L(s) = 1 | + 2.53·2-s + (−1.99 + 1.44i)3-s + 4.42·4-s + (−0.309 + 0.951i)5-s + (−5.04 + 3.66i)6-s + (0.251 − 0.772i)7-s + 6.14·8-s + (0.943 − 2.90i)9-s + (−0.783 + 2.41i)10-s + (5.02 + 3.65i)11-s + (−8.80 + 6.39i)12-s + (−2.09 + 1.52i)13-s + (0.636 − 1.95i)14-s + (−0.760 − 2.33i)15-s + 6.71·16-s + (0.459 + 1.41i)17-s + ⋯ |
L(s) = 1 | + 1.79·2-s + (−1.14 + 0.834i)3-s + 2.21·4-s + (−0.138 + 0.425i)5-s + (−2.05 + 1.49i)6-s + (0.0949 − 0.292i)7-s + 2.17·8-s + (0.314 − 0.967i)9-s + (−0.247 + 0.762i)10-s + (1.51 + 1.10i)11-s + (−2.54 + 1.84i)12-s + (−0.581 + 0.422i)13-s + (0.170 − 0.523i)14-s + (−0.196 − 0.604i)15-s + 1.67·16-s + (0.111 + 0.343i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.154 - 0.988i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.154 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.32213 + 1.98739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.32213 + 1.98739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.309 - 0.951i)T \) |
| 151 | \( 1 + (-7.05 + 10.0i)T \) |
good | 2 | \( 1 - 2.53T + 2T^{2} \) |
| 3 | \( 1 + (1.99 - 1.44i)T + (0.927 - 2.85i)T^{2} \) |
| 7 | \( 1 + (-0.251 + 0.772i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-5.02 - 3.65i)T + (3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (2.09 - 1.52i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-0.459 - 1.41i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + 4.80T + 19T^{2} \) |
| 23 | \( 1 - 1.20T + 23T^{2} \) |
| 29 | \( 1 + (-0.968 - 0.703i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-2.60 - 8.01i)T + (-25.0 + 18.2i)T^{2} \) |
| 37 | \( 1 + (-1.17 + 0.854i)T + (11.4 - 35.1i)T^{2} \) |
| 41 | \( 1 + (-5.42 + 3.94i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (3.25 + 10.0i)T + (-34.7 + 25.2i)T^{2} \) |
| 47 | \( 1 + (-6.96 + 5.05i)T + (14.5 - 44.6i)T^{2} \) |
| 53 | \( 1 + (3.03 + 2.20i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 - 1.90T + 59T^{2} \) |
| 61 | \( 1 + (8.05 + 5.85i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-1.42 - 4.38i)T + (-54.2 + 39.3i)T^{2} \) |
| 71 | \( 1 + (-3.81 + 11.7i)T + (-57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (0.995 - 3.06i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-3.64 + 11.2i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (1.61 + 4.95i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + (0.143 + 0.441i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (5.15 + 15.8i)T + (-78.4 + 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.72057128456611575588621741903, −10.27463422584803141791567745747, −9.054064189543096760169525296513, −7.23375950037597650572488084717, −6.67532539075703249448832866062, −5.94387702535030806400948270164, −4.85035405488909191855607184184, −4.34814714182920681033010859844, −3.63500227658198291486494581501, −2.02876127425222561914302536732,
1.08440181399696018235229690561, 2.60144706699956304523556545304, 3.95899000041493313207305756269, 4.79709960582168540657081356751, 5.87040158978109114603826791881, 6.15650849050887512270992249128, 6.99358709832839848983722490555, 8.061465289283234746413969146151, 9.349000456260148859588167989760, 10.87850176611523169068175327582