Properties

Label 75.5.f.e.43.1
Level $75$
Weight $5$
Character 75.43
Analytic conductor $7.753$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(7,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.7"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 43.1
Root \(3.80336 + 3.80336i\) of defining polynomial
Character \(\chi\) \(=\) 75.43
Dual form 75.5.f.e.7.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.80336 + 3.80336i) q^{2} +(3.67423 + 3.67423i) q^{3} -12.9311i q^{4} -27.9489 q^{6} +(-16.6149 + 16.6149i) q^{7} +(-11.6720 - 11.6720i) q^{8} +27.0000i q^{9} -215.278 q^{11} +(47.5121 - 47.5121i) q^{12} +(29.9347 + 29.9347i) q^{13} -126.385i q^{14} +295.684 q^{16} +(3.97694 - 3.97694i) q^{17} +(-102.691 - 102.691i) q^{18} -604.349i q^{19} -122.094 q^{21} +(818.782 - 818.782i) q^{22} +(-376.379 - 376.379i) q^{23} -85.7710i q^{24} -227.705 q^{26} +(-99.2043 + 99.2043i) q^{27} +(214.850 + 214.850i) q^{28} +624.166i q^{29} +263.888 q^{31} +(-937.842 + 937.842i) q^{32} +(-790.983 - 790.983i) q^{33} +30.2515i q^{34} +349.141 q^{36} +(-979.613 + 979.613i) q^{37} +(2298.56 + 2298.56i) q^{38} +219.974i q^{39} -1579.25 q^{41} +(464.368 - 464.368i) q^{42} +(30.8409 + 30.8409i) q^{43} +2783.80i q^{44} +2863.01 q^{46} +(-1785.16 + 1785.16i) q^{47} +(1086.41 + 1086.41i) q^{48} +1848.89i q^{49} +29.2245 q^{51} +(387.089 - 387.089i) q^{52} +(-707.912 - 707.912i) q^{53} -754.620i q^{54} +387.857 q^{56} +(2220.52 - 2220.52i) q^{57} +(-2373.93 - 2373.93i) q^{58} -1366.84i q^{59} -2983.71 q^{61} +(-1003.66 + 1003.66i) q^{62} +(-448.602 - 448.602i) q^{63} -2402.96i q^{64} +6016.80 q^{66} +(986.003 - 986.003i) q^{67} +(-51.4265 - 51.4265i) q^{68} -2765.81i q^{69} +68.0686 q^{71} +(315.143 - 315.143i) q^{72} +(-2476.90 - 2476.90i) q^{73} -7451.65i q^{74} -7814.93 q^{76} +(3576.83 - 3576.83i) q^{77} +(-836.641 - 836.641i) q^{78} +6047.25i q^{79} -729.000 q^{81} +(6006.45 - 6006.45i) q^{82} +(5158.95 + 5158.95i) q^{83} +1578.82i q^{84} -234.598 q^{86} +(-2293.33 + 2293.33i) q^{87} +(2512.72 + 2512.72i) q^{88} +7028.50i q^{89} -994.722 q^{91} +(-4867.01 + 4867.01i) q^{92} +(969.586 + 969.586i) q^{93} -13579.2i q^{94} -6891.70 q^{96} +(-10869.3 + 10869.3i) q^{97} +(-7032.00 - 7032.00i) q^{98} -5812.52i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 36 q^{6} - 20 q^{7} - 180 q^{8} - 288 q^{11} + 360 q^{12} + 340 q^{13} + 620 q^{16} - 900 q^{17} + 792 q^{21} + 1100 q^{22} + 1560 q^{23} - 3024 q^{26} - 3580 q^{28} - 512 q^{31} - 4980 q^{32} - 2700 q^{33}+ \cdots - 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.80336 + 3.80336i −0.950841 + 0.950841i −0.998847 0.0480062i \(-0.984713\pi\)
0.0480062 + 0.998847i \(0.484713\pi\)
\(3\) 3.67423 + 3.67423i 0.408248 + 0.408248i
\(4\) 12.9311i 0.808197i
\(5\) 0 0
\(6\) −27.9489 −0.776358
\(7\) −16.6149 + 16.6149i −0.339079 + 0.339079i −0.856021 0.516941i \(-0.827071\pi\)
0.516941 + 0.856021i \(0.327071\pi\)
\(8\) −11.6720 11.6720i −0.182374 0.182374i
\(9\) 27.0000i 0.333333i
\(10\) 0 0
\(11\) −215.278 −1.77916 −0.889580 0.456779i \(-0.849003\pi\)
−0.889580 + 0.456779i \(0.849003\pi\)
\(12\) 47.5121 47.5121i 0.329945 0.329945i
\(13\) 29.9347 + 29.9347i 0.177128 + 0.177128i 0.790103 0.612975i \(-0.210027\pi\)
−0.612975 + 0.790103i \(0.710027\pi\)
\(14\) 126.385i 0.644821i
\(15\) 0 0
\(16\) 295.684 1.15501
