Properties

Label 750.3.f.b.193.7
Level $750$
Weight $3$
Character 750.193
Analytic conductor $20.436$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [750,3,Mod(193,750)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(750, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("750.193"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.4360198270\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.6879707136000000000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 21x^{12} + 86x^{8} + 36x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 5^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 193.7
Root \(-1.05097 - 1.05097i\) of defining polynomial
Character \(\chi\) \(=\) 750.193
Dual form 750.3.f.b.307.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(1.22474 + 1.22474i) q^{3} -2.00000i q^{4} -2.44949 q^{6} +(2.54205 - 2.54205i) q^{7} +(2.00000 + 2.00000i) q^{8} +3.00000i q^{9} -11.6397 q^{11} +(2.44949 - 2.44949i) q^{12} +(-2.97542 - 2.97542i) q^{13} +5.08411i q^{14} -4.00000 q^{16} +(-1.63878 + 1.63878i) q^{17} +(-3.00000 - 3.00000i) q^{18} +2.25042i q^{19} +6.22673 q^{21} +(11.6397 - 11.6397i) q^{22} +(-28.6600 - 28.6600i) q^{23} +4.89898i q^{24} +5.95083 q^{26} +(-3.67423 + 3.67423i) q^{27} +(-5.08411 - 5.08411i) q^{28} +49.9726i q^{29} -19.5918 q^{31} +(4.00000 - 4.00000i) q^{32} +(-14.2556 - 14.2556i) q^{33} -3.27757i q^{34} +6.00000 q^{36} +(10.2972 - 10.2972i) q^{37} +(-2.25042 - 2.25042i) q^{38} -7.28825i q^{39} -43.8211 q^{41} +(-6.22673 + 6.22673i) q^{42} +(-10.4466 - 10.4466i) q^{43} +23.2794i q^{44} +57.3200 q^{46} +(-46.2319 + 46.2319i) q^{47} +(-4.89898 - 4.89898i) q^{48} +36.0759i q^{49} -4.01419 q^{51} +(-5.95083 + 5.95083i) q^{52} +(-40.8055 - 40.8055i) q^{53} -7.34847i q^{54} +10.1682 q^{56} +(-2.75619 + 2.75619i) q^{57} +(-49.9726 - 49.9726i) q^{58} -28.5724i q^{59} -14.8072 q^{61} +(19.5918 - 19.5918i) q^{62} +(7.62616 + 7.62616i) q^{63} +8.00000i q^{64} +28.5113 q^{66} +(13.4721 - 13.4721i) q^{67} +(3.27757 + 3.27757i) q^{68} -70.2024i q^{69} +3.29816 q^{71} +(-6.00000 + 6.00000i) q^{72} +(-85.4956 - 85.4956i) q^{73} +20.5944i q^{74} +4.50083 q^{76} +(-29.5887 + 29.5887i) q^{77} +(7.28825 + 7.28825i) q^{78} -22.2942i q^{79} -9.00000 q^{81} +(43.8211 - 43.8211i) q^{82} +(-21.6882 - 21.6882i) q^{83} -12.4535i q^{84} +20.8931 q^{86} +(-61.2036 + 61.2036i) q^{87} +(-23.2794 - 23.2794i) q^{88} +113.653i q^{89} -15.1273 q^{91} +(-57.3200 + 57.3200i) q^{92} +(-23.9950 - 23.9950i) q^{93} -92.4638i q^{94} +9.79796 q^{96} +(50.8871 - 50.8871i) q^{97} +(-36.0759 - 36.0759i) q^{98} -34.9191i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{2} + 24 q^{7} + 32 q^{8} - 24 q^{11} - 48 q^{13} - 64 q^{16} - 16 q^{17} - 48 q^{18} - 48 q^{21} + 24 q^{22} + 104 q^{23} + 96 q^{26} - 48 q^{28} + 200 q^{31} + 64 q^{32} - 48 q^{33} + 96 q^{36}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/750\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) 1.22474 + 1.22474i 0.408248 + 0.408248i
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) −2.44949 −0.408248
\(7\) 2.54205 2.54205i 0.363151 0.363151i −0.501821 0.864972i \(-0.667336\pi\)
0.864972 + 0.501821i \(0.167336\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.00000i 0.333333i
\(10\) 0 0
\(11\) −11.6397 −1.05815 −0.529077 0.848574i \(-0.677462\pi\)
−0.529077 + 0.848574i \(0.677462\pi\)
\(12\) 2.44949 2.44949i 0.204124 0.204124i
\(13\) −2.97542 2.97542i −0.228878 0.228878i 0.583346 0.812224i \(-0.301743\pi\)
−0.812224 + 0.583346i \(0.801743\pi\)
\(14\) 5.08411i 0.363151i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) −1.63878 + 1.63878i −0.0963991 + 0.0963991i −0.753662 0.657263i \(-0.771714\pi\)
0.657263 + 0.753662i \(0.271714\pi\)
\(18\) −3.00000 3.00000i −0.166667 0.166667i
\(19\) 2.25042i 0.118443i 0.998245 + 0.0592215i \(0.0188618\pi\)
−0.998245 + 0.0592215i \(0.981138\pi\)
\(20\) 0 0
\(21\) 6.22673 0.296511
\(22\) 11.6397 11.6397i 0.529077 0.529077i
\(23\) −28.6600 28.6600i −1.24609 1.24609i −0.957434 0.288653i \(-0.906793\pi\)
−0.288653 0.957434i \(-0.593207\pi\)
\(24\) 4.89898i 0.204124i
\(25\) 0 0
\(26\) 5.95083 0.228878
\(27\) −3.67423 + 3.67423i −0.136083 + 0.136083i
\(28\) −5.08411 5.08411i −0.181575 0.181575i
\(29\) 49.9726i 1.72319i 0.507595 + 0.861596i \(0.330535\pi\)
−0.507595 + 0.861596i \(0.669465\pi\)
\(30\) 0 0
\(31\) −19.5918 −0.631995 −0.315998 0.948760i \(-0.602339\pi\)
−0.315998 + 0.948760i \(0.602339\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −14.2556 14.2556i −0.431989 0.431989i
\(34\) 3.27757i 0.0963991i
\(35\) 0 0
\(36\) 6.00000 0.166667
\(37\) 10.2972 10.2972i 0.278302 0.278302i −0.554129 0.832431i \(-0.686948\pi\)
0.832431 + 0.554129i \(0.186948\pi\)
\(38\) −2.25042 2.25042i −0.0592215 0.0592215i
\(39\) 7.28825i 0.186878i
\(40\) 0 0
\(41\) −43.8211 −1.06881 −0.534403 0.845230i \(-0.679464\pi\)
−0.534403 + 0.845230i \(0.679464\pi\)
\(42\) −6.22673 + 6.22673i −0.148256 + 0.148256i
\(43\) −10.4466 10.4466i −0.242944 0.242944i 0.575123 0.818067i \(-0.304954\pi\)
−0.818067 + 0.575123i \(0.804954\pi\)
\(44\) 23.2794i 0.529077i
\(45\) 0 0
\(46\) 57.3200 1.24609
\(47\) −46.2319 + 46.2319i −0.983657 + 0.983657i −0.999869 0.0162113i \(-0.994840\pi\)
0.0162113 + 0.999869i \(0.494840\pi\)
\(48\) −4.89898 4.89898i −0.102062 0.102062i
\(49\) 36.0759i 0.736243i
\(50\) 0 0
\(51\) −4.01419 −0.0787095
\(52\) −5.95083 + 5.95083i −0.114439 + 0.114439i
\(53\) −40.8055 40.8055i −0.769916 0.769916i 0.208176 0.978091i \(-0.433247\pi\)
−0.978091 + 0.208176i \(0.933247\pi\)
\(54\) 7.34847i 0.136083i
\(55\) 0 0
\(56\) 10.1682 0.181575
\(57\) −2.75619 + 2.75619i −0.0483541 + 0.0483541i
\(58\) −49.9726 49.9726i −0.861596 0.861596i
\(59\) 28.5724i 0.484278i −0.970242 0.242139i \(-0.922151\pi\)
0.970242 0.242139i \(-0.0778490\pi\)
\(60\) 0 0
\(61\) −14.8072 −0.242741 −0.121370 0.992607i \(-0.538729\pi\)
−0.121370 + 0.992607i \(0.538729\pi\)
\(62\) 19.5918 19.5918i 0.315998 0.315998i
