.73406i −0.353261 0.250616i
\(723\) 0 0
\(724\) −45.1706 + 15.8129i −1.67875 + 0.587681i
\(725\) −3.12979 −0.116237
\(726\) 0 0
\(727\) 0.366196 0.0135815 0.00679074 0.999977i \(-0.497838\pi\)
0.00679074 + 0.999977i \(0.497838\pi\)
\(728\) 9.21445 + 15.1169i 0.341510 + 0.560269i
\(729\) 0 0
\(730\) −30.7987 21.8497i −1.13991 0.808693i
\(731\) 6.09768 0.225531
\(732\) 0 0
\(733\) 41.5220i 1.53365i 0.641856 + 0.766825i \(0.278165\pi\)
−0.641856 + 0.766825i \(0.721835\pi\)
\(734\) −18.8115 13.3455i −0.694345 0.492592i
\(735\) 0 0
\(736\) 0.132280 + 2.34105i 0.00487592 + 0.0862921i
\(737\) 0.980621 0.0361216
\(738\) 0 0
\(739\) 8.29142i 0.305005i −0.988303 0.152502i \(-0.951267\pi\)
0.988303 0.152502i \(-0.0487332\pi\)
\(740\) 30.3624 10.6290i 1.11614 0.390728i
\(741\) 0 0
\(742\) 2.44889 + 11.4517i 0.0899016 + 0.420404i
\(743\) 16.4172i 0.602288i 0.953579 + 0.301144i \(0.0973685\pi\)
−0.953579 + 0.301144i \(0.902631\pi\)
\(744\) 0 0
\(745\) 26.7282i 0.979244i
\(746\) −1.64374 1.16613i −0.0601817 0.0426950i
\(747\) 0 0
\(748\) −0.190556 0.544337i −0.00696742 0.0199029i
\(749\) −25.9598 + 28.2547i −0.948551 + 1.03240i
\(750\) 0 0
\(751\) 20.4119i 0.744843i −0.928064 0.372421i \(-0.878528\pi\)
0.928064 0.372421i \(-0.121472\pi\)
\(752\) −15.9992 + 12.7662i −0.583431 + 0.465534i
\(753\) 0 0
\(754\) −18.8377 + 26.5531i −0.686027 + 0.967006i
\(755\) 34.3095 1.24865
\(756\) 0 0
\(757\) −3.04637 −0.110722 −0.0553612 0.998466i \(-0.517631\pi\)
−0.0553612 + 0.998466i \(0.517631\pi\)
\(758\) −22.4590 + 31.6577i −0.815749 + 1.14986i
\(759\) 0 0
\(760\) 30.6777 + 8.83123i 1.11280 + 0.320342i
\(761\) 23.2691i 0.843503i 0.906711 + 0.421751i \(0.138585\pi\)
−0.906711 + 0.421751i \(0.861415\pi\)
\(762\) 0 0
\(763\) −16.3680 15.0386i −0.592562 0.544434i
\(764\) 48.9331 17.1300i 1.77034 0.619742i
\(765\) 0 0
\(766\) 7.03327 + 4.98964i 0.254123 + 0.180283i
\(767\) 26.5316i 0.958000i
\(768\) 0 0
\(769\) 34.4810i 1.24342i −0.783249 0.621708i \(-0.786439\pi\)
0.783249 0.621708i \(-0.213561\pi\)
\(770\) −0.701502 3.28041i −0.0252804 0.118218i
\(771\) 0 0
\(772\) 7.72474 + 22.0663i 0.278019 + 0.794182i
\(773\) 18.1472i 0.652708i −0.945248 0.326354i \(-0.894180\pi\)
0.945248 0.326354i \(-0.105820\pi\)
\(774\) 0 0
\(775\) −0.654560 −0.0235125
\(776\) 10.7924 + 3.10681i 0.387423 + 0.111528i
\(777\) 0 0
\(778\) −5.32164 3.77535i −0.190790 0.135353i