\(17\) 3.97694 3.97694i 0.0137611 0.0137611i −0.700193 0.713954i \(-0.746903\pi\)
0.713954 + 0.700193i \(0.246903\pi\)
\(18\) −102.691 102.691i −0.316947 0.316947i
\(19\) 604.349i 1.67410i −0.547128 0.837049i \(-0.684279\pi\)
0.547128 0.837049i \(-0.315721\pi\)
\(20\) 0 0
\(21\) −122.094 −0.276857
\(22\) 818.782 818.782i 1.69170 1.69170i
\(23\) −376.379 376.379i −0.711491 0.711491i 0.255356 0.966847i \(-0.417807\pi\)
−0.966847 + 0.255356i \(0.917807\pi\)
\(24\) 85.7710i 0.148908i
\(25\) 0 0
\(26\) −227.705 −0.336841
\(27\) −99.2043 + 99.2043i −0.136083 + 0.136083i
\(28\) 214.850 + 214.850i 0.274043 + 0.274043i
\(29\) 624.166i 0.742171i 0.928599 + 0.371086i \(0.121014\pi\)
−0.928599 + 0.371086i \(0.878986\pi\)
\(30\) 0 0
\(31\) 263.888 0.274597 0.137299 0.990530i \(-0.456158\pi\)
0.137299 + 0.990530i \(0.456158\pi\)
\(32\) −937.842 + 937.842i −0.915861 + 0.915861i
\(33\) −790.983 790.983i −0.726339 0.726339i
\(34\) 30.2515i 0.0261691i
\(35\) 0 0
\(36\) 349.141 0.269399
\(37\) −979.613 + 979.613i −0.715568 + 0.715568i −0.967694 0.252126i \(-0.918870\pi\)
0.252126 + 0.967694i \(0.418870\pi\)
\(38\) 2298.56 + 2298.56i 1.59180 + 1.59180i
\(39\) 219.974i 0.144625i
\(40\) 0 0
\(41\) −1579.25 −0.939468 −0.469734 0.882808i \(-0.655650\pi\)
−0.469734 + 0.882808i \(0.655650\pi\)
\(42\) 464.368 464.368i 0.263247 0.263247i
\(43\) 30.8409 + 30.8409i 0.0166797 + 0.0166797i 0.715397 0.698718i \(-0.246246\pi\)
−0.698718 + 0.715397i \(0.746246\pi\)
\(44\) 2783.80i 1.43791i
\(45\) 0 0
\(46\) 2863.01 1.35303
\(47\) −1785.16 + 1785.16i −0.808129 + 0.808129i −0.984351 0.176221i \(-0.943613\pi\)
0.176221 + 0.984351i \(0.443613\pi\)
\(48\) 1086.41 + 1086.41i 0.471533 + 0.471533i
\(49\) 1848.89i 0.770050i
\(50\) 0 0
\(51\) 29.2245 0.0112359
\(52\) 387.089 387.089i 0.143154 0.143154i
\(53\) −707.912 707.912i −0.252016 0.252016i 0.569781 0.821797i \(-0.307028\pi\)
−0.821797 + 0.569781i \(0.807028\pi\)
\(54\) 754.620i 0.258786i
\(55\) 0 0
\(56\) 387.857 0.123679
\(57\) 2220.52 2220.52i 0.683448 0.683448i
\(58\) −2373.93 2373.93i −0.705687 0.705687i
\(59\) 1366.84i 0.392657i −0.980538 0.196329i \(-0.937098\pi\)
0.980538 0.196329i \(-0.0629020\pi\)
\(60\) 0 0
\(61\) −2983.71 −0.801856 −0.400928 0.916110i \(-0.631312\pi\)
−0.400928 + 0.916110i \(0.631312\pi\)
\(62\) −1003.66 + 1003.66i −0.261098 + 0.261098i
\(63\) −448.602 448.602i −0.113026 0.113026i
\(64\) 2402.96i 0.586661i
\(65\) 0 0
\(66\) 6016.80 1.38127
\(67\) 986.003 986.003i 0.219649 0.219649i −0.588702 0.808350i \(-0.700361\pi\)
0.808350 + 0.588702i \(0.200361\pi\)
\(68\) −51.4265 51.4265i −0.0111216 0.0111216i
\(69\) 2765.81i 0.580930i
\(70\) 0 0
\(71\) 68.0686 0.0135030 0.00675150 0.999977i \(-0.497851\pi\)
0.00675150 + 0.999977i \(0.497851\pi\)
\(72\) 315.143 315.143i 0.0607914 0.0607914i
\(73\) −2476.90 2476.90i −0.464797 0.464797i 0.435427 0.900224i \(-0.356597\pi\)
−0.900224 + 0.435427i \(0.856597\pi\)
\(74\) 7451.65i 1.36078i
\(75\) 0 0
\(76\) −7814.93 −1.35300
\(77\) 3576.83 3576.83i 0.603277 0.603277i
\(78\) −836.641 836.641i −0.137515 0.137515i
\(79\) 6047.25i 0.968955i 0.874804 + 0.484478i \(0.160990\pi\)
−0.874804 + 0.484478i \(0.839010\pi\)
\(80\) 0 0
\(81\) −729.000 −0.111111
\(82\) 6006.45 6006.45i 0.893285 0.893285i
\(83\) 5158.95 + 5158.95i 0.748868 + 0.748868i 0.974267 0.225398i \(-0.0723684\pi\)
