Properties

Label 755.2.h.d
Level $755$
Weight $2$
Character orbit 755.h
Analytic conductor $6.029$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [755,2,Mod(321,755)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("755.321"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 755 = 5 \cdot 151 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 755.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.02870535261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 14 x^{14} - 22 x^{13} + 54 x^{12} - 181 x^{11} + 697 x^{10} - 1743 x^{9} + 3507 x^{8} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{13} + \beta_{7}) q^{2} + (\beta_{14} - \beta_{7}) q^{3} + (2 \beta_{12} - \beta_{11} + \cdots + \beta_1) q^{4} + ( - \beta_{12} + \beta_{8} + \beta_{4} + 1) q^{5} + ( - \beta_{15} - \beta_{14} + \beta_{13} + \cdots + 1) q^{6}+ \cdots + (4 \beta_{15} - \beta_{13} + 8 \beta_{12} + \cdots - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} - 4 q^{3} + 24 q^{4} + 4 q^{5} - 18 q^{6} - q^{7} - 18 q^{8} - q^{10} + 13 q^{11} - 19 q^{12} + 7 q^{13} - q^{14} - q^{15} + 16 q^{16} + 9 q^{17} - 3 q^{18} - 34 q^{19} - 9 q^{20} + 2 q^{21}+ \cdots + 75 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 5 x^{15} + 14 x^{14} - 22 x^{13} + 54 x^{12} - 181 x^{11} + 697 x^{10} - 1743 x^{9} + 3507 x^{8} + \cdots + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 14\!\cdots\!05 \nu^{15} + \cdots - 43\!\cdots\!92 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 13\!\cdots\!16 \nu^{15} + \cdots - 18\!\cdots\!60 ) / 60\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 27\!\cdots\!37 \nu^{15} + \cdots - 10\!\cdots\!76 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 53\!\cdots\!33 \nu^{15} + \cdots - 61\!\cdots\!88 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 89\!\cdots\!52 \nu^{15} + \cdots + 28\!\cdots\!00 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 20\!\cdots\!11 \nu^{15} + \cdots + 66\!\cdots\!88 ) / 24\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 23\!\cdots\!65 \nu^{15} + \cdots + 23\!\cdots\!16 ) / 24\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 14\!\cdots\!35 \nu^{15} + \cdots + 11\!\cdots\!64 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 20\!\cdots\!49 \nu^{15} + \cdots + 39\!\cdots\!60 ) / 12\!\cdots\!56 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 45\!\cdots\!27 \nu^{15} + \cdots + 89\!\cdots\!20 ) / 24\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 11\!\cdots\!10 \nu^{15} + \cdots + 98\!\cdots\!84 ) / 60\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 23\!\cdots\!45 \nu^{15} + \cdots + 20\!\cdots\!36 ) / 60\!\cdots\!78 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 96\!\cdots\!01 \nu^{15} + \cdots + 10\!\cdots\!36 ) / 24\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 34\!\cdots\!05 \nu^{15} + \cdots - 37\!\cdots\!38 ) / 60\!\cdots\!78 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{15} + \beta_{14} - \beta_{10} + \beta_{8} + 3\beta_{4} + \beta_{3} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{11} - \beta_{9} + \beta_{7} - \beta_{6} - 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 7 \beta_{15} + \beta_{14} - \beta_{13} - 8 \beta_{11} - 7 \beta_{9} + 16 \beta_{8} + 3 \beta_{7} + \cdots - 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8 \beta_{15} - 10 \beta_{13} - 20 \beta_{12} + 29 \beta_{11} + \beta_{10} - \beta_{9} + 21 \beta_{8} + \cdots + 38 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 60 \beta_{15} - 