\(63\) 7.62616 + 7.62616i 0.121050 + 0.121050i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 28.5113 0.431989
\(67\) 13.4721 13.4721i 0.201076 0.201076i −0.599385 0.800461i \(-0.704588\pi\)
0.800461 + 0.599385i \(0.204588\pi\)
\(68\) 3.27757 + 3.27757i 0.0481995 + 0.0481995i
\(69\) 70.2024i 1.01743i
\(70\) 0 0
\(71\) 3.29816 0.0464529 0.0232265 0.999730i \(-0.492606\pi\)
0.0232265 + 0.999730i \(0.492606\pi\)
\(72\) −6.00000 + 6.00000i −0.0833333 + 0.0833333i
\(73\) −85.4956 85.4956i −1.17117 1.17117i −0.981931 0.189241i \(-0.939397\pi\)
−0.189241 0.981931i \(-0.560603\pi\)
\(74\) 20.5944i 0.278302i
\(75\) 0 0
\(76\) 4.50083 0.0592215
\(77\) −29.5887 + 29.5887i −0.384269 + 0.384269i
\(78\) 7.28825 + 7.28825i 0.0934391 + 0.0934391i
\(79\) 22.2942i 0.282205i −0.989995 0.141103i \(-0.954935\pi\)
0.989995 0.141103i \(-0.0450648\pi\)
\(80\) 0 0
\(81\) −9.00000 −0.111111
\(82\) 43.8211 43.8211i 0.534403 0.534403i
\(83\) −21.6882 21.6882i −0.261304 0.261304i 0.564280 0.825584i \(-0.309154\pi\)
−0.825584 + 0.564280i \(0.809154\pi\)
\(84\) 12.4535i 0.148256i
\(85\) 0 0
\(86\) 20.8931 0.242944
\(87\) −61.2036 + 61.2036i −0.703490 + 0.703490i
\(88\) −23.2794 23.2794i −0.264538 0.264538i
\(89\) 113.653i 1.27700i 0.769621 + 0.638501i \(0.220445\pi\)
−0.769621 + 0.638501i \(0.779555\pi\)
\(90\) 0 0
\(91\) −15.1273 −0.166234
\(92\) −57.3200 + 57.3200i −0.623043 + 0.623043i
\(93\) −23.9950 23.9950i −0.258011 0.258011i
\(94\) 92.4638i 0.983657i
\(95\) 0 0
\(96\) 9.79796 0.102062
\(97\) 50.8871 50.8871i 0.524609 0.524609i −0.394351 0.918960i \(-0.629031\pi\)
0.918960 + 0.394351i \(0.129031\pi\)
\(98\) −36.0759 36.0759i −0.368122 0.368122i
\(99\) 34.9191i 0.352718i
\(100\) 0 0
\(101\) 32.8309 0.325058 0.162529 0.986704i \(-0.448035\pi\)
0.162529 + 0.986704i \(0.448035\pi\)
\(102\) 4.01419 4.01419i 0.0393548 0.0393548i
\(103\) 56.2840 + 56.2840i 0.546446 + 0.546446i 0.925411 0.378965i \(-0.123720\pi\)
−0.378965 + 0.925411i \(0.623720\pi\)
\(104\) 11.9017i 0.114439i
\(105\) 0 0
\(106\) 81.6111 0.769916
\(107\) 121.285 121.285i 1.13350 1.13350i 0.143915 0.989590i \(-0.454031\pi\)
0.989590 0.143915i \(-0.0459692\pi\)
\(108\) 7.34847 + 7.34847i 0.0680414 + 0.0680414i
\(109\) 163.809i 1.50284i −0.659826 0.751418i \(-0.729370\pi\)
0.659826 0.751418i \(-0.270630\pi\)
\(110\) 0 0
\(111\) 25.2228 0.227233
\(112\) −10.1682 + 10.1682i −0.0907876 + 0.0907876i
\(113\) −34.2754 34.2754i −0.303322 0.303322i 0.538990 0.842312i \(-0.318806\pi\)
−0.842312 + 0.538990i \(0.818806\pi\)
\(114\) 5.51237i 0.0483541i
\(115\) 0 0
\(116\) 99.9451 0.861596
\(117\) 8.92625 8.92625i 0.0762927 0.0762927i
\(118\) 28.5724 + 28.5724i 0.242139 + 0.242139i
\(119\) 8.33176i 0.0700148i
\(120\) 0 0
\(121\) 14.4823 0.119688
\(122\) 14.8072 14.8072i 0.121370 0.121370i
\(123\) −53.6696 53.6696i −0.436338 0.436338i
\(124\) 39.1837i 0.315998i
\(125\) 0 0
\(126\) −15.2523 −0.121050
\(127\) 18.5651 18.5651i 0.146182 0.146182i −0.630228 0.776410i \(-0.717039\pi\)
0.776410 + 0.630228i \(0.217039\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) 25.5888i 0.198363i
\(130\) 0 0
\(131\) −245.921 −1.87726 −0.938630 0.344927i \(-0.887904\pi\)
−0.938630 + 0.344927i \(0.887904\pi\)
\(132\) −28.5113 + 28.5113i −0.215995 + 0.215995i
\(133\) 5.72068 + 5.72068i 0.0430126 + 0.0430126i
\(134\) 26.9442i 0.201076i
\(135\) 0 0
\(136\) −6.55514 −0.0481995
\(137\) −22.3515 + 22.3515i −0.163150 + 0.163150i −0.783961 0.620811i \(-0.786804\pi\)
0.620811 + 0.783961i \(0.286804\pi\)
\(138\) 70.2024 + 70.2024i 0.508713 + 0.508713i
\(139\) 118.418i 0.851931i −0.904740 0.425965i \(-0.859935\pi\)
0.904740 0.425965i \(-0.140065\pi\)
\(140\) 0 0
\(141\) −113.245 −0.803153
\(142\) −3.29816 + 3.29816i −0.0232265 + 0.0232265i
\(143\) 34.6329 + 34.6329i 0.242188 + 0.242188i
\(144\) 12.0000i 0.0833333i
\(145\) 0 0
\(146\) 170.991 1.17117
\(147\) −44.1838 + 44.1838i −0.300570 + 0.300570i
\(148\) −20.5944 20.5944i −0.139151 0.139151i
\(149\) 246.854i 1.65674i 0.560182 + 0.828370i \(0.310731\pi\)
−0.560182 + 0.828370i \(0.689269\pi\)
\(150\) 0 0
\(151\) −139.432 −0.923394 −0.461697 0.887038i \(-0.652759\pi\)
−0.461697 + 0.887038i \(0.652759\pi\)
\(152\) −4.50083 + 4.50083i −0.0296107 + 0.0296107i
\(153\) −4.91635 4.91635i −0.0321330 0.0321330i
\(154\) 59.1774i 0.384269i
\(155\) 0 0
\(156\) −14.5765 −0.0934391
\(157\) 115.745 115.745i 0.737229 0.737229i −0.234812 0.972041i \(-0.575447\pi\)
0.972041 + 0.234812i \(0.0754474\pi\)
\(158\) 22.2942 + 22.2942i 0.141103 + 0.141103i
\(159\) 99.9527i 0.628633i
\(160\) 0 0
\(161\) −145.710 −0.905034
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) −5.71791 5.71791i −0.0350792 0.0350792i 0.689350 0.724429i \(-0.257896\pi\)
−0.724429 + 0.689350i \(0.757896\pi\)
\(164\) 87.6421i 0.534403i
\(165\) 0 0
\(166\) 43.3765 0.261304
\(167\) −74.0063 + 74.0063i −0.443152 + 0.443152i −0.893070 0.449918i \(-0.851453\pi\)
0.449918 + 0.893070i \(0.351453\pi\)
\(168\) 12.4535 + 12.4535i 0.0741278 + 0.0741278i
\(169\) 151.294i 0.895230i
\(170\) 0 0
\(171\) −6.75125 −0.0394810
\(172\) −20.8931 + 20.8931i −0.121472 + 0.121472i
\(173\) −13.4974 13.4974i −0.0780196 0.0780196i 0.667020 0.745040i \(-0.267570\pi\)
−0.745040 + 0.667020i \(0.767570\pi\)
\(174\) 122.407i 0.703490i
\(175\) 0 0
\(176\) 46.5587 0.264538
\(177\) 34.9939 34.9939i 0.197706 0.197706i
\(178\) −113.653 113.653i −0.638501 0.638501i
\(179\) 173.811i 0.971012i 0.874233 + 0.485506i \(0.161365\pi\)
−0.874233 + 0.485506i \(0.838635\pi\)
\(180\) 0 0
\(181\) −209.024 −1.15483 −0.577414 0.816451i \(-0.695938\pi\)
−0.577414 + 0.816451i \(0.695938\pi\)
\(182\) 15.1273 15.1273i 0.0831172 0.0831172i
\(183\) −18.1350 18.1350i −0.0990986 0.0990986i
\(184\) 114.640i 0.623043i
\(185\) 0 0
\(186\) 47.9900 0.258011
\(187\) 19.0749 19.0749i 0.102005 0.102005i
\(188\) 92.4638 + 92.4638i 0.491829 + 0.491829i
\(189\) 18.6802i 0.0988371i
\(190\) 0 0
\(191\) 250.977 1.31401 0.657007 0.753885i \(-0.271822\pi\)
0.657007 + 0.753885i \(0.271822\pi\)
