Properties

Label 15.7.d.c
Level $15$
Weight $7$
Character orbit 15.d
Analytic conductor $3.451$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 15 = 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 15.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.45081125430\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Defining polynomial: \( x^{8} + 60x^{6} + 7774x^{4} + 206220x^{2} + 5736025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{6}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{5} q^{2} + (\beta_{5} + \beta_{3} + \beta_1) q^{3} + (\beta_{2} + 9) q^{4} + (\beta_{6} - 7 \beta_{5} + 2 \beta_{3}) q^{5} + (\beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} - \beta_{2} - 77) q^{6} + (\beta_{4} - 3 \beta_{3} - 6 \beta_1) q^{7} + ( - 10 \beta_{5} + 8 \beta_{3}) q^{8} + ( - 3 \beta_{7} + 3 \beta_{6} - 3 \beta_{2} - 246) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{5} q^{2} + (\beta_{5} + \beta_{3} + \beta_1) q^{3} + (\beta_{2} + 9) q^{4} + (\beta_{6} - 7 \beta_{5} + 2 \beta_{3}) q^{5} + (\beta_{7} + \beta_{6} + \beta_{5} - \beta_{3} - \beta_{2} - 77) q^{6} + (\beta_{4} - 3 \beta_{3} - 6 \beta_1) q^{7} + ( - 10 \beta_{5} + 8 \beta_{3}) q^{8} + ( - 3 \beta_{7} + 3 \beta_{6} - 3 \beta_{2} - 246) q^{9} + ( - \beta_{4} + 9 \beta_{3} + 10 \beta_{2} + 18 \beta_1 + 530) q^{10} + (6 \beta_{7} - 8 \beta_{6} - \beta_{5} + \beta_{3} - 3 \beta_{2} - 3) q^{11} + (45 \beta_{5} - 3 \beta_{4} - 21 \beta_{3} + 30 \beta_1) q^{12} + ( - \beta_{4} - 30 \beta_{3} - 60 \beta_1) q^{13} + ( - 18 \beta_{7} - 34 \beta_{6} - 26 \beta_{5} + 26 \beta_{3} + 9 \beta_{2} + \cdots + 9) q^{14}+ \cdots + ( - 1134 \beta_{7} - 2556 \beta_{6} - 1845 \beta_{5} + \cdots + 790857) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 72 q^{4} - 612 q^{6} - 1980 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 72 q^{4} - 612 q^{6} - 1980 q^{9} + 4240 q^{10} + 1980 q^{15} + 784 q^{16} - 28520 q^{19} + 24228 q^{21} + 14904 q^{24} + 800 q^{25} - 71100 q^{30} + 5896 q^{31} + 105344 q^{34} - 186624 q^{36} + 233568 q^{39} + 141920 q^{40} - 159300 q^{45} + 59336 q^{46} - 1041472 q^{49} + 66888 q^{51} + 917892 q^{54} + 442800 q^{55} - 638640 q^{60} + 1493416 q^{61} - 2063584 q^{64} - 1221840 q^{66} + 1502532 q^{69} + 2273400 q^{70} - 2574000 q^{75} - 219168 q^{76} - 1286360 q^{79} - 1752192 q^{81} + 6238728 q^{84} + 1651240 q^{85} - 2737440 q^{90} + 383616 q^{91} - 7641736 q^{94} - 151056 q^{96} + 6322320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 60x^{6} + 7774x^{4} + 206220x^{2} + 5736025 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 13 \nu^{7} + 1437 \nu^{6} + 1615 \nu^{5} + 64665 \nu^{4} + 198313 \nu^{3} + 11638263 \nu^{2} + 1771445 \nu + 164874195 ) / 10346400 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 30\nu^{2} + 3437 ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\nu^{7} - 1615\nu^{5} - 198313\nu^{3} - 1771445\nu ) / 5173200 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 45\nu^{4} - 4724\nu^{2} - 64110 ) / 225 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 73\nu^{7} + 1985\nu^{5} + 411827\nu^{3} - 606845\nu ) / 5173200 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 60\nu^{5} + 10169\nu^{3} + 666060\nu ) / 43110 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 61\nu^{7} + 6055\nu^{5} + 4790\nu^{4} + 433499\nu^{3} + 143700\nu^{2} + 20279345\nu + 16635670 ) / 344880 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{6} - 2\beta_{5} + 2\beta_{3} ) / 15 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} + 16\beta_{3} + 32\beta _1 - 225 ) / 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -10\beta_{7} + 33\beta_{6} + 119\beta_{5} - 269\beta_{3} + 5\beta_{2} + 5 ) / 15 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{4} - 32\beta_{3} + 36\beta_{2} - 64\beta _1 - 2987 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 1380\beta_{7} - 5399\beta_{6} - 7712\beta_{5} - 3988\beta_{3} - 690\beta_{2} - 690 ) / 15 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -6749\beta_{4} - 53984\beta_{3} - 24300\beta_{2} - 107968\beta _1 + 2117475 ) / 15 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 18890\beta_{7} - 31047\beta_{6} + 584729\beta_{5} + 1642621\beta_{3} - 9445\beta_{2} - 9445 ) / 15 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/15\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(11\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
