Properties

Label 75.7
Level 75
Weight 7
Dimension 809
Nonzero newspaces 6
Newform subspaces 16
Sturm bound 2800
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 16 \)
Sturm bound: \(2800\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(75))\).

Total New Old
Modular forms 1256 851 405
Cusp forms 1144 809 335
Eisenstein series 112 42 70

Trace form

\( 809 q - 32 q^{2} + 31 q^{3} + 60 q^{4} - 136 q^{5} - 1106 q^{6} + 1910 q^{7} + 6936 q^{8} + 2007 q^{9} - 6064 q^{10} - 6496 q^{11} - 11154 q^{12} + 1046 q^{13} + 7296 q^{15} + 2012 q^{16} + 20040 q^{17}+ \cdots - 10850100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(75))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
75.7.c \(\chi_{75}(26, \cdot)\) 75.7.c.a 1 1
75.7.c.b 2
75.7.c.c 8
75.7.c.d 8
75.7.c.e 8
75.7.c.f 8
75.7.d \(\chi_{75}(74, \cdot)\) 75.7.d.a 2 1
75.7.d.b 16
75.7.d.c 16
75.7.f \(\chi_{75}(7, \cdot)\) 75.7.f.a 8 2
75.7.f.b 8
75.7.f.c 8
75.7.f.d 12
75.7.h \(\chi_{75}(14, \cdot)\) 75.7.h.a 232 4
75.7.j \(\chi_{75}(11, \cdot)\) 75.7.j.a 232 4
75.7.k \(\chi_{75}(13, \cdot)\) 75.7.k.a 240 8

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)