−0.225398 + 0.974267i \(0.572368\pi\)
\(84\) 1578.82i 0.223755i
\(85\) 0 0
\(86\) −234.598 −0.0317196
\(87\) −2293.33 + 2293.33i −0.302990 + 0.302990i
\(88\) 2512.72 + 2512.72i 0.324473 + 0.324473i
\(89\) 7028.50i 0.887325i 0.896194 + 0.443662i \(0.146321\pi\)
−0.896194 + 0.443662i \(0.853679\pi\)
\(90\) 0 0
\(91\) −994.722 −0.120121
\(92\) −4867.01 + 4867.01i −0.575025 + 0.575025i
\(93\) 969.586 + 969.586i 0.112104 + 0.112104i
\(94\) 13579.2i 1.53681i
\(95\) 0 0
\(96\) −6891.70 −0.747797
\(97\) −10869.3 + 10869.3i −1.15520 + 1.15520i −0.169703 + 0.985495i \(0.554281\pi\)
−0.985495 + 0.169703i \(0.945719\pi\)
\(98\) −7032.00 7032.00i −0.732195 0.732195i
\(99\) 5812.52i 0.593054i
\(100\) 0 0
\(101\) −4043.94 −0.396426 −0.198213 0.980159i \(-0.563514\pi\)
−0.198213 + 0.980159i \(0.563514\pi\)
\(102\) −111.151 + 111.151i −0.0106835 + 0.0106835i
\(103\) 119.716 + 119.716i 0.0112844 + 0.0112844i 0.712726 0.701442i \(-0.247460\pi\)
−0.701442 + 0.712726i \(0.747460\pi\)
\(104\) 698.792i 0.0646073i
\(105\) 0 0
\(106\) 5384.89 0.479254
\(107\) 8330.41 8330.41i 0.727610 0.727610i −0.242533 0.970143i \(-0.577978\pi\)
0.970143 + 0.242533i \(0.0779783\pi\)
\(108\) 1282.83 + 1282.83i 0.109982 + 0.109982i
\(109\) 8380.72i 0.705389i 0.935739 + 0.352694i \(0.114734\pi\)
−0.935739 + 0.352694i \(0.885266\pi\)
\(110\) 0 0
\(111\) −7198.66 −0.584259
\(112\) −4912.75 + 4912.75i −0.391642 + 0.391642i
\(113\) −968.067 968.067i −0.0758139 0.0758139i 0.668183 0.743997i \(-0.267072\pi\)
−0.743997 + 0.668183i \(0.767072\pi\)
\(114\) 16890.9i 1.29970i
\(115\) 0 0
\(116\) 8071.19 0.599821
\(117\) −808.236 + 808.236i −0.0590427 + 0.0590427i
\(118\) 5198.59 + 5198.59i 0.373355 + 0.373355i
\(119\) 132.153i 0.00933218i
\(120\) 0 0
\(121\) 31703.8 2.16541
\(122\) 11348.1 11348.1i 0.762437 0.762437i
\(123\) −5802.52 5802.52i −0.383536 0.383536i
\(124\) 3412.37i 0.221929i
\(125\) 0 0
\(126\) 3412.39 0.214940
\(127\) 12023.3 12023.3i 0.745446 0.745446i −0.228174 0.973620i \(-0.573276\pi\)
0.973620 + 0.228174i \(0.0732757\pi\)
\(128\) −5866.12 5866.12i −0.358039 0.358039i
\(129\) 226.633i 0.0136190i
\(130\) 0 0
\(131\) 4866.47 0.283577 0.141789 0.989897i \(-0.454715\pi\)
0.141789 + 0.989897i \(0.454715\pi\)
\(132\) −10228.3 + 10228.3i −0.587025 + 0.587025i
\(133\) 10041.2 + 10041.2i 0.567652 + 0.567652i
\(134\) 7500.26i 0.417702i
\(135\) 0 0
\(136\) −92.8374 −0.00501933
\(137\) −10167.9 + 10167.9i −0.541736 + 0.541736i −0.924038 0.382301i \(-0.875132\pi\)
0.382301 + 0.924038i \(0.375132\pi\)
\(138\) 10519.4 + 10519.4i 0.552372 + 0.552372i
\(139\) 4195.51i 0.217148i 0.994088 + 0.108574i \(0.0346284\pi\)
−0.994088 + 0.108574i \(0.965372\pi\)
\(140\) 0 0
\(141\) −13118.2 −0.659835
\(142\) −258.890 + 258.890i −0.0128392 + 0.0128392i
\(143\) −6444.29 6444.29i −0.315139 0.315139i
\(144\) 7983.46i 0.385005i
\(145\) 0 0
\(146\) 18841.1 0.883895
\(147\) −6793.26 + 6793.26i −0.314372 + 0.314372i
\(148\) 12667.5 + 12667.5i 0.578320 + 0.578320i
\(149\) 24880.4i 1.12069i −0.828259 0.560345i \(-0.810669\pi\)
0.828259 0.560345i \(-0.189331\pi\)
\(150\) 0 0
\(151\) −37791.8 −1.65746 −0.828732 0.559645i \(-0.810937\pi\)
−0.828732 + 0.559645i \(0.810937\pi\)
\(152\) −7053.94 + 7053.94i −0.305312 + 0.305312i
\(153\) 107.377 + 107.377i 0.00458702 + 0.00458702i
\(154\) 27208.0i 1.14724i
\(155\) 0 0