\(192\) −9.79796 + 9.79796i −0.0510310 + 0.0510310i
\(193\) 243.593 + 243.593i 1.26214 + 1.26214i 0.950053 + 0.312087i \(0.101028\pi\)
0.312087 + 0.950053i \(0.398972\pi\)
\(194\) 101.774i 0.524609i
\(195\) 0 0
\(196\) 72.1519 0.368122
\(197\) −139.759 + 139.759i −0.709435 + 0.709435i −0.966416 0.256981i \(-0.917272\pi\)
0.256981 + 0.966416i \(0.417272\pi\)
\(198\) 34.9191 + 34.9191i 0.176359 + 0.176359i
\(199\) 181.419i 0.911653i −0.890069 0.455827i \(-0.849344\pi\)
0.890069 0.455827i \(-0.150656\pi\)
\(200\) 0 0
\(201\) 32.9998 0.164178
\(202\) −32.8309 + 32.8309i −0.162529 + 0.162529i
\(203\) 127.033 + 127.033i 0.625778 + 0.625778i
\(204\) 8.02837i 0.0393548i
\(205\) 0 0
\(206\) −112.568 −0.546446
\(207\) 85.9800 85.9800i 0.415362 0.415362i
\(208\) 11.9017 + 11.9017i 0.0572195 + 0.0572195i
\(209\) 26.1941i 0.125331i
\(210\) 0 0
\(211\) −321.973 −1.52594 −0.762969 0.646435i \(-0.776259\pi\)
−0.762969 + 0.646435i \(0.776259\pi\)
\(212\) −81.6111 + 81.6111i −0.384958 + 0.384958i
\(213\) 4.03940 + 4.03940i 0.0189643 + 0.0189643i
\(214\) 242.570i 1.13350i
\(215\) 0 0
\(216\) −14.6969 −0.0680414
\(217\) −49.8035 + 49.8035i −0.229509 + 0.229509i
\(218\) 163.809 + 163.809i 0.751418 + 0.751418i
\(219\) 209.420i 0.956258i
\(220\) 0 0
\(221\) 9.75213 0.0441273
\(222\) −25.2228 + 25.2228i −0.113616 + 0.113616i
\(223\) 255.414 + 255.414i 1.14535 + 1.14535i 0.987456 + 0.157897i \(0.0504713\pi\)
0.157897 + 0.987456i \(0.449529\pi\)
\(224\) 20.3364i 0.0907876i
\(225\) 0 0
\(226\) 68.5509 0.303322
\(227\) 154.685 154.685i 0.681431 0.681431i −0.278891 0.960323i \(-0.589967\pi\)
0.960323 + 0.278891i \(0.0899669\pi\)
\(228\) 5.51237 + 5.51237i 0.0241771 + 0.0241771i
\(229\) 339.723i 1.48351i 0.670673 + 0.741753i \(0.266005\pi\)
−0.670673 + 0.741753i \(0.733995\pi\)
\(230\) 0 0
\(231\) −72.4772 −0.313754
\(232\) −99.9451 + 99.9451i −0.430798 + 0.430798i
\(233\) 47.4440 + 47.4440i 0.203622 + 0.203622i 0.801550 0.597928i \(-0.204009\pi\)
−0.597928 + 0.801550i \(0.704009\pi\)
\(234\) 17.8525i 0.0762927i
\(235\) 0 0
\(236\) −57.1448 −0.242139
\(237\) 27.3047 27.3047i 0.115210 0.115210i
\(238\) −8.33176 8.33176i −0.0350074 0.0350074i
\(239\) 417.452i 1.74666i 0.487129 + 0.873330i \(0.338044\pi\)
−0.487129 + 0.873330i \(0.661956\pi\)
\(240\) 0 0
\(241\) 225.983 0.937691 0.468845 0.883280i \(-0.344670\pi\)
0.468845 + 0.883280i \(0.344670\pi\)
\(242\) −14.4823 + 14.4823i −0.0598441 + 0.0598441i
\(243\) −11.0227 11.0227i −0.0453609 0.0453609i
\(244\) 29.6144i 0.121370i
\(245\) 0 0
\(246\) 107.339 0.436338
\(247\) 6.69592 6.69592i 0.0271090 0.0271090i
\(248\) −39.1837 39.1837i −0.157999 0.157999i
\(249\) 53.1251i 0.213354i
\(250\) 0 0
\(251\) 286.437 1.14118 0.570592 0.821234i \(-0.306714\pi\)
0.570592 + 0.821234i \(0.306714\pi\)
\(252\) 15.2523 15.2523i 0.0605251 0.0605251i
\(253\) 333.593 + 333.593i 1.31855 + 1.31855i
\(254\) 37.1303i 0.146182i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 25.3011 25.3011i 0.0984478 0.0984478i −0.656167 0.754615i \(-0.727824\pi\)
0.754615 + 0.656167i \(0.227824\pi\)
\(258\) 25.5888 + 25.5888i 0.0991813 + 0.0991813i
\(259\) 52.3520i 0.202131i
\(260\) 0 0
\(261\) −149.918 −0.574397
\(262\) 245.921 245.921i 0.938630 0.938630i
\(263\) 181.190 + 181.190i 0.688934 + 0.688934i 0.961996 0.273062i \(-0.0880364\pi\)
−0.273062 + 0.961996i \(0.588036\pi\)
\(264\) 57.0226i 0.215995i
\(265\) 0 0
\(266\) −11.4414 −0.0430126
\(267\) −139.196 + 139.196i −0.521334 + 0.521334i
\(268\) −26.9442 26.9442i −0.100538 0.100538i
\(269\) 292.747i 1.08828i 0.838995 + 0.544139i \(0.183143\pi\)
−0.838995 + 0.544139i \(0.816857\pi\)
\(270\) 0 0
\(271\) 522.222 1.92702 0.963509 0.267678i \(-0.0862562\pi\)
0.963509 + 0.267678i \(0.0862562\pi\)
\(272\) 6.55514 6.55514i 0.0240998 0.0240998i
\(273\) −18.5271 18.5271i −0.0678649 0.0678649i
\(274\) 44.7031i 0.163150i
\(275\) 0 0
\(276\) −140.405 −0.508713
\(277\) −301.603 + 301.603i −1.08882 + 1.08882i −0.0931698 + 0.995650i \(0.529700\pi\)
−0.995650 + 0.0931698i \(0.970300\pi\)
\(278\) 118.418 + 118.418i 0.425965 + 0.425965i
\(279\) 58.7755i 0.210665i
\(280\) 0 0
\(281\) −213.384 −0.759374 −0.379687 0.925115i \(-0.623968\pi\)
−0.379687 + 0.925115i \(0.623968\pi\)
\(282\) 113.245 113.245i 0.401576 0.401576i
\(283\) 207.552 + 207.552i 0.733399 + 0.733399i 0.971292 0.237892i \(-0.0764565\pi\)
−0.237892 + 0.971292i \(0.576457\pi\)
\(284\) 6.59632i 0.0232265i
\(285\) 0 0
\(286\) −69.2658 −0.242188
\(287\) −111.395 + 111.395i −0.388138 + 0.388138i
\(288\) 12.0000 + 12.0000i 0.0416667 + 0.0416667i
\(289\) 283.629i 0.981414i
\(290\) 0 0
\(291\) 124.647 0.428341
\(292\) −170.991 + 170.991i −0.585586 + 0.585586i
\(293\) −341.524 341.524i −1.16561 1.16561i −0.983227 0.182385i \(-0.941618\pi\)
−0.182385 0.983227i \(-0.558382\pi\)
\(294\) 88.3676i 0.300570i
\(295\) 0 0
\(296\) 41.1887 0.139151
\(297\) 42.7669 42.7669i 0.143996 0.143996i
\(298\) −246.854 246.854i −0.828370 0.828370i
\(299\) 170.551i 0.570404i
\(300\) 0 0
\(301\) −53.1115 −0.176450
\(302\) 139.432 139.432i 0.461697 0.461697i
\(303\) 40.2095 + 40.2095i 0.132704 + 0.132704i
\(304\) 9.00166i 0.0296107i
\(305\) 0 0
\(306\) 9.83271 0.0321330
\(307\) −114.470 + 114.470i −0.372866 + 0.372866i −0.868520 0.495654i \(-0.834928\pi\)
0.495654 + 0.868520i \(0.334928\pi\)
\(308\) 59.1774 + 59.1774i 0.192134 + 0.192134i
\(309\) 137.867i 0.446172i
\(310\) 0 0
\(311\) −177.510 −0.570773 −0.285387 0.958413i \(-0.592122\pi\)
−0.285387 + 0.958413i \(0.592122\pi\)
\(312\) 14.5765 14.5765i 0.0467196 0.0467196i
\(313\) −330.021 330.021i −1.05438 1.05438i −0.998434 0.0559462i \(-0.982182\pi\)
−0.0559462 0.998434i \(-0.517818\pi\)
\(314\) 231.490i 0.737229i
\(315\) 0 0
\(316\) −44.5884 −0.141103
\(317\) 260.894 260.894i 0.823008 0.823008i −0.163530 0.986538i \(-0.552288\pi\)
0.986538 + 0.163530i \(0.0522881\pi\)
\(318\) 99.9527 + 99.9527i 0.314317 + 0.314317i
\(319\) 581.665i 1.82340i
\(320\) 0 0
\(321\) 297.086 0.925503
\(322\) 145.710 145.710i 0.452517 0.452517i