14.1
−2.84382 + 4.80492i
−2.84382 4.80492i
5.55992 6.77589i
5.55992 + 6.77589i
−5.55992 + 6.77589i
−5.55992 6.77589i
2.84382 4.80492i
2.84382 + 4.80492i
−11.8944 9.31012 25.3441i 77.4763 −102.129 + 72.0738i −110.738 + 301.452i 553.145i −160.292 −555.643 471.913i 1214.76 857.274i
14.2 −11.8944 9.31012 + 25.3441i 77.4763 −102.129 72.0738i −110.738 301.452i 553.145i −160.292 −555.643 + 471.913i 1214.76 + 857.274i
14.3 −2.12691 19.8701 18.2805i −59.4763 72.7643 101.638i −42.2619 + 38.8810i 435.542i 262.622 60.6432 726.473i −154.763 + 216.175i
14.4 −2.12691 19.8701 + 18.2805i −59.4763 72.7643 + 101.638i −42.2619 38.8810i 435.542i 262.622 60.6432 + 726.473i −154.763 216.175i
14.5 2.12691 −19.8701 18.2805i −59.4763 −72.7643 + 101.638i −42.2619 38.8810i 435.542i −262.622 60.6432 + 726.473i −154.763 + 216.175i
14.6 2.12691 −19.8701 + 18.2805i −59.4763 −72.7643 101.638i −42.2619 + 38.8810i 435.542i −262.622 60.6432 726.473i −154.763 216.175i
14.7 11.8944 −9.31012 25.3441i 77.4763 102.129 72.0738i −110.738 301.452i 553.145i 160.292 −555.643 + 471.913i 1214.76 857.274i
14.8 11.8944 −9.31012 + 25.3441i 77.4763 102.129 + 72.0738i −110.738 + 301.452i 553.145i 160.292 −555.643 471.913i 1214.76 + 857.274i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 14.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 15.7.d.c 8
3.b odd 2 1 inner 15.7.d.c 8
4.b odd 2 1 240.7.c.c 8
5.b even 2 1 inner 15.7.d.c 8
5.c odd 4 2 75.7.c.e 8
12.b even 2 1 240.7.c.c 8
15.d odd 2 1 inner 15.7.d.c 8
15.e even 4 2 75.7.c.e 8
20.d odd 2 1 240.7.c.c 8
60.h even 2 1 240.7.c.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.7.d.c 8 1.a even 1 1 trivial
15.7.d.c 8 3.b odd 2 1 inner
15.7.d.c 8 5.b even 2 1 inner
15.7.d.c 8 15.d odd 2 1 inner
75.7.c.e 8 5.c odd 4 2
75.7.c.e 8 15.e even 4 2
240.7.c.c 8 4.b odd 2 1
240.7.c.c 8 12.b even 2 1
240.7.c.c 8 20.d odd 2 1
240.7.c.c 8 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 146T_{2}^{2} + 640 \) acting on \(S_{7}^{\mathrm{new}}(15, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 146 T^{2} + 640)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} + 990 T^{6} + \cdots + 282429536481 \) Copy content Toggle raw display
$5$ \( T^{8} - 400 T^{6} + \cdots + 59\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( (T^{4} + 495666 T^{2} + \cdots + 58041360000)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 3382560 T^{2} + \cdots + 1754154144000)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 3949776 T^{2} + \cdots + 3379669401600)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 10866836 T^{2} + \cdots + 28015260981760)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7130 T + 12704536)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} - 477962246 T^{2} + \cdots + 11\!\cdots\!40)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 777857040 T^{2} + \cdots + 85\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 1474 T - 159937856)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} + 831035376 T^{2} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 3099275460 T^{2} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 1690395426 T^{2} + \cdots + 30\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 25487397926 T^{2} + \cdots + 56\!\cdots\!60)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 27378449876 T^{2} + \cdots + 13\!\cdots\!60)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 201291276960 T^{2} + \cdots + 64\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 373354 T + 19740227104)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 150261817986 T^{2} + \cdots + 32\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 186412415040 T^{2} + \cdots + 37\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 449137827936 T^{2} + \cdots + 21\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 321590 T - 331589130704)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 185781764486 T^{2} + \cdots + 80\!\cdots\!60)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 498657072960 T^{2} + \cdots + 39\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 2533468716576 T^{2} + \cdots + 25\!\cdots\!00)^{2} \) Copy content Toggle raw display
show more
show less