\(779\) 55.2658i 1.98010i
\(780\) 0 0
\(781\) 1.67655 0.0599916
\(782\) −0.332608 0.235964i −0.0118941 0.00843805i
\(783\) 0 0
\(784\) −19.2508 20.3324i −0.687530 0.726156i
\(785\) −18.1135 −0.646499
\(786\) 0 0
\(787\) 21.1831 0.755096 0.377548 0.925990i \(-0.376767\pi\)
0.377548 + 0.925990i \(0.376767\pi\)
\(788\) 7.74352 + 22.1199i 0.275852 + 0.787990i
\(789\) 0 0
\(790\) −18.9944 13.4752i −0.675789 0.479428i
\(791\) 8.98882 + 8.25875i 0.319606 + 0.293647i
\(792\) 0 0
\(793\) 9.39363 0.333578
\(794\) 21.4489 30.2338i 0.761192 1.07296i
\(795\) 0 0
\(796\) −4.44263 12.6907i −0.157465 0.449810i
\(797\) 1.93919i 0.0686898i 0.999410 + 0.0343449i \(0.0109345\pi\)
−0.999410 + 0.0343449i \(0.989066\pi\)
\(798\) 0 0
\(799\) 3.55987i 0.125939i
\(800\) 1.81656 0.102644i 0.0642250 0.00362902i
\(801\) 0 0
\(802\) 24.3160 + 17.2506i 0.858628 + 0.609140i
\(803\) −5.11706 −0.180577
\(804\) 0 0
\(805\) −1.74672 1.60486i −0.0615640 0.0565637i
\(806\) −3.93969 + 5.55328i −0.138770 + 0.195606i
\(807\) 0 0
\(808\) −40.3386 11.6123i −1.41911 0.408519i
\(809\) −30.1990 −1.06174 −0.530871 0.847453i \(-0.678135\pi\)
−0.530871 + 0.847453i \(0.678135\pi\)
\(810\) 0 0
\(811\) 3.17363 0.111441 0.0557206 0.998446i \(-0.482254\pi\)
0.0557206 + 0.998446i \(0.482254\pi\)
\(812\) 20.3524 47.2975i 0.714231 1.65982i
\(813\) 0 0
\(814\) 2.52228 3.55534i 0.0884059 0.124615i
\(815\) 36.9359 1.29381
\(816\) 0 0
\(817\) 45.7374i 1.60015i
\(818\) 0.690578 0.973421i 0.0241455 0.0340349i
\(819\) 0 0
\(820\) −15.1379 43.2426i −0.528639 1.51010i
\(821\) 42.8717 1.49623 0.748116 0.663567i \(-0.230958\pi\)
0.748116 + 0.663567i \(0.230958\pi\)
\(822\) 0 0
\(823\) 9.21837i 0.321332i −0.987009 0.160666i \(-0.948636\pi\)
0.987009 0.160666i \(-0.0513642\pi\)
\(824\) 2.67995 9.30955i 0.0933604 0.324313i
\(825\) 0 0
\(826\) −8.77494 41.0340i −0.305319 1.42775i
\(827\) 20.2956i 0.705746i −0.935671 0.352873i \(-0.885205\pi\)
0.935671 0.352873i \(-0.114795\pi\)
\(828\) 0 0
\(829\) 31.7875i 1.10402i 0.833836 + 0.552012i \(0.186140\pi\)
−0.833836 + 0.552012i \(0.813860\pi\)
\(830\) 22.7621 32.0849i 0.790084 1.11368i
\(831\) 0 0
\(832\) 10.0627 16.0295i 0.348862 0.555721i
\(833\) 4.85238 0.411532i 0.168125 0.0142588i
\(834\) 0 0
\(835\) 16.7489i 0.579618i
\(836\) 4.08295 1.42932i 0.141212 0.0494340i
\(837\) 0 0
\(838\) 1.89836 + 1.34676i 0.0655779 + 0.0465232i
