Defining parameters
| Level: | \( N \) | = | \( 75 = 3 \cdot 5^{2} \) |
| Weight: | \( k \) | = | \( 7 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(2800\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(75))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1256 | 851 | 405 |
| Cusp forms | 1144 | 809 | 335 |
| Eisenstein series | 112 | 42 | 70 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(75))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)