\(156\) 2844.52 0.116885
\(157\) −18627.8 + 18627.8i −0.755723 + 0.755723i −0.975541 0.219818i \(-0.929454\pi\)
0.219818 + 0.975541i \(0.429454\pi\)
\(158\) −22999.9 22999.9i −0.921322 0.921322i
\(159\) 5202.07i 0.205770i
\(160\) 0 0
\(161\) 12507.0 0.482504
\(162\) 2772.65 2772.65i 0.105649 0.105649i
\(163\) 280.411 + 280.411i 0.0105541 + 0.0105541i 0.712364 0.701810i \(-0.247624\pi\)
−0.701810 + 0.712364i \(0.747624\pi\)
\(164\) 20421.5i 0.759275i
\(165\) 0 0
\(166\) −39242.8 −1.42411
\(167\) 25855.1 25855.1i 0.927073 0.927073i −0.0704428 0.997516i \(-0.522441\pi\)
0.997516 + 0.0704428i \(0.0224412\pi\)
\(168\) 1425.08 + 1425.08i 0.0504916 + 0.0504916i
\(169\) 26768.8i 0.937251i
\(170\) 0 0
\(171\) 16317.4 0.558033
\(172\) 398.808 398.808i 0.0134805 0.0134805i
\(173\) 31991.2 + 31991.2i 1.06890 + 1.06890i 0.997443 + 0.0714600i \(0.0227658\pi\)
0.0714600 + 0.997443i \(0.477234\pi\)
\(174\) 17444.8i 0.576191i
\(175\) 0 0
\(176\) −63654.3 −2.05496
\(177\) 5022.09 5022.09i 0.160302 0.160302i
\(178\) −26731.9 26731.9i −0.843705 0.843705i
\(179\) 17987.8i 0.561400i −0.959796 0.280700i \(-0.909433\pi\)
0.959796 0.280700i \(-0.0905666\pi\)
\(180\) 0 0
\(181\) 23072.1 0.704255 0.352127 0.935952i \(-0.385458\pi\)
0.352127 + 0.935952i \(0.385458\pi\)
\(182\) 3783.29 3783.29i 0.114216 0.114216i
\(183\) −10962.8 10962.8i −0.327356 0.327356i
\(184\) 8786.16i 0.259515i
\(185\) 0 0
\(186\) −7375.38 −0.213186
\(187\) −856.150 + 856.150i −0.0244831 + 0.0244831i
\(188\) 23084.1 + 23084.1i 0.653128 + 0.653128i
\(189\) 3296.54i 0.0922857i
\(190\) 0 0
\(191\) 51892.0 1.42244 0.711220 0.702970i \(-0.248143\pi\)
0.711220 + 0.702970i \(0.248143\pi\)
\(192\) 8829.06 8829.06i 0.239503 0.239503i
\(193\) −50542.0 50542.0i −1.35687 1.35687i −0.877751 0.479118i \(-0.840957\pi\)
−0.479118 0.877751i \(-0.659043\pi\)
\(194\) 82679.5i 2.19682i
\(195\) 0 0
\(196\) 23908.3 0.622352
\(197\) 22327.7 22327.7i 0.575323 0.575323i −0.358288 0.933611i \(-0.616640\pi\)
0.933611 + 0.358288i \(0.116640\pi\)
\(198\) 22107.1 + 22107.1i 0.563900 + 0.563900i
\(199\) 57027.8i 1.44006i −0.693943 0.720030i \(-0.744128\pi\)
0.693943 0.720030i \(-0.255872\pi\)
\(200\) 0 0
\(201\) 7245.61 0.179342
\(202\) 15380.6 15380.6i 0.376938 0.376938i
\(203\) −10370.5 10370.5i −0.251655 0.251655i
\(204\) 377.906i 0.00908078i
\(205\) 0 0
\(206\) −910.647 −0.0214593
\(207\) 10162.2 10162.2i 0.237164 0.237164i
\(208\) 8851.19 + 8851.19i 0.204586 + 0.204586i
\(209\) 130103.i 2.97849i
\(210\) 0 0
\(211\) −50695.3 −1.13868 −0.569341 0.822101i \(-0.692802\pi\)
−0.569341 + 0.822101i \(0.692802\pi\)
\(212\) −9154.12 + 9154.12i −0.203678 + 0.203678i
\(213\) 250.100 + 250.100i 0.00551258 + 0.00551258i
\(214\) 63367.1i 1.38368i
\(215\) 0 0
\(216\) 2315.82 0.0496360
\(217\) −4384.47 + 4384.47i −0.0931102 + 0.0931102i
\(218\) −31874.9 31874.9i −0.670712 0.670712i
\(219\) 18201.4i 0.379505i
\(220\) 0 0
\(221\) 238.097 0.00487494
\(222\) 27379.1 27379.1i 0.555537 0.555537i
\(223\) 18991.4 + 18991.4i 0.381898 + 0.381898i 0.871786 0.489888i \(-0.162962\pi\)
−0.489888 + 0.871786i \(0.662962\pi\)
\(224\) 31164.3i 0.621099i
\(225\) 0 0
\(226\) 7363.82 0.144174
\(227\) −24016.1 + 24016.1i −0.466069 + 0.466069i −0.900638 0.434570i \(-0.856900\pi\)
0.434570 + 0.900638i \(0.356900\pi\)
\(228\) −28713.9 28713.9i −0.552360 0.552360i