\(323\) −3.68795 3.68795i −0.0114178 0.0114178i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) 11.4358 0.0350792
\(327\) 200.624 200.624i 0.613530 0.613530i
\(328\) −87.6421 87.6421i −0.267202 0.267202i
\(329\) 235.048i 0.714431i
\(330\) 0 0
\(331\) −307.794 −0.929891 −0.464945 0.885339i \(-0.653926\pi\)
−0.464945 + 0.885339i \(0.653926\pi\)
\(332\) −43.3765 + 43.3765i −0.130652 + 0.130652i
\(333\) 30.8915 + 30.8915i 0.0927674 + 0.0927674i
\(334\) 148.013i 0.443152i
\(335\) 0 0
\(336\) −24.9069 −0.0741278
\(337\) −83.2426 + 83.2426i −0.247011 + 0.247011i −0.819743 0.572732i \(-0.805884\pi\)
0.572732 + 0.819743i \(0.305884\pi\)
\(338\) 151.294 + 151.294i 0.447615 + 0.447615i
\(339\) 83.9573i 0.247662i
\(340\) 0 0
\(341\) 228.043 0.668748
\(342\) 6.75125 6.75125i 0.0197405 0.0197405i
\(343\) 216.268 + 216.268i 0.630518 + 0.630518i
\(344\) 41.7863i 0.121472i
\(345\) 0 0
\(346\) 26.9948 0.0780196
\(347\) −13.5122 + 13.5122i −0.0389402 + 0.0389402i −0.726309 0.687369i \(-0.758766\pi\)
0.687369 + 0.726309i \(0.258766\pi\)
\(348\) 122.407 + 122.407i 0.351745 + 0.351745i
\(349\) 163.810i 0.469370i 0.972071 + 0.234685i \(0.0754059\pi\)
−0.972071 + 0.234685i \(0.924594\pi\)
\(350\) 0 0
\(351\) 21.8648 0.0622927
\(352\) −46.5587 + 46.5587i −0.132269 + 0.132269i
\(353\) 235.132 + 235.132i 0.666096 + 0.666096i 0.956810 0.290714i \(-0.0938927\pi\)
−0.290714 + 0.956810i \(0.593893\pi\)
\(354\) 69.9878i 0.197706i
\(355\) 0 0
\(356\) 227.306 0.638501
\(357\) −10.2043 + 10.2043i −0.0285834 + 0.0285834i
\(358\) −173.811 173.811i −0.485506 0.485506i
\(359\) 653.313i 1.81981i −0.414814 0.909906i \(-0.636154\pi\)
0.414814 0.909906i \(-0.363846\pi\)
\(360\) 0 0
\(361\) 355.936 0.985971
\(362\) 209.024 209.024i 0.577414 0.577414i
\(363\) 17.7371 + 17.7371i 0.0488625 + 0.0488625i
\(364\) 30.2547i 0.0831172i
\(365\) 0 0
\(366\) 36.2701 0.0990986
\(367\) 283.950 283.950i 0.773707 0.773707i −0.205046 0.978752i \(-0.565734\pi\)
0.978752 + 0.205046i \(0.0657343\pi\)
\(368\) 114.640 + 114.640i 0.311522 + 0.311522i
\(369\) 131.463i 0.356269i
\(370\) 0 0
\(371\) −207.460 −0.559191
\(372\) −47.9900 + 47.9900i −0.129005 + 0.129005i
\(373\) 119.395 + 119.395i 0.320094 + 0.320094i 0.848803 0.528709i \(-0.177324\pi\)
−0.528709 + 0.848803i \(0.677324\pi\)
\(374\) 38.1499i 0.102005i
\(375\) 0 0
\(376\) −184.928 −0.491829
\(377\) 148.689 148.689i 0.394401 0.394401i
\(378\) −18.6802 18.6802i −0.0494185 0.0494185i
\(379\) 584.256i 1.54157i −0.637094 0.770786i \(-0.719864\pi\)
0.637094 0.770786i \(-0.280136\pi\)
\(380\) 0 0
\(381\) 45.4751 0.119357
\(382\) −250.977 + 250.977i −0.657007 + 0.657007i
\(383\) −366.757 366.757i −0.957590 0.957590i 0.0415468 0.999137i \(-0.486771\pi\)
−0.999137 + 0.0415468i \(0.986771\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) −487.186 −1.26214
\(387\) 31.3397 31.3397i 0.0809812 0.0809812i
\(388\) −101.774 101.774i −0.262304 0.262304i
\(389\) 548.426i 1.40984i 0.709289 + 0.704918i \(0.249016\pi\)
−0.709289 + 0.704918i \(0.750984\pi\)
\(390\) 0 0
\(391\) 93.9351 0.240243
\(392\) −72.1519 + 72.1519i −0.184061 + 0.184061i
\(393\) −301.190 301.190i −0.766388 0.766388i
\(394\) 279.517i 0.709435i
\(395\) 0 0
\(396\) −69.8381 −0.176359
\(397\) −441.773 + 441.773i −1.11278 + 1.11278i −0.120004 + 0.992773i \(0.538291\pi\)
−0.992773 + 0.120004i \(0.961709\pi\)
\(398\) 181.419 + 181.419i 0.455827 + 0.455827i
\(399\) 14.0127i 0.0351197i
\(400\) 0 0
\(401\) 117.473 0.292951 0.146476 0.989214i \(-0.453207\pi\)
0.146476 + 0.989214i \(0.453207\pi\)
\(402\) −32.9998 + 32.9998i −0.0820890 + 0.0820890i
\(403\) 58.2939 + 58.2939i 0.144650 + 0.144650i
\(404\) 65.6618i 0.162529i
\(405\) 0 0
\(406\) −254.066 −0.625778
\(407\) −119.856 + 119.856i −0.294486 + 0.294486i
\(408\) −8.02837 8.02837i −0.0196774 0.0196774i
\(409\) 12.4587i 0.0304615i 0.999884 + 0.0152307i \(0.00484828\pi\)
−0.999884 + 0.0152307i \(0.995152\pi\)
\(410\) 0 0
\(411\) −54.7499 −0.133211
\(412\) 112.568 112.568i 0.273223 0.273223i
\(413\) −72.6326 72.6326i −0.175866 0.175866i
\(414\) 171.960i 0.415362i
\(415\) 0 0
\(416\) −23.8033 −0.0572195
\(417\) 145.032 145.032i 0.347799 0.347799i
\(418\) 26.1941 + 26.1941i 0.0626654 + 0.0626654i
\(419\) 683.009i 1.63009i −0.579396 0.815046i \(-0.696712\pi\)
0.579396 0.815046i \(-0.303288\pi\)
\(420\) 0 0
\(421\) 238.737 0.567071 0.283535 0.958962i \(-0.408493\pi\)
0.283535 + 0.958962i \(0.408493\pi\)
\(422\) 321.973 321.973i 0.762969 0.762969i
\(423\) −138.696 138.696i −0.327886 0.327886i
\(424\) 163.222i 0.384958i
\(425\) 0 0
\(426\) −8.07880 −0.0189643
\(427\) −37.6407 + 37.6407i −0.0881515 + 0.0881515i
\(428\) −242.570 242.570i −0.566752 0.566752i
\(429\) 84.8329i 0.197746i
\(430\) 0 0
\(431\) −224.817 −0.521617 −0.260809 0.965391i \(-0.583989\pi\)
−0.260809 + 0.965391i \(0.583989\pi\)
\(432\) 14.6969 14.6969i 0.0340207 0.0340207i
\(433\) 222.884 + 222.884i 0.514744 + 0.514744i 0.915976 0.401232i \(-0.131418\pi\)
−0.401232 + 0.915976i \(0.631418\pi\)
\(434\) 99.6071i 0.229509i
\(435\) 0 0
\(436\) −327.618 −0.751418
\(437\) 64.4969 64.4969i 0.147590 0.147590i
\(438\) 209.420 + 209.420i 0.478129 + 0.478129i
\(439\) 407.104i 0.927345i 0.886007 + 0.463672i \(0.153469\pi\)
−0.886007 + 0.463672i \(0.846531\pi\)
\(440\) 0 0
\(441\) −108.228 −0.245414
\(442\) −9.75213 + 9.75213i −0.0220636 + 0.0220636i
\(443\) −496.036 496.036i −1.11972 1.11972i −0.991782 0.127938i \(-0.959164\pi\)
−0.127938 0.991782i \(-0.540836\pi\)
\(444\) 50.4457i 0.113616i
\(445\) 0 0
\(446\) −510.827 −1.14535
\(447\) −302.333 + 302.333i −0.676361 + 0.676361i
\(448\) 20.3364 + 20.3364i 0.0453938 + 0.0453938i
\(449\) 239.876i 0.534245i 0.963663 + 0.267123i \(0.0860729\pi\)
−0.963663 + 0.267123i \(0.913927\pi\)
\(450\) 0 0
\(451\) 510.063 1.13096
\(452\) −68.5509 + 68.5509i −0.151661 + 0.151661i
\(453\) −170.769 170.769i −0.376974 0.376974i
\(454\) 309.370i 0.681431i
\(455\) 0 0
\(456\) −11.0247 −0.0241771
\(457\) −403.772 + 403.772i −0.883527 + 0.883527i −0.993891 0.110364i \(-0.964798\pi\)
