Properties

Label 750.3.f
Level $750$
Weight $3$
Character orbit 750.f
Rep. character $\chi_{750}(193,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $64$
Newform subspaces $4$
Sturm bound $450$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 750 = 2 \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 750.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(450\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(750, [\chi])\).

Total New Old
Modular forms 640 64 576
Cusp forms 560 64 496
Eisenstein series 80 0 80

Trace form

\( 64 q - 16 q^{11} - 256 q^{16} - 192 q^{21} + 64 q^{26} + 480 q^{31} + 384 q^{36} - 128 q^{41} - 32 q^{46} + 48 q^{51} + 64 q^{56} - 896 q^{61} - 96 q^{66} + 64 q^{71} + 32 q^{76} - 576 q^{81} + 96 q^{86}+ \cdots + 1008 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(750, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
750.3.f.a 750.f 5.c $16$ $20.436$ 16.0.\(\cdots\).9 None 750.3.f.a \(-16\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{2})q^{2}-\beta _{1}q^{3}-2\beta _{2}q^{4}+\cdots\)
750.3.f.b 750.f 5.c $16$ $20.436$ 16.0.\(\cdots\).2 None 750.3.f.b \(-16\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{1})q^{2}-\beta _{2}q^{3}+2\beta _{1}q^{4}+\cdots\)
750.3.f.c 750.f 5.c $16$ $20.436$ 16.0.\(\cdots\).2 None 750.3.f.b \(16\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{1})q^{2}-\beta _{7}q^{3}-2\beta _{1}q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)
750.3.f.d 750.f 5.c $16$ $20.436$ 16.0.\(\cdots\).9 None 750.3.f.a \(16\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{2})q^{2}-\beta _{3}q^{3}+2\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(750, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(750, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)