\(229\) 4953.50i 0.0944586i 0.998884 + 0.0472293i \(0.0150391\pi\)
−0.998884 + 0.0472293i \(0.984961\pi\)
\(230\) 0 0
\(231\) 26284.2 0.492573
\(232\) 7285.24 7285.24i 0.135353 0.135353i
\(233\) 60878.5 + 60878.5i 1.12138 + 1.12138i 0.991534 + 0.129844i \(0.0414475\pi\)
0.129844 + 0.991534i \(0.458552\pi\)
\(234\) 6148.03i 0.112280i
\(235\) 0 0
\(236\) −17674.8 −0.317345
\(237\) −22219.0 + 22219.0i −0.395574 + 0.395574i
\(238\) −502.626 502.626i −0.00887342 0.00887342i
\(239\) 40609.0i 0.710929i −0.934690 0.355464i \(-0.884323\pi\)
0.934690 0.355464i \(-0.115677\pi\)
\(240\) 0 0
\(241\) 24443.6 0.420854 0.210427 0.977610i \(-0.432515\pi\)
0.210427 + 0.977610i \(0.432515\pi\)
\(242\) −120581. + 120581.i −2.05896 + 2.05896i
\(243\) −2678.52 2678.52i −0.0453609 0.0453609i
\(244\) 38582.7i 0.648057i
\(245\) 0 0
\(246\) 44138.2 0.729364
\(247\) 18091.0 18091.0i 0.296530 0.296530i
\(248\) −3080.09 3080.09i −0.0500795 0.0500795i
\(249\) 37910.4i 0.611448i
\(250\) 0 0
\(251\) −71951.0 −1.14206 −0.571030 0.820929i \(-0.693456\pi\)
−0.571030 + 0.820929i \(0.693456\pi\)
\(252\) −5800.94 + 5800.94i −0.0913476 + 0.0913476i
\(253\) 81026.3 + 81026.3i 1.26586 + 1.26586i
\(254\) 91457.9i 1.41760i
\(255\) 0 0
\(256\) 83069.4 1.26754
\(257\) −33507.3 + 33507.3i −0.507310 + 0.507310i −0.913700 0.406390i \(-0.866787\pi\)
0.406390 + 0.913700i \(0.366787\pi\)
\(258\) −861.968 861.968i −0.0129495 0.0129495i
\(259\) 32552.3i 0.485269i
\(260\) 0 0
\(261\) −16852.5 −0.247390
\(262\) −18508.9 + 18508.9i −0.269637 + 0.269637i
\(263\) 18051.0 + 18051.0i 0.260969 + 0.260969i 0.825448 0.564479i \(-0.190923\pi\)
−0.564479 + 0.825448i \(0.690923\pi\)
\(264\) 18464.6i 0.264931i
\(265\) 0 0
\(266\) −76380.6 −1.07949
\(267\) −25824.4 + 25824.4i −0.362249 + 0.362249i
\(268\) −12750.2 12750.2i −0.177519 0.177519i
\(269\) 90057.7i 1.24456i 0.782794 + 0.622281i \(0.213794\pi\)
−0.782794 + 0.622281i \(0.786206\pi\)
\(270\) 0 0
\(271\) 28019.1 0.381518 0.190759 0.981637i \(-0.438905\pi\)
0.190759 + 0.981637i \(0.438905\pi\)
\(272\) 1175.92 1175.92i 0.0158942 0.0158942i
\(273\) −3654.84 3654.84i −0.0490392 0.0490392i
\(274\) 77344.1i 1.03021i
\(275\) 0 0
\(276\) −35765.1 −0.469506
\(277\) 77139.7 77139.7i 1.00535 1.00535i 0.00536651 0.999986i \(-0.498292\pi\)
0.999986 0.00536651i \(-0.00170822\pi\)
\(278\) −15957.1 15957.1i −0.206473 0.206473i
\(279\) 7124.97i 0.0915324i
\(280\) 0 0
\(281\) 59704.3 0.756125 0.378062 0.925780i \(-0.376591\pi\)
0.378062 + 0.925780i \(0.376591\pi\)
\(282\) 49893.2 49893.2i 0.627398 0.627398i
\(283\) −71516.3 71516.3i −0.892960 0.892960i 0.101841 0.994801i \(-0.467527\pi\)
−0.994801 + 0.101841i \(0.967527\pi\)
\(284\) 880.205i 0.0109131i
\(285\) 0 0
\(286\) 49019.9 0.599295
\(287\) 26239.0 26239.0i 0.318554 0.318554i
\(288\) −25321.7 25321.7i −0.305287 0.305287i
\(289\) 83489.4i 0.999621i
\(290\) 0 0
\(291\) −79872.5 −0.943216
\(292\) −32029.2 + 32029.2i −0.375647 + 0.375647i
\(293\) −2048.52 2048.52i −0.0238619 0.0238619i 0.695075 0.718937i \(-0.255371\pi\)
−0.718937 + 0.695075i \(0.755371\pi\)
\(294\) 51674.5i 0.597835i
\(295\) 0 0
\(296\) 22868.0 0.261003
\(297\) 21356.6 21356.6i 0.242113 0.242113i
\(298\) 94629.4 + 94629.4i 1.06560 + 1.06560i
\(299\) 22533.5i 0.252050i
\(300\) 0 0
\(301\) −1024.83 −0.0113115
\(302\) 143736. 143736.i 1.57598 1.57598i