0.110364 + 0.993891i \(0.464798\pi\)
\(458\) −339.723 339.723i −0.741753 0.741753i
\(459\) 12.0426i 0.0262365i
\(460\) 0 0
\(461\) 20.4304 0.0443177 0.0221588 0.999754i \(-0.492946\pi\)
0.0221588 + 0.999754i \(0.492946\pi\)
\(462\) 72.4772 72.4772i 0.156877 0.156877i
\(463\) −445.994 445.994i −0.963271 0.963271i 0.0360784 0.999349i \(-0.488513\pi\)
−0.999349 + 0.0360784i \(0.988513\pi\)
\(464\) 199.890i 0.430798i
\(465\) 0 0
\(466\) −94.8881 −0.203622
\(467\) −87.9123 + 87.9123i −0.188249 + 0.188249i −0.794939 0.606690i \(-0.792497\pi\)
0.606690 + 0.794939i \(0.292497\pi\)
\(468\) −17.8525 17.8525i −0.0381464 0.0381464i
\(469\) 68.4936i 0.146042i
\(470\) 0 0
\(471\) 283.516 0.601945
\(472\) 57.1448 57.1448i 0.121070 0.121070i
\(473\) 121.595 + 121.595i 0.257071 + 0.257071i
\(474\) 54.6095i 0.115210i
\(475\) 0 0
\(476\) 16.6635 0.0350074
\(477\) 122.417 122.417i 0.256639 0.256639i
\(478\) −417.452 417.452i −0.873330 0.873330i
\(479\) 716.386i 1.49559i −0.663931 0.747793i \(-0.731113\pi\)
0.663931 0.747793i \(-0.268887\pi\)
\(480\) 0 0
\(481\) −61.2768 −0.127395
\(482\) −225.983 + 225.983i −0.468845 + 0.468845i
\(483\) −178.458 178.458i −0.369479 0.369479i
\(484\) 28.9645i 0.0598441i
\(485\) 0 0
\(486\) 22.0454 0.0453609
\(487\) −183.244 + 183.244i −0.376271 + 0.376271i −0.869755 0.493484i \(-0.835723\pi\)
0.493484 + 0.869755i \(0.335723\pi\)
\(488\) −29.6144 29.6144i −0.0606852 0.0606852i
\(489\) 14.0060i 0.0286421i
\(490\) 0 0
\(491\) 796.428 1.62205 0.811027 0.585009i \(-0.198909\pi\)
0.811027 + 0.585009i \(0.198909\pi\)
\(492\) −107.339 + 107.339i −0.218169 + 0.218169i
\(493\) −81.8943 81.8943i −0.166114 0.166114i
\(494\) 13.3918i 0.0271090i
\(495\) 0 0
\(496\) 78.3674 0.157999
\(497\) 8.38409 8.38409i 0.0168694 0.0168694i
\(498\) 53.1251 + 53.1251i 0.106677 + 0.106677i
\(499\) 41.7756i 0.0837186i −0.999124 0.0418593i \(-0.986672\pi\)
0.999124 0.0418593i \(-0.0133281\pi\)
\(500\) 0 0
\(501\) −181.278 −0.361832
\(502\) −286.437 + 286.437i −0.570592 + 0.570592i
\(503\) −73.7531 73.7531i −0.146626 0.146626i 0.629983 0.776609i \(-0.283062\pi\)
−0.776609 + 0.629983i \(0.783062\pi\)
\(504\) 30.5046i 0.0605251i
\(505\) 0 0
\(506\) −667.187 −1.31855
\(507\) 185.296 185.296i 0.365476 0.365476i
\(508\) −37.1303 37.1303i −0.0730910 0.0730910i
\(509\) 727.395i 1.42907i −0.699601 0.714533i \(-0.746639\pi\)
0.699601 0.714533i \(-0.253361\pi\)
\(510\) 0 0
\(511\) −434.669 −0.850623
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −8.26856 8.26856i −0.0161180 0.0161180i
\(514\) 50.6022i 0.0984478i
\(515\) 0 0
\(516\) −51.1775 −0.0991813
\(517\) 538.125 538.125i 1.04086 1.04086i
\(518\) 52.3520 + 52.3520i 0.101066 + 0.101066i
\(519\) 33.0617i 0.0637027i
\(520\) 0 0
\(521\) 440.977 0.846405 0.423203 0.906035i \(-0.360906\pi\)
0.423203 + 0.906035i \(0.360906\pi\)
\(522\) 149.918 149.918i 0.287199 0.287199i
\(523\) −335.394 335.394i −0.641288 0.641288i 0.309584 0.950872i \(-0.399810\pi\)
−0.950872 + 0.309584i \(0.899810\pi\)
\(524\) 491.842i 0.938630i
\(525\) 0 0
\(526\) −362.379 −0.688934
\(527\) 32.1068 32.1068i 0.0609237 0.0609237i
\(528\) 57.0226 + 57.0226i 0.107997 + 0.107997i
\(529\) 1113.79i 2.10546i
\(530\) 0 0
\(531\) 85.7172 0.161426
\(532\) 11.4414 11.4414i 0.0215063 0.0215063i
\(533\) 130.386 + 130.386i 0.244626 + 0.244626i
\(534\) 278.392i 0.521334i
\(535\) 0 0
\(536\) 53.8884 0.100538
\(537\) −212.874 + 212.874i −0.396414 + 0.396414i
\(538\) −292.747 292.747i −0.544139 0.544139i
\(539\) 419.912i 0.779058i
\(540\) 0 0
\(541\) −323.177 −0.597369 −0.298685 0.954352i \(-0.596548\pi\)
−0.298685 + 0.954352i \(0.596548\pi\)
\(542\) −522.222 + 522.222i −0.963509 + 0.963509i
\(543\) −256.001 256.001i −0.471457 0.471457i
\(544\) 13.1103i 0.0240998i
\(545\) 0 0
\(546\) 37.0543 0.0678649
\(547\) 622.399 622.399i 1.13784 1.13784i 0.149005 0.988836i \(-0.452393\pi\)
0.988836 0.149005i \(-0.0476072\pi\)
\(548\) 44.7031 + 44.7031i 0.0815750 + 0.0815750i
\(549\) 44.4216i 0.0809137i
\(550\) 0 0
\(551\) −112.459 −0.204100
\(552\) 140.405 140.405i 0.254356 0.254356i
\(553\) −56.6731 56.6731i −0.102483 0.102483i
\(554\) 603.206i 1.08882i
\(555\) 0 0
\(556\) −236.837 −0.425965
\(557\) 402.619 402.619i 0.722835 0.722835i −0.246347 0.969182i \(-0.579230\pi\)
0.969182 + 0.246347i \(0.0792301\pi\)
\(558\) 58.7755 + 58.7755i 0.105333 + 0.105333i
\(559\) 62.1658i 0.111209i
\(560\) 0 0
\(561\) 46.7239 0.0832867
\(562\) 213.384 213.384i 0.379687 0.379687i
\(563\) −611.068 611.068i −1.08538 1.08538i −0.995998 0.0893800i \(-0.971511\pi\)
−0.0893800 0.995998i \(-0.528489\pi\)
\(564\) 226.489i 0.401576i
\(565\) 0 0
\(566\) −415.104 −0.733399
\(567\) −22.8785 + 22.8785i −0.0403501 + 0.0403501i
\(568\) 6.59632 + 6.59632i 0.0116132 + 0.0116132i
\(569\) 402.379i 0.707168i 0.935403 + 0.353584i \(0.115037\pi\)
−0.935403 + 0.353584i \(0.884963\pi\)
\(570\) 0 0
\(571\) 402.798 0.705426 0.352713 0.935731i \(-0.385259\pi\)
0.352713 + 0.935731i \(0.385259\pi\)
\(572\) 69.2658 69.2658i 0.121094 0.121094i
\(573\) 307.382 + 307.382i 0.536444 + 0.536444i
\(574\) 222.791i 0.388138i
\(575\) 0 0
\(576\) −24.0000 −0.0416667
\(577\) −222.528 + 222.528i −0.385663 + 0.385663i −0.873137 0.487474i \(-0.837918\pi\)
0.487474 + 0.873137i \(0.337918\pi\)
\(578\) −283.629 283.629i −0.490707 0.490707i
\(579\) 596.679i 1.03053i
\(580\) 0 0
\(581\) −110.265 −0.189785
\(582\) −124.647 + 124.647i −0.214171 + 0.214171i
\(583\) 474.963 + 474.963i 0.814689 + 0.814689i
\(584\) 341.982i 0.585586i
\(585\) 0 0
\(586\) 683.049 1.16561
\(587\) −495.692 + 495.692i −0.844450 + 0.844450i −0.989434 0.144984i \(-0.953687\pi\)
0.144984 + 0.989434i \(0.453687\pi\)
\(588\) 88.3676 + 88.3676i 0.150285 + 0.150285i
\(589\) 44.0898i 0.0748554i
\(590\) 0 0
\(591\) −342.337 −0.579251
\(592\) −41.1887 + 41.1887i −0.0695756 + 0.0695756i
\(593\) −429.389 429.389i −0.724096 0.724096i 0.245341 0.969437i \(-0.421100\pi\)
−0.969437 + 0.245341i \(0.921100\pi\)
\(594\) 85.5339i 0.143996i
\(595\) 0 0
\(596\) 493.708 0.828370
