Properties

Label 756.2.b.c
Level $756$
Weight $2$
Character orbit 756.b
Analytic conductor $6.037$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(55,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,8,0,0,-2,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.60771337450861625344.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 11x^{8} - 26x^{6} + 44x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + (\beta_{11} + 1) q^{4} - \beta_{8} q^{5} + ( - \beta_{11} - \beta_{6}) q^{7} + (\beta_{8} + \beta_{7} - \beta_{5} + \beta_1) q^{8} + (\beta_{11} + \beta_{10} + \cdots + \beta_{2}) q^{10}+ \cdots + (5 \beta_{8} - 2 \beta_{5} + \cdots + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} - 2 q^{7} - 4 q^{10} - 12 q^{16} + 12 q^{19} - 4 q^{22} + 4 q^{25} - 24 q^{31} - 32 q^{34} + 12 q^{37} + 20 q^{40} + 4 q^{46} - 18 q^{49} - 28 q^{52} - 40 q^{55} + 8 q^{58} + 20 q^{64} + 44 q^{70}+ \cdots + 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{10} + 11x^{8} - 26x^{6} + 44x^{4} - 64x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{10} + 4\nu^{8} - 3\nu^{6} + 10\nu^{4} - 4\nu^{2} ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{11} + 11\nu^{7} - 14\nu^{5} + 20\nu^{3} - 48\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{11} + 4\nu^{9} - 11\nu^{7} + 26\nu^{5} - 12\nu^{3} + 32\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{8} + 2\nu^{6} - 3\nu^{4} + 8\nu^{2} - 4 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{11} - 4\nu^{9} + 11\nu^{7} - 26\nu^{5} + 44\nu^{3} - 64\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( \nu^{11} - 2\nu^{9} + 3\nu^{7} - 4\nu^{5} + 8\nu^{3} - 8\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{11} - 4\nu^{9} + 5\nu^{7} + 2\nu^{5} + 20\nu^{3} ) / 32 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( \nu^{10} - 2\nu^{8} + 7\nu^{6} - 12\nu^{4} + 20\nu^{2} - 24 ) / 8 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -\nu^{10} + 4\nu^{8} - 11\nu^{6} + 26\nu^{4} - 44\nu^{2} + 48 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{5} + \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{11} + \beta_{10} + \beta_{6} + \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{9} + \beta_{8} - \beta_{7} + \beta_{5} + \beta_{4} - \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 2\beta_{11} + 2\beta_{10} + 2\beta_{6} + 2\beta_{3} - 3\beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 2\beta_{9} - 3\beta_{7} - \beta_{5} + 4\beta_{4} + \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -2\beta_{11} + \beta_{10} - 3\beta_{6} + 4\beta_{3} - \beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -3\beta_{9} - 3\beta_{8} + \beta_{7} + 3\beta_{5} + 5\beta_{4} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 6\beta_{11} + 8\beta_{10} - 8\beta_{6} - 6\beta_{3} + 11\beta_{2} + 9 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -8\beta_{9} + 14\beta_{8} - \beta_{7} + 5\beta_{5} + 2\beta_{4} + 3\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
1.40141 0.189886i
1.40141 + 0.189886i
1.15343 0.818285i
1.15343 + 0.818285i
0.840028 1.13770i
0.840028 + 1.13770i
−0.840028 1.13770i
−0.840028 + 1.13770i
−1.15343 0.818285i
−1.15343 + 0.818285i
−1.40141 0.189886i
−1.40141 + 0.189886i
−1.40141 0.189886i 0 1.92789 + 0.532217i 1.46432i 0 −2.07772 1.63801i −2.60069 1.11193i 0 0.278054 2.05211i
55.2 −1.40141 + 0.189886i 0 1.92789 0.532217i 1.46432i 0 −2.07772 + 1.63801i −2.60069 + 1.11193i 0 0.278054 + 2.05211i
55.3 −1.15343 0.818285i 0 0.660819 + 1.88768i 2.16295i 0 1.94827 + 1.79004i 0.782447 2.71805i 0 1.76991 2.49482i
55.4 −1.15343 + 0.818285i 0 0.660819 1.88768i 2.16295i 0 1.94827 1.79004i 0.782447 + 2.71805i 0 1.76991 + 2.49482i
55.5 −0.840028 1.13770i 0 −0.588705 + 1.91139i 2.67907i 0 −0.370556 2.61967i 2.66911 0.935858i 0 −3.04797 + 2.25049i