\(303\) −14858.4 14858.4i −0.161840 0.161840i
\(304\) 178696.i 1.93361i
\(305\) 0 0
\(306\) −816.791 −0.00872305
\(307\) 28977.5 28977.5i 0.307457 0.307457i −0.536465 0.843922i \(-0.680241\pi\)
0.843922 + 0.536465i \(0.180241\pi\)
\(308\) −46252.5 46252.5i −0.487566 0.487566i
\(309\) 879.729i 0.00921366i
\(310\) 0 0
\(311\) −20134.0 −0.208166 −0.104083 0.994569i \(-0.533191\pi\)
−0.104083 + 0.994569i \(0.533191\pi\)
\(312\) 2567.53 2567.53i 0.0263758 0.0263758i
\(313\) −115839. 115839.i −1.18240 1.18240i −0.979120 0.203283i \(-0.934839\pi\)
−0.203283 0.979120i \(-0.565161\pi\)
\(314\) 141697.i 1.43715i
\(315\) 0 0
\(316\) 78197.9 0.783106
\(317\) −56563.1 + 56563.1i −0.562879 + 0.562879i −0.930124 0.367245i \(-0.880301\pi\)
0.367245 + 0.930124i \(0.380301\pi\)
\(318\) 19785.4 + 19785.4i 0.195655 + 0.195655i
\(319\) 134370.i 1.32044i
\(320\) 0 0
\(321\) 61215.7 0.594091
\(322\) −47568.6 + 47568.6i −0.458785 + 0.458785i
\(323\) −2403.46 2403.46i −0.0230373 0.0230373i
\(324\) 9426.81i 0.0897996i
\(325\) 0 0
\(326\) −2133.01 −0.0200705
\(327\) −30792.7 + 30792.7i −0.287974 + 0.287974i
\(328\) 18432.9 + 18432.9i 0.171335 + 0.171335i
\(329\) 59320.4i 0.548040i
\(330\) 0 0
\(331\) −76249.8 −0.695958 −0.347979 0.937502i \(-0.613132\pi\)
−0.347979 + 0.937502i \(0.613132\pi\)
\(332\) 66711.2 66711.2i 0.605233 0.605233i
\(333\) −26449.6 26449.6i −0.238523 0.238523i
\(334\) 196673.i 1.76300i
\(335\) 0 0
\(336\) −36101.2 −0.319774
\(337\) −88861.9 + 88861.9i −0.782448 + 0.782448i −0.980243 0.197795i \(-0.936622\pi\)
0.197795 + 0.980243i \(0.436622\pi\)
\(338\) 101812. + 101812.i 0.891177 + 0.891177i
\(339\) 7113.81i 0.0619018i
\(340\) 0 0
\(341\) −56809.4 −0.488552
\(342\) −62061.1 + 62061.1i −0.530600 + 0.530600i
\(343\) −70611.5 70611.5i −0.600188 0.600188i
\(344\) 719.946i 0.00608392i
\(345\) 0 0
\(346\) −243348. −2.03271
\(347\) 41523.5 41523.5i 0.344854 0.344854i −0.513334 0.858189i \(-0.671590\pi\)
0.858189 + 0.513334i \(0.171590\pi\)
\(348\) 29655.4 + 29655.4i 0.244876 + 0.244876i
\(349\) 94995.3i 0.779922i 0.920831 + 0.389961i \(0.127511\pi\)
−0.920831 + 0.389961i \(0.872489\pi\)
\(350\) 0 0
\(351\) −5939.30 −0.0482082
\(352\) 201897. 201897.i 1.62946 1.62946i
\(353\) −54491.3 54491.3i −0.437298 0.437298i 0.453804 0.891102i \(-0.350067\pi\)
−0.891102 + 0.453804i \(0.850067\pi\)
\(354\) 38201.7i 0.304843i
\(355\) 0 0
\(356\) 90886.6 0.717133
\(357\) −485.561 + 485.561i −0.00380985 + 0.00380985i
\(358\) 68414.2 + 68414.2i 0.533802 + 0.533802i
\(359\) 60457.0i 0.469092i 0.972105 + 0.234546i \(0.0753603\pi\)
−0.972105 + 0.234546i \(0.924640\pi\)
\(360\) 0 0
\(361\) −234917. −1.80260
\(362\) −87751.6 + 87751.6i −0.669634 + 0.669634i
\(363\) 116487. + 116487.i 0.884026 + 0.884026i
\(364\) 12862.9i 0.0970814i
\(365\) 0 0
\(366\) 83391.3 0.622527
\(367\) −84336.6 + 84336.6i −0.626158 + 0.626158i −0.947099 0.320941i \(-0.896001\pi\)
0.320941 + 0.947099i \(0.396001\pi\)
\(368\) −111289. 111289.i −0.821783 0.821783i
\(369\) 42639.7i 0.313156i
\(370\) 0 0
\(371\) 23523.8 0.170907
\(372\) 12537.9 12537.9i 0.0906020 0.0906020i
\(373\) 67604.9 + 67604.9i 0.485915 + 0.485915i 0.907015 0.421099i \(-0.138356\pi\)
−0.421099 + 0.907015i \(0.638356\pi\)
\(374\) 6512.50i 0.0465591i
\(375\) 0 0
\(376\) 41672.6 0.294764
\(377\) −18684.2 + 18684.2i −0.131459 + 0.131459i
