L(s) = 1 | + (−1 + i)2-s + (1.22 + 1.22i)3-s − 2i·4-s − 2.44·6-s + (2.54 − 2.54i)7-s + (2 + 2i)8-s + 2.99i·9-s − 11.6·11-s + (2.44 − 2.44i)12-s + (−2.97 − 2.97i)13-s + 5.08i·14-s − 4·16-s + (−1.63 + 1.63i)17-s + (−2.99 − 2.99i)18-s + 2.25i·19-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.408 + 0.408i)3-s − 0.5i·4-s − 0.408·6-s + (0.363 − 0.363i)7-s + (0.250 + 0.250i)8-s + 0.333i·9-s − 1.05·11-s + (0.204 − 0.204i)12-s + (−0.228 − 0.228i)13-s + 0.363i·14-s − 0.250·16-s + (−0.0963 + 0.0963i)17-s + (−0.166 − 0.166i)18-s + 0.118i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 750 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.01786447152\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.01786447152\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 + (-1.22 - 1.22i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-2.54 + 2.54i)T - 49iT^{2} \) |
| 11 | \( 1 + 11.6T + 121T^{2} \) |
| 13 | \( 1 + (2.97 + 2.97i)T + 169iT^{2} \) |
| 17 | \( 1 + (1.63 - 1.63i)T - 289iT^{2} \) |
| 19 | \( 1 - 2.25iT - 361T^{2} \) |
| 23 | \( 1 + (28.6 + 28.6i)T + 529iT^{2} \) |
| 29 | \( 1 - 49.9iT - 841T^{2} \) |
| 31 | \( 1 + 19.5T + 961T^{2} \) |
| 37 | \( 1 + (-10.2 + 10.2i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 43.8T + 1.68e3T^{2} \) |
| 43 | \( 1 + (10.4 + 10.4i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (46.2 - 46.2i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (40.8 + 40.8i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + 28.5iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 14.8T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-13.4 + 13.4i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 - 3.29T + 5.04e3T^{2} \) |
| 73 | \( 1 + (85.4 + 85.4i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 22.2iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (21.6 + 21.6i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 113. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-50.8 + 50.8i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.871267427380830141507109447229, −8.838610898015016748923825804091, −8.112037427692119208384253154460, −7.49068579358870436212086375159, −6.41139433704181797837832490991, −5.27974581551382222762090462719, −4.51338313724321799309567925399, −3.15957709053987339756528411066, −1.84075768504665590723421691405, −0.00641903091859303809232958145,
1.73343835930016730985477096873, 2.58777725606305323646351318231, 3.77416488248897557934038192202, 5.04412514006729014324238524990, 6.13053960347738532104167919143, 7.38667066435209301376055152620, 7.968943425584756668621627851282, 8.703284877669831325681766874937, 9.722068889290292010627052178330, 10.25575327096364257878461154194