\(839\) 19.8030 0.683677 0.341838 0.939759i \(-0.388950\pi\)
0.341838 + 0.939759i \(0.388950\pi\)
\(840\) 0 0
\(841\) 65.6884 2.26512
\(842\) 33.3137 + 23.6339i 1.14807 + 0.814478i
\(843\) 0 0
\(844\) 12.0796 4.22872i 0.415799 0.145559i
\(845\) 16.0126i 0.550849i
\(846\) 0 0
\(847\) 21.0963 + 19.3828i 0.724877 + 0.666002i
\(848\) 9.78571 7.80826i 0.336043 0.268137i
\(849\) 0 0
\(850\) −0.183098 + 0.258091i −0.00628022 + 0.00885243i
\(851\) 3.08240i 0.105663i
\(852\) 0 0
\(853\) 5.49248i 0.188059i −0.995569 0.0940294i \(-0.970025\pi\)
0.995569 0.0940294i \(-0.0299748\pi\)
\(854\) −14.5283 + 3.10681i −0.497147 + 0.106313i
\(855\) 0 0
\(856\) 39.4182 + 11.3474i 1.34729 + 0.387845i
\(857\) 30.6774i 1.04792i 0.851743 + 0.523959i \(0.175546\pi\)
−0.851743 + 0.523959i \(0.824454\pi\)
\(858\) 0 0
\(859\) −9.07783 −0.309732 −0.154866 0.987936i \(-0.549495\pi\)
−0.154866 + 0.987936i \(0.549495\pi\)
\(860\) −12.5280 35.7871i −0.427200 1.22033i
\(861\) 0 0
\(862\) −29.0639 + 40.9677i −0.989921 + 1.39537i
\(863\) 41.5535i 1.41450i −0.706965 0.707248i \(-0.749936\pi\)
0.706965 0.707248i \(-0.250064\pi\)
\(864\) 0 0
\(865\) −9.19257 −0.312557
\(866\) 17.2227 24.2766i 0.585250 0.824953i
\(867\) 0 0
\(868\) 4.25649 9.89175i 0.144475 0.335748i
\(869\) −3.15582 −0.107054
\(870\) 0 0
\(871\) −5.59690 −0.189644
\(872\) −6.57356 + 22.8351i −0.222609 + 0.773294i
\(873\) 0 0
\(874\) 1.76991 2.49482i 0.0598682 0.0843886i
\(875\) −20.6041 + 22.4255i −0.696546 + 0.758121i
\(876\) 0 0
\(877\) −8.63257 −0.291501 −0.145751 0.989321i \(-0.546560\pi\)
−0.145751 + 0.989321i \(0.546560\pi\)
\(878\) −34.8677 24.7363i −1.17673 0.834811i
\(879\) 0 0
\(880\) −2.80319 + 2.23673i −0.0944954 + 0.0754002i
\(881\) 19.4666i 0.655845i −0.944705 0.327923i \(-0.893651\pi\)
0.944705 0.327923i \(-0.106349\pi\)
\(882\) 0 0
\(883\) 27.7540i 0.933997i −0.884258 0.466999i \(-0.845335\pi\)
0.884258 0.466999i \(-0.154665\pi\)
\(884\) 1.08760 + 3.10681i 0.0365799 + 0.104493i
\(885\) 0 0
\(886\) −1.75480 + 2.47352i −0.0589536 + 0.0830995i
\(887\) −2.62646 −0.0881878 −0.0440939 0.999027i \(-0.514040\pi\)
−0.0440939 + 0.999027i \(0.514040\pi\)
\(888\) 0 0
\(889\) 11.3424 12.3451i 0.380412 0.414040i
\(890\) 36.6568 + 26.0056i 1.22874 + 0.871709i
\(891\) 0 0
\(892\) −5.83263 16.6613i −0.195291 0.557862i
\(893\) 26.7018 0.893541
\(894\) 0 0
\(895\) 19.1575 0.640364