\(597\) 222.192 222.192i 0.372181 0.372181i
\(598\) −170.551 170.551i −0.285202 0.285202i
\(599\) 239.308i 0.399513i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640150\pi\)
\(600\) 0 0
\(601\) 709.983 1.18134 0.590668 0.806915i \(-0.298864\pi\)
0.590668 + 0.806915i \(0.298864\pi\)
\(602\) 53.1115 53.1115i 0.0882251 0.0882251i
\(603\) 40.4163 + 40.4163i 0.0670254 + 0.0670254i
\(604\) 278.865i 0.461697i
\(605\) 0 0
\(606\) −80.4189 −0.132704
\(607\) −419.632 + 419.632i −0.691321 + 0.691321i −0.962523 0.271202i \(-0.912579\pi\)
0.271202 + 0.962523i \(0.412579\pi\)
\(608\) 9.00166 + 9.00166i 0.0148054 + 0.0148054i
\(609\) 311.166i 0.510946i
\(610\) 0 0
\(611\) 275.118 0.450275
\(612\) −9.83271 + 9.83271i −0.0160665 + 0.0160665i
\(613\) −151.090 151.090i −0.246477 0.246477i 0.573046 0.819523i \(-0.305762\pi\)
−0.819523 + 0.573046i \(0.805762\pi\)
\(614\) 228.940i 0.372866i
\(615\) 0 0
\(616\) −118.355 −0.192134
\(617\) 216.560 216.560i 0.350988 0.350988i −0.509489 0.860477i \(-0.670166\pi\)
0.860477 + 0.509489i \(0.170166\pi\)
\(618\) −137.867 137.867i −0.223086 0.223086i
\(619\) 29.2443i 0.0472444i 0.999721 + 0.0236222i \(0.00751989\pi\)
−0.999721 + 0.0236222i \(0.992480\pi\)
\(620\) 0 0
\(621\) 210.607 0.339142
\(622\) 177.510 177.510i 0.285387 0.285387i
\(623\) 288.913 + 288.913i 0.463744 + 0.463744i
\(624\) 29.1530i 0.0467196i
\(625\) 0 0
\(626\) 660.042 1.05438
\(627\) 32.0811 32.0811i 0.0511661 0.0511661i
\(628\) −231.490 231.490i −0.368614 0.368614i
\(629\) 33.7497i 0.0536562i
\(630\) 0 0
\(631\) 633.546 1.00403 0.502017 0.864857i \(-0.332591\pi\)
0.502017 + 0.864857i \(0.332591\pi\)
\(632\) 44.5884 44.5884i 0.0705513 0.0705513i
\(633\) −394.335 394.335i −0.622962 0.622962i
\(634\) 521.787i 0.823008i
\(635\) 0 0
\(636\) −199.905 −0.314317
\(637\) 107.341 107.341i 0.168510 0.168510i
\(638\) 581.665 + 581.665i 0.911700 + 0.911700i
\(639\) 9.89447i 0.0154843i
\(640\) 0 0
\(641\) 504.266 0.786687 0.393343 0.919392i \(-0.371318\pi\)
0.393343 + 0.919392i \(0.371318\pi\)
\(642\) −297.086 + 297.086i −0.462751 + 0.462751i
\(643\) 5.84791 + 5.84791i 0.00909472 + 0.00909472i 0.711640 0.702545i \(-0.247953\pi\)
−0.702545 + 0.711640i \(0.747953\pi\)
\(644\) 291.421i 0.452517i
\(645\) 0 0
\(646\) 7.37589 0.0114178
\(647\) −405.598 + 405.598i −0.626891 + 0.626891i −0.947284 0.320394i \(-0.896185\pi\)
0.320394 + 0.947284i \(0.396185\pi\)
\(648\) −18.0000 18.0000i −0.0277778 0.0277778i
\(649\) 332.574i 0.512440i
\(650\) 0 0
\(651\) −121.993 −0.187394
\(652\) −11.4358 + 11.4358i −0.0175396 + 0.0175396i
\(653\) −839.625 839.625i −1.28580 1.28580i −0.937316 0.348481i \(-0.886698\pi\)
−0.348481 0.937316i \(-0.613302\pi\)
\(654\) 401.249i 0.613530i
\(655\) 0 0
\(656\) 175.284 0.267202
\(657\) 256.487 256.487i 0.390391 0.390391i
\(658\) −235.048 235.048i −0.357216 0.357216i
\(659\) 549.929i 0.834491i −0.908794 0.417245i \(-0.862996\pi\)
0.908794 0.417245i \(-0.137004\pi\)
\(660\) 0 0
\(661\) −532.250 −0.805219 −0.402610 0.915372i \(-0.631897\pi\)
−0.402610 + 0.915372i \(0.631897\pi\)
\(662\) 307.794 307.794i 0.464945 0.464945i
\(663\) 11.9439 + 11.9439i 0.0180149 + 0.0180149i
\(664\) 86.7530i 0.130652i
\(665\) 0 0
\(666\) −61.7831 −0.0927674
\(667\) 1432.21 1432.21i 2.14725 2.14725i
\(668\) 148.013 + 148.013i 0.221576 + 0.221576i
\(669\) 625.633i 0.935176i
\(670\) 0 0
\(671\) 172.351 0.256857
\(672\) 24.9069 24.9069i 0.0370639 0.0370639i
\(673\) 400.025 + 400.025i 0.594390 + 0.594390i 0.938814 0.344424i \(-0.111926\pi\)
−0.344424 + 0.938814i \(0.611926\pi\)
\(674\) 166.485i 0.247011i
\(675\) 0 0
\(676\) −302.588 −0.447615
\(677\) 109.403 109.403i 0.161600 0.161600i −0.621675 0.783275i \(-0.713548\pi\)
0.783275 + 0.621675i \(0.213548\pi\)
\(678\) 83.9573 + 83.9573i 0.123831 + 0.123831i
\(679\) 258.715i 0.381024i
\(680\) 0 0
\(681\) 378.899 0.556386
\(682\) −228.043 + 228.043i −0.334374 + 0.334374i
\(683\) 215.650 + 215.650i 0.315740 + 0.315740i 0.847128 0.531388i \(-0.178329\pi\)
−0.531388 + 0.847128i \(0.678329\pi\)
\(684\) 13.5025i 0.0197405i
\(685\) 0 0
\(686\) −432.535 −0.630518
\(687\) −416.074 + 416.074i −0.605639 + 0.605639i
\(688\) 41.7863 + 41.7863i 0.0607359 + 0.0607359i
\(689\) 242.827i 0.352434i
\(690\) 0 0
\(691\) −250.249 −0.362156 −0.181078 0.983469i \(-0.557959\pi\)
−0.181078 + 0.983469i \(0.557959\pi\)
\(692\) −26.9948 + 26.9948i −0.0390098 + 0.0390098i
\(693\) −88.7661 88.7661i −0.128090 0.128090i
\(694\) 27.0245i 0.0389402i
\(695\) 0 0
\(696\) −244.815 −0.351745
\(697\) 71.8133 71.8133i 0.103032 0.103032i
\(698\) −163.810 163.810i −0.234685 0.234685i
\(699\) 116.214i 0.166257i
\(700\) 0 0
\(701\) −325.266 −0.464003 −0.232002 0.972715i \(-0.574527\pi\)
−0.232002 + 0.972715i \(0.574527\pi\)
\(702\) −21.8648 + 21.8648i −0.0311464 + 0.0311464i
\(703\) 23.1729 + 23.1729i 0.0329629 + 0.0329629i
\(704\) 93.1175i 0.132269i
\(705\) 0 0
\(706\) −470.264 −0.666096
\(707\) 83.4579 83.4579i 0.118045 0.118045i
\(708\) −69.9878 69.9878i −0.0988528 0.0988528i
\(709\) 650.495i 0.917482i 0.888570 + 0.458741i \(0.151699\pi\)
−0.888570 + 0.458741i \(0.848301\pi\)
\(710\) 0 0
\(711\) 66.8827 0.0940684
\(712\) −227.306 + 227.306i −0.319251 + 0.319251i
\(713\) 561.502 + 561.502i 0.787521 + 0.787521i
\(714\) 20.4086i 0.0285834i
\(715\) 0 0
\(716\) 347.622 0.485506
\(717\) −511.272 + 511.272i −0.713071 + 0.713071i
\(718\) 653.313 + 653.313i 0.909906 + 0.909906i
\(719\) 96.3152i 0.133957i 0.997754 + 0.0669786i \(0.0213359\pi\)
−0.997754 + 0.0669786i \(0.978664\pi\)
\(720\) 0 0
\(721\) 286.154 0.396885
\(722\) −355.936 + 355.936i −0.492986 + 0.492986i
\(723\) 276.772 + 276.772i 0.382811 + 0.382811i
\(724\) 418.048i 0.577414i
\(725\) 0 0
\(726\) −35.4742 −0.0488625
\(727\) −78.7155 + 78.7155i −0.108274 + 0.108274i −0.759169 0.650894i \(-0.774394\pi\)
0.650894 + 0.759169i \(0.274394\pi\)
\(728\) −30.2547 30.2547i −0.0415586 0.0415586i
\(729\) 27.0000i 0.0370370i
\(730\) 0 0
\(731\) 34.2394 0.0468391
\(732\) −36.2701 + 36.2701i −0.0495493 + 0.0495493i