\(378\) 12537.9 + 12537.9i 0.0877490 + 0.0877490i
\(379\) 128651.i 0.895645i 0.894123 + 0.447822i \(0.147800\pi\)
−0.894123 + 0.447822i \(0.852200\pi\)
\(380\) 0 0
\(381\) 88352.8 0.608654
\(382\) −197364. + 197364.i −1.35251 + 1.35251i
\(383\) −147476. 147476.i −1.00536 1.00536i −0.999986 0.00537910i \(-0.998288\pi\)
−0.00537910 0.999986i \(-0.501712\pi\)
\(384\) 43107.0i 0.292338i
\(385\) 0 0
\(386\) 384459. 2.58033
\(387\) −832.703 + 832.703i −0.00555992 + 0.00555992i
\(388\) 140552. + 140552.i 0.933628 + 0.933628i
\(389\) 175663.i 1.16086i −0.814309 0.580432i \(-0.802884\pi\)
0.814309 0.580432i \(-0.197116\pi\)
\(390\) 0 0
\(391\) −2993.68 −0.0195817
\(392\) 21580.2 21580.2i 0.140437 0.140437i
\(393\) 17880.5 + 17880.5i 0.115770 + 0.115770i
\(394\) 169841.i 1.09408i
\(395\) 0 0
\(396\) −75162.5 −0.479304
\(397\) −59199.8 + 59199.8i −0.375612 + 0.375612i −0.869516 0.493904i \(-0.835569\pi\)
0.493904 + 0.869516i \(0.335569\pi\)
\(398\) 216897. + 216897.i 1.36927 + 1.36927i
\(399\) 73787.4i 0.463486i
\(400\) 0 0
\(401\) 81929.2 0.509507 0.254753 0.967006i \(-0.418006\pi\)
0.254753 + 0.967006i \(0.418006\pi\)
\(402\) −27557.7 + 27557.7i −0.170526 + 0.170526i
\(403\) 7899.39 + 7899.39i 0.0486389 + 0.0486389i
\(404\) 52292.8i 0.320390i
\(405\) 0 0
\(406\) 78885.2 0.478568
\(407\) 210890. 210890.i 1.27311 1.27311i
\(408\) −341.107 341.107i −0.00204913 0.00204913i
\(409\) 107251.i 0.641145i −0.947224 0.320573i \(-0.896125\pi\)
0.947224 0.320573i \(-0.103875\pi\)
\(410\) 0 0
\(411\) −74718.1 −0.442326
\(412\) 1548.07 1548.07i 0.00912000 0.00912000i
\(413\) 22709.9 + 22709.9i 0.133142 + 0.133142i
\(414\) 77301.3i 0.451010i
\(415\) 0 0
\(416\) −56147.9 −0.324449
\(417\) −15415.3 + 15415.3i −0.0886502 + 0.0886502i
\(418\) −494830. 494830.i −2.83207 2.83207i
\(419\) 25226.4i 0.143690i 0.997416 + 0.0718451i \(0.0228887\pi\)
−0.997416 + 0.0718451i \(0.977111\pi\)
\(420\) 0 0
\(421\) 165855. 0.935762 0.467881 0.883792i \(-0.345018\pi\)
0.467881 + 0.883792i \(0.345018\pi\)
\(422\) 192813. 192813.i 1.08271 1.08271i
\(423\) −48199.3 48199.3i −0.269376 0.269376i
\(424\) 16525.4i 0.0919224i
\(425\) 0 0
\(426\) −1902.44 −0.0104832
\(427\) 49573.9 49573.9i 0.271893 0.271893i
\(428\) −107722. 107722.i −0.588052 0.588052i
\(429\) 47355.6i 0.257310i
\(430\) 0 0
\(431\) −181899. −0.979210 −0.489605 0.871944i \(-0.662859\pi\)
−0.489605 + 0.871944i \(0.662859\pi\)
\(432\) −29333.1 + 29333.1i −0.157178 + 0.157178i
\(433\) 178342. + 178342.i 0.951214 + 0.951214i 0.998864 0.0476501i \(-0.0151732\pi\)
−0.0476501 + 0.998864i \(0.515173\pi\)
\(434\) 33351.5i 0.177066i
\(435\) 0 0
\(436\) 108372. 0.570093
\(437\) −227464. + 227464.i −1.19111 + 1.19111i
\(438\) 69226.7 + 69226.7i 0.360849 + 0.360849i
\(439\) 24924.4i 0.129329i −0.997907 0.0646645i \(-0.979402\pi\)
0.997907 0.0646645i \(-0.0205977\pi\)
\(440\) 0 0
\(441\) −49920.1 −0.256683
\(442\) −905.569 + 905.569i −0.00463529 + 0.00463529i
\(443\) 75101.4 + 75101.4i 0.382684 + 0.382684i 0.872068 0.489384i \(-0.162778\pi\)
−0.489384 + 0.872068i \(0.662778\pi\)
\(444\) 93086.9i 0.472196i
\(445\) 0 0
\(446\) −144462. −0.726248
\(447\) 91416.6 91416.6i 0.457520 0.457520i
\(448\) 39925.0 + 39925.0i 0.198925 + 0.198925i
\(449\) 226867.i 1.12533i 0.826687 + 0.562663i \(0.190223\pi\)
−0.826687 + 0.562663i \(0.809777\pi\)