\(896\) −10.2616 + 28.1194i −0.342815 + 0.939403i
\(897\) 0 0
\(898\) 31.3793 + 22.2615i 1.04714 + 0.742877i
\(899\) 19.8030 0.660468
\(900\) 0 0
\(901\) 2.17735i 0.0725380i
\(902\) −5.06357 3.59227i −0.168599 0.119610i
\(903\) 0 0
\(904\) 3.61000 12.5403i 0.120067 0.417086i
\(905\) −51.7577 −1.72049
\(906\) 0 0
\(907\) 5.22753i 0.173577i 0.996227 + 0.0867887i \(0.0276605\pi\)
−0.996227 + 0.0867887i \(0.972340\pi\)
\(908\) 14.2636 + 40.7450i 0.473354 + 1.35217i
\(909\) 0 0
\(910\) 4.00383 + 18.7230i 0.132726 + 0.620661i
\(911\) 52.9940i 1.75577i 0.478873 + 0.877884i \(0.341046\pi\)
−0.478873 + 0.877884i \(0.658954\pi\)
\(912\) 0 0
\(913\) 5.33075i 0.176422i
\(914\) −37.1471 26.3534i −1.22872 0.871694i
\(915\) 0 0
\(916\) 42.7598 14.9689i 1.41282 0.494587i
\(917\) −36.9359 33.9360i −1.21973 1.12066i
\(918\) 0 0
\(919\) 44.9137i 1.48156i −0.671745 0.740782i \(-0.734455\pi\)
0.671745 0.740782i \(-0.265545\pi\)
\(920\) −0.701502 + 2.43686i −0.0231278 + 0.0803410i
\(921\) 0 0
\(922\) −19.4890 + 27.4712i −0.641836 + 0.904716i
\(923\) −9.56891 −0.314964
\(924\) 0 0
\(925\) −2.39181 −0.0786424
\(926\) −15.2868 + 21.5478i −0.502355 + 0.708106i
\(927\) 0 0
\(928\) −54.9580 + 3.10539i −1.80409 + 0.101940i
\(929\) 32.2964i 1.05961i 0.848119 + 0.529806i \(0.177735\pi\)
−0.848119 + 0.529806i \(0.822265\pi\)
\(930\) 0 0
\(931\) 3.08681 + 36.3966i 0.101166 + 1.19285i
\(932\) 14.9288 + 42.6452i 0.489009 + 1.39689i
\(933\) 0 0
\(934\) 30.7987 + 21.8497i 1.00777 + 0.714943i
\(935\) 0.623717i 0.0203977i
\(936\) 0 0
\(937\) 40.6781i 1.32889i −0.747335 0.664447i \(-0.768667\pi\)
0.747335 0.664447i \(-0.231333\pi\)
\(938\) 8.65621 1.85109i 0.282635 0.0604404i
\(939\) 0 0
\(940\) −20.8927 + 7.31392i −0.681445 + 0.238554i
\(941\) 8.52836i 0.278016i −0.990291 0.139008i \(-0.955609\pi\)
0.990291 0.139008i \(-0.0443915\pi\)
\(942\) 0 0
\(943\) −4.39000 −0.142958
\(944\) −35.0644 + 27.9788i −1.14125 + 0.910632i
\(945\) 0 0
\(946\) −4.19056 2.97292i −0.136247 0.0966581i
\(947\) 19.9998i 0.649908i 0.945730 + 0.324954i \(0.105349\pi\)
−0.945730 + 0.324954i \(0.894651\pi\)
\(948\) 0 0
\(949\) 29.2057 0.948056
\(950\) −1.93588 1.37338i −0.0628082 0.0445583i
\(951\) 0 0
\(952\) −2.70962 4.44531i −0.0878194 0.144073i
\(953\) 24.5787 0.796181 0.398090 0.917346i \(-0.369673\pi\)
0.398090 + 0.917346i \(0.369673\pi\)
\(954\) 0 0
\(955\) 56.0689 1.81435