\(733\) 643.982 + 643.982i 0.878556 + 0.878556i 0.993385 0.114829i \(-0.0366320\pi\)
−0.114829 + 0.993385i \(0.536632\pi\)
\(734\) 567.901i 0.773707i
\(735\) 0 0
\(736\) −229.280 −0.311522
\(737\) −156.811 + 156.811i −0.212769 + 0.212769i
\(738\) 131.463 + 131.463i 0.178134 + 0.178134i
\(739\) 199.954i 0.270573i 0.990806 + 0.135287i \(0.0431956\pi\)
−0.990806 + 0.135287i \(0.956804\pi\)
\(740\) 0 0
\(741\) 16.4016 0.0221344
\(742\) 207.460 207.460i 0.279595 0.279595i
\(743\) −57.5163 57.5163i −0.0774109 0.0774109i 0.667341 0.744752i \(-0.267432\pi\)
−0.744752 + 0.667341i \(0.767432\pi\)
\(744\) 95.9801i 0.129005i
\(745\) 0 0
\(746\) −238.790 −0.320094
\(747\) 65.0647 65.0647i 0.0871014 0.0871014i
\(748\) −38.1499 38.1499i −0.0510025 0.0510025i
\(749\) 616.626i 0.823266i
\(750\) 0 0
\(751\) −1245.32 −1.65822 −0.829110 0.559086i \(-0.811152\pi\)
−0.829110 + 0.559086i \(0.811152\pi\)
\(752\) 184.928 184.928i 0.245914 0.245914i
\(753\) 350.812 + 350.812i 0.465886 + 0.465886i
\(754\) 297.378i 0.394401i
\(755\) 0 0
\(756\) 37.3604 0.0494185
\(757\) −371.768 + 371.768i −0.491107 + 0.491107i −0.908655 0.417548i \(-0.862890\pi\)
0.417548 + 0.908655i \(0.362890\pi\)
\(758\) 584.256 + 584.256i 0.770786 + 0.770786i
\(759\) 817.133i 1.07659i
\(760\) 0 0
\(761\) 705.973 0.927692 0.463846 0.885916i \(-0.346469\pi\)
0.463846 + 0.885916i \(0.346469\pi\)
\(762\) −45.4751 + 45.4751i −0.0596786 + 0.0596786i
\(763\) −416.412 416.412i −0.545756 0.545756i
\(764\) 501.953i 0.657007i
\(765\) 0 0
\(766\) 733.514 0.957590
\(767\) −85.0148 + 85.0148i −0.110841 + 0.110841i
\(768\) 19.5959 + 19.5959i 0.0255155 + 0.0255155i
\(769\) 337.427i 0.438787i 0.975636 + 0.219394i \(0.0704079\pi\)
−0.975636 + 0.219394i \(0.929592\pi\)
\(770\) 0 0
\(771\) 61.9747 0.0803823
\(772\) 487.186 487.186i 0.631070 0.631070i
\(773\) 453.969 + 453.969i 0.587282 + 0.587282i 0.936894 0.349613i \(-0.113687\pi\)
−0.349613 + 0.936894i \(0.613687\pi\)
\(774\) 62.6794i 0.0809812i
\(775\) 0 0
\(776\) 203.548 0.262304
\(777\) 64.1178 64.1178i 0.0825197 0.0825197i
\(778\) −548.426 548.426i −0.704918 0.704918i
\(779\) 98.6156i 0.126593i
\(780\) 0 0
\(781\) −38.3895 −0.0491543
\(782\) −93.9351 + 93.9351i −0.120122 + 0.120122i
\(783\) −183.611 183.611i −0.234497 0.234497i
\(784\) 144.304i 0.184061i
\(785\) 0 0
\(786\) 602.381 0.766388
\(787\) 124.228 124.228i 0.157851 0.157851i −0.623763 0.781614i \(-0.714397\pi\)
0.781614 + 0.623763i \(0.214397\pi\)
\(788\) 279.517 + 279.517i 0.354717 + 0.354717i
\(789\) 443.822i 0.562513i
\(790\) 0 0
\(791\) −174.260 −0.220303
\(792\) 69.8381 69.8381i 0.0881794 0.0881794i
\(793\) 44.0576 + 44.0576i 0.0555581 + 0.0555581i
\(794\) 883.545i 1.11278i
\(795\) 0 0
\(796\) −362.838 −0.455827
\(797\) −109.273 + 109.273i −0.137106 + 0.137106i −0.772329 0.635223i \(-0.780908\pi\)
0.635223 + 0.772329i \(0.280908\pi\)
\(798\) −14.0127 14.0127i −0.0175598 0.0175598i
\(799\) 151.528i 0.189647i
\(800\) 0 0
\(801\) −340.960 −0.425667
\(802\) −117.473 + 117.473i −0.146476 + 0.146476i
\(803\) 995.141 + 995.141i 1.23928 + 1.23928i
\(804\) 65.9996i 0.0820890i
\(805\) 0 0
\(806\) −116.588 −0.144650
\(807\) −358.540 + 358.540i −0.444287 + 0.444287i
\(808\) 65.6618 + 65.6618i 0.0812646 + 0.0812646i
\(809\) 1034.43i 1.27866i −0.768933 0.639329i \(-0.779212\pi\)
0.768933 0.639329i \(-0.220788\pi\)
\(810\) 0 0
\(811\) 1192.69 1.47065 0.735323 0.677717i \(-0.237030\pi\)
0.735323 + 0.677717i \(0.237030\pi\)
\(812\) 254.066 254.066i 0.312889 0.312889i
\(813\) 639.588 + 639.588i 0.786701 + 0.786701i
\(814\) 239.712i 0.294486i
\(815\) 0 0
\(816\) 16.0567 0.0196774
\(817\) 23.5091 23.5091i 0.0287749 0.0287749i
\(818\) −12.4587 12.4587i −0.0152307 0.0152307i
\(819\) 45.3820i 0.0554115i
\(820\) 0 0
\(821\) −1557.52 −1.89710 −0.948551 0.316626i \(-0.897450\pi\)
−0.948551 + 0.316626i \(0.897450\pi\)
\(822\) 54.7499 54.7499i 0.0666057 0.0666057i
\(823\) −596.826 596.826i −0.725184 0.725184i 0.244472 0.969656i \(-0.421385\pi\)
−0.969656 + 0.244472i \(0.921385\pi\)
\(824\) 225.136i 0.273223i
\(825\) 0 0
\(826\) 145.265 0.175866
\(827\) −389.334 + 389.334i −0.470779 + 0.470779i −0.902167 0.431388i \(-0.858024\pi\)
0.431388 + 0.902167i \(0.358024\pi\)
\(828\) −171.960 171.960i −0.207681 0.207681i
\(829\) 204.337i 0.246486i −0.992377 0.123243i \(-0.960671\pi\)
0.992377 0.123243i \(-0.0393295\pi\)
\(830\) 0 0
\(831\) −738.774 −0.889018
\(832\) 23.8033 23.8033i 0.0286098 0.0286098i
\(833\) −59.1207 59.1207i −0.0709732 0.0709732i
\(834\) 290.065i 0.347799i
\(835\) 0 0
\(836\) −52.3883 −0.0626654
\(837\) 71.9850 71.9850i 0.0860036 0.0860036i
\(838\) 683.009 + 683.009i 0.815046 + 0.815046i
\(839\) 1420.49i 1.69307i −0.532330 0.846537i \(-0.678684\pi\)
0.532330 0.846537i \(-0.321316\pi\)
\(840\) 0 0
\(841\) −1656.26 −1.96939
\(842\) −238.737 + 238.737i −0.283535 + 0.283535i
\(843\) −261.341 261.341i −0.310013 0.310013i
\(844\) 643.946i 0.762969i
\(845\) 0 0
\(846\) 277.391 0.327886
\(847\) 36.8147 36.8147i 0.0434648 0.0434648i
\(848\) 163.222 + 163.222i 0.192479 + 0.192479i
\(849\) 508.396i 0.598818i
\(850\) 0 0
\(851\) −590.234 −0.693577
\(852\) 8.07880 8.07880i 0.00948216 0.00948216i
\(853\) 436.949 + 436.949i 0.512250 + 0.512250i 0.915215 0.402965i \(-0.132021\pi\)
−0.402965 + 0.915215i \(0.632021\pi\)
\(854\) 75.2814i 0.0881515i
\(855\) 0 0
\(856\) 485.140 0.566752
\(857\) 624.433 624.433i 0.728627 0.728627i −0.241719 0.970346i \(-0.577711\pi\)
0.970346 + 0.241719i \(0.0777112\pi\)
\(858\) −84.8329 84.8329i −0.0988729 0.0988729i
\(859\) 393.615i 0.458225i 0.973400 + 0.229112i \(0.0735823\pi\)
−0.973400 + 0.229112i \(0.926418\pi\)
\(860\) 0 0
\(861\) −272.862 −0.316913
\(862\) 224.817 224.817i 0.260809 0.260809i
\(863\) −279.850 279.850i −0.324275 0.324275i 0.526129 0.850405i \(-0.323643\pi\)
−0.850405 + 0.526129i \(0.823643\pi\)
\(864\) 29.3939i 0.0340207i
\(865\) 0 0
\(866\) −445.768 −0.514744
\(867\) −347.373 + 347.373i −0.400661 + 0.400661i
\(868\) 99.6071 + 99.6071i 0.114755 + 0.114755i