13 \beta_{14} - 17 \beta_{13} - 28 \beta_{12} - 22 \beta_{11} + 60 \beta_{10} + \cdots - 80 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 15 \beta_{15} - 15 \beta_{14} + 57 \beta_{10} + 72 \beta_{8} - 77 \beta_{7} + 26 \beta_{6} - 77 \beta_{5} + \cdots + 72 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 317 \beta_{14} + 119 \beta_{13} + 123 \beta_{12} + 187 \beta_{11} + 317 \beta_{10} + 121 \beta_{9} + \cdots - 123 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 149 \beta_{15} - 249 \beta_{14} + 554 \beta_{13} + 667 \beta_{12} - 1208 \beta_{11} + 149 \beta_{9} + \cdots - 1208 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 3149 \beta_{15} + 942 \beta_{13} + 73 \beta_{12} + 2825 \beta_{11} - 2160 \beta_{10} + 2160 \beta_{9} + \cdots + 4855 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 2782 \beta_{15} + 1516 \beta_{14} + 1931 \beta_{13} + 1499 \beta_{12} - 4392 \beta_{11} - 2782 \beta_{10} + \cdots - 8319 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 14855 \beta_{15} + 14855 \beta_{14} - 22444 \beta_{10} + 20399 \beta_{8} + 7102 \beta_{7} + \cdots + 20399 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 9988 \beta_{14} - 14691 \beta_{13} - 12133 \beta_{12} + 31594 \beta_{11} - 9988 \beta_{10} + \cdots + 12133 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 102891 \beta_{15} + 56273 \beta_{14} - 52057 \beta_{13} - 7941 \beta_{12} - 135463 \beta_{11} + \cdots - 135463 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 138227 \beta_{15} - 191894 \beta_{13} - 189202 \beta_{12} + 386182 \beta_{11} + 75758 \beta_{10} + \cdots + 518011 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/755\mathbb{Z}\right)^\times\).

\(n\) \(6\) \(152\)
\(\chi(n)\) \(-1 - \beta_{4} - \beta_{8} + \beta_{12}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
321.1
−0.445264 1.37038i
0.417215 + 1.28406i
0.662424 + 2.03873i
0.0566070 + 0.174219i
2.15082 1.56267i
0.334204 0.242813i
−2.13654 + 1.55228i
1.46053 1.06113i
2.15082 + 1.56267i
0.334204 + 0.242813i
−2.13654 1.55228i
1.46053 + 1.06113i
−0.445264 + 1.37038i
0.417215 1.28406i
0.662424 2.03873i
0.0566070 0.174219i
−1.95522 −0.0899620 + 0.276875i 1.82287 0.809017 + 0.587785i 0.175895 0.541349i 0.856698 + 0.622428i 0.346329 2.35848 + 1.71354i −1.58180 1.14925i
321.2 −1.01579 0.962511 2.96230i −0.968171 0.809017 + 0.587785i −0.977709 + 3.00908i −1.40130 1.01810i 3.01504 −5.42177 3.93914i −0.821791 0.597066i
321.3 0.488177 −0.778897 + 2.39720i −1.76168 0.809017 + 0.587785i −0.380239 + 1.17026i −2.04327 1.48452i −1.83637 −2.71283 1.97099i 0.394943 + 0.286943i
321.4 1.48283 0.0243824 0.0750413i 0.198782 0.809017 + 0.587785i 0.0361549 0.111273i −0.457216 0.332187i −2.67090 2.42201 + 1.75970i 1.19963 + 0.871585i
361.1 −2.69752 −1.70549 1.23911i 5.27660 −0.309017 0.951057i 4.60059 + 3.34252i −0.0125248 0.0385473i −8.83868 0.446250 + 1.37342i 0.833579 + 2.56549i
361.2 −2.24302 2.63865 + 1.91709i 3.03113 −0.309017 0.951057i −5.91855 4.30007i 0.681363 + 2.09702i −2.31285 2.36019 + 7.26391i 0.693131 + 2.13324i
361.3 1.40610 −1.06077 0.770696i −0.0228706 −0.309017 0.951057i −1.49156 1.08368i 1.62510 + 5.00155i −2.84437 −0.395787 1.21811i −0.434510 1.33728i
361.4 2.53443 −1.99042 1.44613i 4.42334 −0.309017 0.951057i −5.04459 3.66511i 0.251146 + 0.772947i 6.14180 0.943451 + 2.90364i −0.783182 2.41039i
366.1 −2.69752 −1.70549 + 1.23911i 5.27660 −0.309017 + 0.951057i 4.60059 3.34252i −0.0125248 + 0.0385473i −8.83868 0.446250 1.37342i 0.833579 2.56549i