\(956\) −8.83995 + 3.09460i −0.285904 + 0.100087i
\(957\) 0 0
\(958\) −43.7342 31.0265i −1.41299 1.00242i
\(959\) −3.87176 3.55729i −0.125026 0.114871i
\(960\) 0 0
\(961\) −26.8584 −0.866400
\(962\) −14.3959 + 20.2921i −0.464143 + 0.654244i
\(963\) 0 0
\(964\) 4.46582 1.56335i 0.143834 0.0503521i
\(965\) 25.2842i 0.813926i
\(966\) 0 0
\(967\) 40.1619i 1.29152i 0.763541 + 0.645760i \(0.223459\pi\)
−0.763541 + 0.645760i \(0.776541\pi\)
\(968\) 8.47248 29.4315i 0.272316 0.945965i
\(969\) 0 0
\(970\) 9.90602 + 7.02767i 0.318063 + 0.225645i
\(971\) 24.7405 0.793962 0.396981 0.917827i \(-0.370058\pi\)
0.396981 + 0.917827i \(0.370058\pi\)
\(972\) 0 0
\(973\) −26.5345 24.3793i −0.850656 0.781565i
\(974\) 26.7532 37.7106i 0.857227 1.20833i
\(975\) 0 0
\(976\) 9.90602 + 12.4147i 0.317084 + 0.397386i
\(977\) −41.8911 −1.34021 −0.670107 0.742264i \(-0.733752\pi\)
−0.670107 + 0.742264i \(0.733752\pi\)
\(978\) 0 0
\(979\) 6.09035 0.194648
\(980\) −12.3847 27.6329i −0.395615 0.882701i
\(981\) 0 0
\(982\) −30.1825 + 42.5444i −0.963162 + 1.35765i
\(983\) −24.7405 −0.789101 −0.394550 0.918874i \(-0.629100\pi\)
−0.394550 + 0.918874i \(0.629100\pi\)
\(984\) 0 0
\(985\) 25.3456i 0.807579i
\(986\) 5.53945 7.80826i 0.176412 0.248666i
\(987\) 0 0
\(988\) −23.3035 + 8.15785i −0.741382 + 0.259536i
\(989\) −3.63311 −0.115526
\(990\) 0 0
\(991\) 30.8807i 0.980958i 0.871453 + 0.490479i \(0.163178\pi\)
−0.871453 + 0.490479i \(0.836822\pi\)
\(992\) −11.4939 + 0.649459i −0.364931 + 0.0206203i
\(993\) 0 0
\(994\) 14.7994 3.16478i 0.469407 0.100381i
\(995\) 14.5414i 0.460992i
\(996\) 0 0
\(997\) 32.6314i 1.03345i 0.856152 + 0.516723i \(0.172848\pi\)
−0.856152 + 0.516723i \(0.827152\pi\)
\(998\) −6.74988 + 9.51446i −0.213664 + 0.301175i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.b.c.55.3 12
3.2 odd 2 inner 756.2.b.c.55.10 yes 12
4.3 odd 2 756.2.b.d.55.4 yes 12
7.6 odd 2 756.2.b.d.55.3 yes 12
12.11 even 2 756.2.b.d.55.9 yes 12
21.20 even 2 756.2.b.d.55.10 yes 12
28.27 even 2 inner 756.2.b.c.55.4 yes 12
84.83 odd 2 inner 756.2.b.c.55.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.b.c.55.3 12 1.1 even 1 trivial
756.2.b.c.55.4 yes 12 28.27 even 2 inner
756.2.b.c.55.9 yes 12 84.83 odd 2 inner
756.2.b.c.55.10 yes 12 3.2 odd 2 inner
756.2.b.d.55.3 yes 12 7.6 odd 2
756.2.b.d.55.4 yes 12 4.3 odd 2
756.2.b.d.55.9 yes 12 12.11 even 2
756.2.b.d.55.10 yes 12 21.20 even 2