\(869\) 259.498i 0.298616i
\(870\) 0 0
\(871\) −80.1702 −0.0920439
\(872\) 327.618 327.618i 0.375709 0.375709i
\(873\) 152.661 + 152.661i 0.174870 + 0.174870i
\(874\) 128.994i 0.147590i
\(875\) 0 0
\(876\) −418.841 −0.478129
\(877\) −808.189 + 808.189i −0.921538 + 0.921538i −0.997138 0.0756004i \(-0.975913\pi\)
0.0756004 + 0.997138i \(0.475913\pi\)
\(878\) −407.104 407.104i −0.463672 0.463672i
\(879\) 836.560i 0.951718i
\(880\) 0 0
\(881\) 1029.03 1.16803 0.584015 0.811743i \(-0.301481\pi\)
0.584015 + 0.811743i \(0.301481\pi\)
\(882\) 108.228 108.228i 0.122707 0.122707i
\(883\) 1030.35 + 1030.35i 1.16687 + 1.16687i 0.982939 + 0.183932i \(0.0588825\pi\)
0.183932 + 0.982939i \(0.441117\pi\)
\(884\) 19.5043i 0.0220636i
\(885\) 0 0
\(886\) 992.072 1.11972
\(887\) −723.194 + 723.194i −0.815326 + 0.815326i −0.985427 0.170100i \(-0.945591\pi\)
0.170100 + 0.985427i \(0.445591\pi\)
\(888\) 50.4457 + 50.4457i 0.0568082 + 0.0568082i
\(889\) 94.3871i 0.106172i
\(890\) 0 0
\(891\) 104.757 0.117573
\(892\) 510.827 510.827i 0.572676 0.572676i
\(893\) −104.041 104.041i −0.116507 0.116507i
\(894\) 604.667i 0.676361i
\(895\) 0 0
\(896\) −40.6729 −0.0453938
\(897\) −208.881 + 208.881i −0.232866 + 0.232866i
\(898\) −239.876 239.876i −0.267123 0.267123i
\(899\) 979.055i 1.08905i
\(900\) 0 0
\(901\) 133.743 0.148438
\(902\) −510.063 + 510.063i −0.565480 + 0.565480i
\(903\) −65.0480 65.0480i −0.0720355 0.0720355i
\(904\) 137.102i 0.151661i
\(905\) 0 0
\(906\) 341.538 0.376974
\(907\) 545.990 545.990i 0.601974 0.601974i −0.338862 0.940836i \(-0.610042\pi\)
0.940836 + 0.338862i \(0.110042\pi\)
\(908\) −309.370 309.370i −0.340716 0.340716i
\(909\) 98.4927i 0.108353i
\(910\) 0 0
\(911\) −91.1835 −0.100092 −0.0500458 0.998747i \(-0.515937\pi\)
−0.0500458 + 0.998747i \(0.515937\pi\)
\(912\) 11.0247 11.0247i 0.0120885 0.0120885i
\(913\) 252.444 + 252.444i 0.276500 + 0.276500i
\(914\) 807.544i 0.883527i
\(915\) 0 0
\(916\) 679.446 0.741753
\(917\) −625.144 + 625.144i −0.681728 + 0.681728i
\(918\) 12.0426 + 12.0426i 0.0131183 + 0.0131183i
\(919\) 128.676i 0.140018i 0.997546 + 0.0700088i \(0.0223027\pi\)
−0.997546 + 0.0700088i \(0.977697\pi\)
\(920\) 0 0
\(921\) −280.393 −0.304444
\(922\) −20.4304 + 20.4304i −0.0221588 + 0.0221588i
\(923\) −9.81339 9.81339i −0.0106321 0.0106321i
\(924\) 144.954i 0.156877i
\(925\) 0 0
\(926\) 891.989 0.963271
\(927\) −168.852 + 168.852i −0.182149 + 0.182149i
\(928\) 199.890 + 199.890i 0.215399 + 0.215399i
\(929\) 358.400i 0.385791i −0.981219 0.192896i \(-0.938212\pi\)
0.981219 0.192896i \(-0.0617879\pi\)
\(930\) 0 0
\(931\) −81.1858 −0.0872028
\(932\) 94.8881 94.8881i 0.101811 0.101811i
\(933\) −217.405 217.405i −0.233017 0.233017i
\(934\) 175.825i 0.188249i
\(935\) 0 0
\(936\) 35.7050 0.0381464
\(937\) −8.25178 + 8.25178i −0.00880660 + 0.00880660i −0.711496 0.702690i \(-0.751982\pi\)
0.702690 + 0.711496i \(0.251982\pi\)
\(938\) 68.4936 + 68.4936i 0.0730209 + 0.0730209i
\(939\) 808.383i 0.860898i
\(940\) 0 0
\(941\) −1285.16 −1.36573 −0.682867 0.730543i \(-0.739267\pi\)
−0.682867 + 0.730543i \(0.739267\pi\)
\(942\) −283.516 + 283.516i −0.300972 + 0.300972i
\(943\) 1255.91 + 1255.91i 1.33183 + 1.33183i
\(944\) 114.290i 0.121070i
\(945\) 0 0
\(946\) −243.190 −0.257071
\(947\) 1014.57 1014.57i 1.07135 1.07135i 0.0740977 0.997251i \(-0.476392\pi\)
0.997251 0.0740977i \(-0.0236077\pi\)
\(948\) −54.6095 54.6095i −0.0576049 0.0576049i
\(949\) 508.770i 0.536111i
\(950\) 0 0
\(951\) 639.056 0.671983
\(952\) −16.6635 + 16.6635i −0.0175037 + 0.0175037i
\(953\) 1060.16 + 1060.16i 1.11244 + 1.11244i 0.992820 + 0.119622i \(0.0381682\pi\)
0.119622 + 0.992820i \(0.461832\pi\)
\(954\) 244.833i 0.256639i
\(955\) 0 0
\(956\) 834.903 0.873330
\(957\) 712.391 712.391i 0.744400 0.744400i
\(958\) 716.386 + 716.386i 0.747793 + 0.747793i
\(959\) 113.638i 0.118496i
\(960\) 0 0
\(961\) −577.160 −0.600582
\(962\) 61.2768 61.2768i 0.0636973 0.0636973i
\(963\) 363.855 + 363.855i 0.377835 + 0.377835i
\(964\) 451.967i 0.468845i
\(965\) 0 0
\(966\) 356.916 0.369479
\(967\) 1009.61 1009.61i 1.04406 1.04406i 0.0450775 0.998983i \(-0.485647\pi\)
0.998983 0.0450775i \(-0.0143535\pi\)
\(968\) 28.9645 + 28.9645i 0.0299220 + 0.0299220i
\(969\) 9.03359i 0.00932259i
\(970\) 0 0
\(971\) −1690.86 −1.74136 −0.870681 0.491849i \(-0.836321\pi\)
−0.870681 + 0.491849i \(0.836321\pi\)
\(972\) −22.0454 + 22.0454i −0.0226805 + 0.0226805i
\(973\) −301.026 301.026i −0.309379 0.309379i
\(974\) 366.488i 0.376271i
\(975\) 0 0
\(976\) 59.2288 0.0606852
\(977\) 207.840 207.840i 0.212732 0.212732i −0.592695 0.805427i \(-0.701936\pi\)
0.805427 + 0.592695i \(0.201936\pi\)
\(978\) 14.0060 + 14.0060i 0.0143210 + 0.0143210i
\(979\) 1322.89i 1.35126i
\(980\) 0 0
\(981\) 491.428 0.500946
\(982\) −796.428 + 796.428i −0.811027 + 0.811027i
\(983\) −68.4345 68.4345i −0.0696180 0.0696180i 0.671440 0.741059i \(-0.265676\pi\)
−0.741059 + 0.671440i \(0.765676\pi\)
\(984\) 214.678i 0.218169i
\(985\) 0 0
\(986\) 163.789 0.166114
\(987\) −287.874 + 287.874i −0.291665 + 0.291665i
\(988\) −13.3918 13.3918i −0.0135545 0.0135545i
\(989\) 598.797i 0.605457i
\(990\) 0 0
\(991\) 947.411 0.956015 0.478008 0.878356i \(-0.341359\pi\)
0.478008 + 0.878356i \(0.341359\pi\)
\(992\) −78.3674 + 78.3674i −0.0789994 + 0.0789994i
\(993\) −376.969 376.969i −0.379626 0.379626i
\(994\) 16.7682i 0.0168694i
\(995\) 0 0
\(996\) −106.250 −0.106677
\(997\) −771.330 + 771.330i −0.773651 + 0.773651i −0.978743 0.205092i \(-0.934251\pi\)
0.205092 + 0.978743i \(0.434251\pi\)
\(998\) 41.7756 + 41.7756i 0.0418593 + 0.0418593i
\(999\) 75.6685i 0.0757443i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 750.3.f.b.193.7 16
5.2 odd 4 inner 750.3.f.b.307.7 yes 16
5.3 odd 4 750.3.f.c.307.2 yes 16
5.4 even 2 750.3.f.c.193.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.3.f.b.193.7 16 1.1 even 1 trivial
750.3.f.b.307.7 yes 16 5.2 odd 4 inner
750.3.f.c.193.2 yes 16 5.4 even 2
750.3.f.c.307.2 yes 16 5.3 odd 4