Properties

Label 75.7.c
Level $75$
Weight $7$
Character orbit 75.c
Rep. character $\chi_{75}(26,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $6$
Sturm bound $70$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(70\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(75, [\chi])\).

Total New Old
Modular forms 66 41 25
Cusp forms 54 35 19
Eisenstein series 12 6 6

Trace form

\( 35 q + 7 q^{3} - 1088 q^{4} - 354 q^{6} + 126 q^{7} + 651 q^{9} - 4492 q^{12} + 894 q^{13} + 31752 q^{16} + 14920 q^{18} - 16338 q^{19} - 22686 q^{21} + 40620 q^{22} + 60702 q^{24} - 51497 q^{27} - 77196 q^{28}+ \cdots - 885420 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(75, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
75.7.c.a 75.c 3.b $1$ $17.254$ \(\Q\) \(\Q(\sqrt{-3}) \) 3.7.b.a \(0\) \(27\) \(0\) \(286\) $\mathrm{U}(1)[D_{2}]$ \(q+3^{3}q^{3}+2^{6}q^{4}+286q^{7}+3^{6}q^{9}+\cdots\)
75.7.c.b 75.c 3.b $2$ $17.254$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-15}) \) 15.7.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+11 i q^{2}-27 i q^{3}-57 q^{4}+297 q^{6}+\cdots\)
75.7.c.c 75.c 3.b $8$ $17.254$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 15.7.c.a \(0\) \(-20\) \(0\) \(-160\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}+(-3+\beta _{3})q^{3}+(-40-\beta _{3}+\cdots)q^{4}+\cdots\)
75.7.c.d 75.c 3.b $8$ $17.254$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 75.7.c.d \(0\) \(-10\) \(0\) \(280\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{3})q^{3}+(-40+\beta _{2}+\cdots)q^{4}+\cdots\)
75.7.c.e 75.c 3.b $8$ $17.254$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 15.7.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+(-9-\beta _{3}+\cdots)q^{4}+\cdots\)
75.7.c.f 75.c 3.b $8$ $17.254$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 75.7.c.d \(0\) \(10\) \(0\) \(-280\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(-40+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{7}^{\mathrm{old}}(75, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(75, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 2}\)