55.6 −0.840028 + 1.13770i 0 −0.588705 1.91139i 2.67907i 0 −0.370556 + 2.61967i 2.66911 + 0.935858i 0 −3.04797 2.25049i
55.7 0.840028 1.13770i 0 −0.588705 1.91139i 2.67907i 0 −0.370556 + 2.61967i −2.66911 0.935858i 0 −3.04797 2.25049i
55.8 0.840028 + 1.13770i 0 −0.588705 + 1.91139i 2.67907i 0 −0.370556 2.61967i −2.66911 + 0.935858i 0 −3.04797 + 2.25049i
55.9 1.15343 0.818285i 0 0.660819 1.88768i 2.16295i 0 1.94827 1.79004i −0.782447 2.71805i 0 1.76991 + 2.49482i
55.10 1.15343 + 0.818285i 0 0.660819 + 1.88768i 2.16295i 0 1.94827 + 1.79004i −0.782447 + 2.71805i 0 1.76991 2.49482i
55.11 1.40141 0.189886i 0 1.92789 0.532217i 1.46432i 0 −2.07772 + 1.63801i 2.60069 1.11193i 0 0.278054 + 2.05211i
55.12 1.40141 + 0.189886i 0 1.92789 + 0.532217i 1.46432i 0 −2.07772 1.63801i 2.60069 + 1.11193i 0 0.278054 2.05211i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
28.d even 2 1 inner
84.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.b.c 12
3.b odd 2 1 inner 756.2.b.c 12
4.b odd 2 1 756.2.b.d yes 12
7.b odd 2 1 756.2.b.d yes 12
12.b even 2 1 756.2.b.d yes 12
21.c even 2 1 756.2.b.d yes 12
28.d even 2 1 inner 756.2.b.c 12
84.h odd 2 1 inner 756.2.b.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
756.2.b.c 12 1.a even 1 1 trivial
756.2.b.c 12 3.b odd 2 1 inner
756.2.b.c 12 28.d even 2 1 inner
756.2.b.c 12 84.h odd 2 1 inner
756.2.b.d yes 12 4.b odd 2 1
756.2.b.d yes 12 7.b odd 2 1
756.2.b.d yes 12 12.b even 2 1
756.2.b.d yes 12 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(756, [\chi])\):

\( T_{5}^{6} + 14T_{5}^{4} + 59T_{5}^{2} + 72 \) Copy content Toggle raw display
\( T_{19}^{3} - 3T_{19}^{2} - 11T_{19} - 3 \) Copy content Toggle raw display
\( T_{47}^{6} - 180T_{47}^{4} + 9868T_{47}^{2} - 152928 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 4 T^{10} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( (T^{6} + 14 T^{4} + \cdots + 72)^{2} \) Copy content Toggle raw display
$7$ \( (T^{6} + T^{5} + 5 T^{4} + \cdots + 343)^{2} \) Copy content Toggle raw display
$11$ \( (T^{6} + 26 T^{4} + 51 T^{2} + 8)^{2} \) Copy content Toggle raw display
$13$ \( (T^{6} + 55 T^{4} + \cdots + 2124)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 52 T^{4} + \cdots + 288)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} - 3 T^{2} - 11 T - 3)^{4} \) Copy content Toggle raw display
$23$ \( (T^{6} + 26 T^{4} + 51 T^{2} + 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} - 132 T^{4} + \cdots - 30208)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 6 T^{2} + \cdots - 108)^{4} \) Copy content Toggle raw display
$37$ \( (T^{3} - 3 T^{2} + \cdots + 183)^{4} \) Copy content Toggle raw display
$41$ \( (T^{6} + 134 T^{4} + \cdots + 1152)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} + 104 T^{4} + \cdots + 944)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} - 180 T^{4} + \cdots - 152928)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} - 232 T^{4} + \cdots - 120832)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} - 428 T^{4} + \cdots - 2871648)^{2} \) Copy content Toggle raw display
$61$ \( (T^{6} + 211 T^{4} + \cdots + 76464)^{2} \) Copy content Toggle raw display
$67$ \( (T^{6} + 55 T^{4} + \cdots + 2124)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 150 T^{4} + \cdots + 59168)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 191 T^{4} + \cdots + 19116)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} + 415 T^{4} + \cdots + 1786284)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} - 396 T^{4} + \cdots - 1087488)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 446 T^{4} + \cdots + 1774728)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 211 T^{4} + \cdots + 76464)^{2} \) Copy content Toggle raw display
show more
show less