L(s) = 1 | − 1.95·2-s + (−0.0899 + 0.276i)3-s + 1.82·4-s + (0.809 + 0.587i)5-s + (0.175 − 0.541i)6-s + (0.856 + 0.622i)7-s + 0.346·8-s + (2.35 + 1.71i)9-s + (−1.58 − 1.14i)10-s + (−1.88 − 5.81i)11-s + (−0.163 + 0.504i)12-s + (1.46 − 4.49i)13-s + (−1.67 − 1.21i)14-s + (−0.235 + 0.171i)15-s − 4.32·16-s + (0.588 − 0.427i)17-s + ⋯ |
L(s) = 1 | − 1.38·2-s + (−0.0519 + 0.159i)3-s + 0.911·4-s + (0.361 + 0.262i)5-s + (0.0718 − 0.221i)6-s + (0.323 + 0.235i)7-s + 0.122·8-s + (0.786 + 0.571i)9-s + (−0.500 − 0.363i)10-s + (−0.569 − 1.75i)11-s + (−0.0473 + 0.145i)12-s + (0.405 − 1.24i)13-s + (−0.447 − 0.325i)14-s + (−0.0608 + 0.0441i)15-s − 1.08·16-s + (0.142 − 0.103i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.714 + 0.699i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 755 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.714 + 0.699i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.710975 - 0.290116i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.710975 - 0.290116i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 151 | \( 1 + (3.03 - 11.9i)T \) |
good | 2 | \( 1 + 1.95T + 2T^{2} \) |
| 3 | \( 1 + (0.0899 - 0.276i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.856 - 0.622i)T + (2.16 + 6.65i)T^{2} \) |
| 11 | \( 1 + (1.88 + 5.81i)T + (-8.89 + 6.46i)T^{2} \) |
| 13 | \( 1 + (-1.46 + 4.49i)T + (-10.5 - 7.64i)T^{2} \) |
| 17 | \( 1 + (-0.588 + 0.427i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + 3.86T + 19T^{2} \) |
| 23 | \( 1 - 6.49T + 23T^{2} \) |
| 29 | \( 1 + (0.889 + 2.73i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (6.86 - 4.98i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.63 + 11.1i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.63 + 5.02i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (4.60 - 3.34i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (0.719 - 2.21i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-0.785 - 2.41i)T + (-42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 - 9.34T + 59T^{2} \) |
| 61 | \( 1 + (1.40 + 4.32i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-8.26 + 6.00i)T + (20.7 - 63.7i)T^{2} \) |
| 71 | \( 1 + (-0.898 - 0.652i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (6.61 + 4.80i)T + (22.5 + 69.4i)T^{2} \) |
| 79 | \( 1 + (-8.17 - 5.93i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-5.96 + 4.33i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + (-2.09 + 1.52i)T + (27.5 - 84.6i)T^{2} \) |
| 97 | \( 1 + (-13.0 + 9.46i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35499082742643355423543871221, −9.293992703460049626165220617537, −8.557689605496040985145295579505, −7.931095543082434931998623155936, −7.09969016345361073014518166487, −5.86789410125962582733958096233, −5.04247916638336176134972409851, −3.45955614163273539702910838455, −2.14777635104343138351238053382, −0.70429312494237417132021081566,
1.32045602319735002230287435057, 2.10103128945256377805388455296, 4.18602289754866238289089828840, 4.90970159555547471548045741704, 6.62843802337515342930940684428, 7.07148799152172667397119124596, 7.950366953817577166442254479470, 8.945201505715692396815002463565, 9.568730866398125747572949945431, 10.13159266907151658127399156614