L(s) = 1 | + (−0.840 − 1.13i)2-s + (−0.588 + 1.91i)4-s − 2.67i·5-s + (−0.370 − 2.61i)7-s + (2.66 − 0.935i)8-s + (−3.04 + 2.25i)10-s − 1.39i·11-s + 3.08i·13-s + (−2.66 + 2.62i)14-s + (−3.30 − 2.25i)16-s − 5.83i·17-s − 1.91·19-s + (5.12 + 1.57i)20-s + (−1.58 + 1.17i)22-s + 1.39i·23-s + ⋯ |
L(s) = 1 | + (−0.593 − 0.804i)2-s + (−0.294 + 0.955i)4-s − 1.19i·5-s + (−0.140 − 0.990i)7-s + (0.943 − 0.330i)8-s + (−0.963 + 0.711i)10-s − 0.421i·11-s + 0.855i·13-s + (−0.713 + 0.700i)14-s + (−0.826 − 0.562i)16-s − 1.41i·17-s − 0.440·19-s + (1.14 + 0.352i)20-s + (−0.338 + 0.250i)22-s + 0.291i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.987 - 0.157i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.987 - 0.157i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0588481 + 0.742142i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0588481 + 0.742142i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.840 + 1.13i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.370 + 2.61i)T \) |
good | 5 | \( 1 + 2.67iT - 5T^{2} \) |
| 11 | \( 1 + 1.39iT - 11T^{2} \) |
| 13 | \( 1 - 3.08iT - 13T^{2} \) |
| 17 | \( 1 + 5.83iT - 17T^{2} \) |
| 19 | \( 1 + 1.91T + 19T^{2} \) |
| 23 | \( 1 - 1.39iT - 23T^{2} \) |
| 29 | \( 1 - 4.90T + 29T^{2} \) |
| 31 | \( 1 + 9.53T + 31T^{2} \) |
| 37 | \( 1 - 6.83T + 37T^{2} \) |
| 41 | \( 1 + 0.693iT - 41T^{2} \) |
| 43 | \( 1 + 0.678iT - 43T^{2} \) |
| 47 | \( 1 + 8.26T + 47T^{2} \) |
| 53 | \( 1 + 10.6T + 53T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + 12.8iT - 61T^{2} \) |
| 67 | \( 1 - 3.08iT - 67T^{2} \) |
| 71 | \( 1 + 9.79iT - 71T^{2} \) |
| 73 | \( 1 - 5.91iT - 73T^{2} \) |
| 79 | \( 1 - 12.0iT - 79T^{2} \) |
| 83 | \( 1 - 5.77T + 83T^{2} \) |
| 89 | \( 1 - 6.65iT - 89T^{2} \) |
| 97 | \( 1 - 12.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.599430399298720018661517536766, −9.341082870345613165462131409867, −8.355156463315594458291658197582, −7.56398438741783413976164868087, −6.60539187093932777233739710129, −4.97823869372909847837275784433, −4.32187348716115475291637445696, −3.21042629555927507767841537968, −1.64841216507231503966268518782, −0.46610427332496254512476535713,
1.94516719511839978220628874177, 3.18712306656382562087554105331, 4.69160491602755826780872974618, 5.95038363596575300174312347059, 6.31015998325641479019130514327, 7.37708095230519101954143523118, 8.155937696954146076006765358561, 8.972969334771534141271043013705, 9.945459500206929190908131003803, 10.59033115731550216062599443273