L(s) = 1 | + (−1.15 − 0.818i)2-s + (0.660 + 1.88i)4-s + 2.16i·5-s + (1.94 + 1.79i)7-s + (0.782 − 2.71i)8-s + (1.76 − 2.49i)10-s − 0.414i·11-s + 2.36i·13-s + (−0.782 − 3.65i)14-s + (−3.12 + 2.49i)16-s − 0.695i·17-s + 5.21·19-s + (−4.08 + 1.42i)20-s + (−0.339 + 0.478i)22-s + 0.414i·23-s + ⋯ |
L(s) = 1 | + (−0.815 − 0.578i)2-s + (0.330 + 0.943i)4-s + 0.967i·5-s + (0.736 + 0.676i)7-s + (0.276 − 0.960i)8-s + (0.559 − 0.788i)10-s − 0.124i·11-s + 0.656i·13-s + (−0.209 − 0.977i)14-s + (−0.781 + 0.623i)16-s − 0.168i·17-s + 1.19·19-s + (−0.912 + 0.319i)20-s + (−0.0723 + 0.101i)22-s + 0.0864i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.395 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.846228 + 0.557110i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.846228 + 0.557110i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.15 + 0.818i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.94 - 1.79i)T \) |
good | 5 | \( 1 - 2.16iT - 5T^{2} \) |
| 11 | \( 1 + 0.414iT - 11T^{2} \) |
| 13 | \( 1 - 2.36iT - 13T^{2} \) |
| 17 | \( 1 + 0.695iT - 17T^{2} \) |
| 19 | \( 1 - 5.21T + 19T^{2} \) |
| 23 | \( 1 - 0.414iT - 23T^{2} \) |
| 29 | \( 1 + 9.73T + 29T^{2} \) |
| 31 | \( 1 + 2.03T + 31T^{2} \) |
| 37 | \( 1 + 7.43T + 37T^{2} \) |
| 41 | \( 1 - 10.5iT - 41T^{2} \) |
| 43 | \( 1 - 8.76iT - 43T^{2} \) |
| 47 | \( 1 - 5.11T + 47T^{2} \) |
| 53 | \( 1 + 3.12T + 53T^{2} \) |
| 59 | \( 1 - 11.2T + 59T^{2} \) |
| 61 | \( 1 + 3.97iT - 61T^{2} \) |
| 67 | \( 1 - 2.36iT - 67T^{2} \) |
| 71 | \( 1 - 4.04iT - 71T^{2} \) |
| 73 | \( 1 + 12.3iT - 73T^{2} \) |
| 79 | \( 1 + 7.61iT - 79T^{2} \) |
| 83 | \( 1 - 12.8T + 83T^{2} \) |
| 89 | \( 1 - 14.6iT - 89T^{2} \) |
| 97 | \( 1 - 3.97iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58510968695388889463662549430, −9.573759009583182282228717780712, −9.014259117179299210431739043788, −7.930109155759376980856859837618, −7.29823791623420143460390211271, −6.33889335806008791315304219904, −5.07763022226326824192154903714, −3.67439983456439120180185074479, −2.71142535242090899188047128341, −1.61157451349254964098128129557,
0.71165092992205733823885598178, 1.87937502900112187545618917982, 3.83820760348553523229348722467, 5.19036915699226419225828680756, 5.51229366619265789568949967006, 7.09404814169409320111259672332, 7.58201828962144187093266075002, 8.533982343796947281680688675832, 9.112389713523183732393868516760, 10.10518400154556989591277308091