Defining parameters
Level: | \( N \) | \(=\) | \( 750 = 2 \cdot 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 750.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(450\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(750, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 640 | 64 | 576 |
Cusp forms | 560 | 64 | 496 |
Eisenstein series | 80 | 0 | 80 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(750, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
750.3.f.a | $16$ | $20.436$ | 16.0.\(\cdots\).9 | None | \(-16\) | \(0\) | \(0\) | \(-16\) | \(q+(-1+\beta _{2})q^{2}-\beta _{1}q^{3}-2\beta _{2}q^{4}+\cdots\) |
750.3.f.b | $16$ | $20.436$ | 16.0.\(\cdots\).2 | None | \(-16\) | \(0\) | \(0\) | \(24\) | \(q+(-1-\beta _{1})q^{2}-\beta _{2}q^{3}+2\beta _{1}q^{4}+\cdots\) |
750.3.f.c | $16$ | $20.436$ | 16.0.\(\cdots\).2 | None | \(16\) | \(0\) | \(0\) | \(-24\) | \(q+(1-\beta _{1})q^{2}-\beta _{7}q^{3}-2\beta _{1}q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\) |
750.3.f.d | $16$ | $20.436$ | 16.0.\(\cdots\).9 | None | \(16\) | \(0\) | \(0\) | \(16\) | \(q+(1+\beta _{2})q^{2}-\beta _{3}q^{3}+2\beta _{2}q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(750, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(750, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)