366.2 −2.24302 2.63865 1.91709i 3.03113 −0.309017 + 0.951057i −5.91855 + 4.30007i 0.681363 2.09702i −2.31285 2.36019 7.26391i 0.693131 2.13324i
366.3 1.40610 −1.06077 + 0.770696i −0.0228706 −0.309017 + 0.951057i −1.49156 + 1.08368i 1.62510 5.00155i −2.84437 −0.395787 + 1.21811i −0.434510 + 1.33728i
366.4 2.53443 −1.99042 + 1.44613i 4.42334 −0.309017 + 0.951057i −5.04459 + 3.66511i 0.251146 0.772947i 6.14180 0.943451 2.90364i −0.783182 + 2.41039i
461.1 −1.95522 −0.0899620 0.276875i 1.82287 0.809017 0.587785i 0.175895 + 0.541349i 0.856698 0.622428i 0.346329 2.35848 1.71354i −1.58180 + 1.14925i
461.2 −1.01579 0.962511 + 2.96230i −0.968171 0.809017 0.587785i −0.977709 3.00908i −1.40130 + 1.01810i 3.01504 −5.42177 + 3.93914i −0.821791 + 0.597066i
461.3 0.488177 −0.778897 2.39720i −1.76168 0.809017 0.587785i −0.380239 1.17026i −2.04327 + 1.48452i −1.83637 −2.71283 + 1.97099i 0.394943 0.286943i
461.4 1.48283 0.0243824 + 0.0750413i 0.198782 0.809017 0.587785i 0.0361549 + 0.111273i −0.457216 + 0.332187i −2.67090 2.42201 1.75970i 1.19963 0.871585i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 321.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
151.d even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 755.2.h.d 16
151.d even 5 1 inner 755.2.h.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
755.2.h.d 16 1.a even 1 1 trivial
755.2.h.d 16 151.d even 5 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(755, [\chi])\):

\( T_{2}^{8} + 2T_{2}^{7} - 12T_{2}^{6} - 21T_{2}^{5} + 46T_{2}^{4} + 60T_{2}^{3} - 71T_{2}^{2} - 47T_{2} + 31 \) Copy content Toggle raw display
\( T_{3}^{16} + 4 T_{3}^{15} + 14 T_{3}^{14} + 44 T_{3}^{13} + 163 T_{3}^{12} + 488 T_{3}^{11} + 1659 T_{3}^{10} + \cdots + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} + 2 T^{7} - 12 T^{6} + \cdots + 31)^{2} \) Copy content Toggle raw display
$3$ \( T^{16} + 4 T^{15} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{16} + T^{15} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{16} - 13 T^{15} + \cdots + 17547721 \) Copy content Toggle raw display
$13$ \( T^{16} - 7 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{16} - 9 T^{15} + \cdots + 4096 \) Copy content Toggle raw display
$19$ \( (T^{8} + 17 T^{7} + \cdots + 8629)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 29 T^{7} + \cdots + 9076)^{2} \) Copy content Toggle raw display
$29$ \( T^{16} + 16 T^{15} + \cdots + 81072016 \) Copy content Toggle raw display
$31$ \( T^{16} + 3 T^{15} + \cdots + 95961616 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 4701707761 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 1968785641 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 114698046241 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 14011220161 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 813479528761 \) Copy content Toggle raw display
$59$ \( (T^{8} + 22 T^{7} + \cdots + 842029)^{2} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 846453360841 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 36893189776 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 12076187956561 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 164575451041 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 430467843702961 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 11488242503761 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 5951968201 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 12\!\cdots\!61 \) Copy content Toggle raw display
show more
show less