\(450\) 0 0
\(451\) 339978. 1.67147
\(452\) −12518.2 + 12518.2i −0.0612725 + 0.0612725i
\(453\) −138856. 138856.i −0.676657 0.676657i
\(454\) 182684.i 0.886314i
\(455\) 0 0
\(456\) −51835.7 −0.249287
\(457\) 3272.88 3272.88i 0.0156710 0.0156710i −0.699228 0.714899i \(-0.746473\pi\)
0.714899 + 0.699228i \(0.246473\pi\)
\(458\) −18840.0 18840.0i −0.0898151 0.0898151i
\(459\) 789.060i 0.00374528i
\(460\) 0 0
\(461\) 94982.0 0.446930 0.223465 0.974712i \(-0.428263\pi\)
0.223465 + 0.974712i \(0.428263\pi\)
\(462\) −99968.4 + 99968.4i −0.468359 + 0.468359i
\(463\) 216080. + 216080.i 1.00798 + 1.00798i 0.999968 + 0.00801234i \(0.00255044\pi\)
0.00801234 + 0.999968i \(0.497450\pi\)
\(464\) 184556.i 0.857219i
\(465\) 0 0
\(466\) −463086. −2.13250
\(467\) −7732.59 + 7732.59i −0.0354561 + 0.0354561i −0.724613 0.689156i \(-0.757981\pi\)
0.689156 + 0.724613i \(0.257981\pi\)
\(468\) 10451.4 + 10451.4i 0.0477181 + 0.0477181i
\(469\) 32764.7i 0.148957i
\(470\) 0 0
\(471\) −136886. −0.617045
\(472\) −15953.7 + 15953.7i −0.0716106 + 0.0716106i
\(473\) −6639.37 6639.37i −0.0296759 0.0296759i
\(474\) 169014.i 0.752256i
\(475\) 0 0
\(476\) 1708.89 0.00754224
\(477\) 19113.6 19113.6i 0.0840052 0.0840052i
\(478\) 154451. + 154451.i 0.675980 + 0.675980i
\(479\) 320749.i 1.39796i −0.715142 0.698980i \(-0.753638\pi\)
0.715142 0.698980i \(-0.246362\pi\)
\(480\) 0 0
\(481\) −58648.8 −0.253495
\(482\) −92967.9 + 92967.9i −0.400165 + 0.400165i
\(483\) 45953.6 + 45953.6i 0.196981 + 0.196981i
\(484\) 409967.i 1.75008i
\(485\) 0 0
\(486\) 20374.7 0.0862620
\(487\) −5262.88 + 5262.88i −0.0221904 + 0.0221904i −0.718115 0.695925i \(-0.754995\pi\)
0.695925 + 0.718115i \(0.254995\pi\)
\(488\) 34825.7 + 34825.7i 0.146238 + 0.146238i
\(489\) 2060.59i 0.00861737i
\(490\) 0 0
\(491\) 191704. 0.795183 0.397592 0.917562i \(-0.369846\pi\)
0.397592 + 0.917562i \(0.369846\pi\)
\(492\) −75033.3 + 75033.3i −0.309973 + 0.309973i
\(493\) 2482.27 + 2482.27i 0.0102131 + 0.0102131i
\(494\) 137613.i 0.563905i
\(495\) 0 0
\(496\) 78027.4 0.317164
\(497\) −1130.95 + 1130.95i −0.00457859 + 0.00457859i
\(498\) −144187. 144187.i −0.581390 0.581390i
\(499\) 261730.i 1.05112i 0.850756 + 0.525561i \(0.176145\pi\)
−0.850756 + 0.525561i \(0.823855\pi\)
\(500\) 0 0
\(501\) 189996. 0.756952
\(502\) 273656. 273656.i 1.08592 1.08592i
\(503\) −206538. 206538.i −0.816328 0.816328i 0.169245 0.985574i \(-0.445867\pi\)
−0.985574 + 0.169245i \(0.945867\pi\)
\(504\) 10472.1i 0.0412263i
\(505\) 0 0
\(506\) −616345. −2.40726
\(507\) 98355.0 98355.0i 0.382631 0.382631i
\(508\) −155475. 155475.i −0.602467 0.602467i
\(509\) 44082.3i 0.170149i −0.996375 0.0850743i \(-0.972887\pi\)
0.996375 0.0850743i \(-0.0271128\pi\)
\(510\) 0 0
\(511\) 82306.9 0.315206
\(512\) −222085. + 222085.i −0.847188 + 0.847188i
\(513\) 59954.1 + 59954.1i 0.227816 + 0.227816i
\(514\) 254881.i 0.964741i
\(515\) 0 0
\(516\) 2930.63 0.0110068
\(517\) 384306. 384306.i 1.43779 1.43779i
\(518\) 123808. + 123808.i 0.461414 + 0.461414i
\(519\) 235086.i 0.872756i
\(520\) 0 0
\(521\) −507981. −1.87142 −0.935712 0.352764i \(-0.885242\pi\)
−0.935712 + 0.352764i \(0.885242\pi\)
\(522\) 64096.1 64096.1i 0.235229 0.235229i
\(523\) 119838. + 119838.i 0.438119 + 0.438119i 0.891378 0.453260i \(-0.149739\pi\)
−0.453260 + 0.891378i \(0.649739\pi\)
\(524\) 62929.0i 0.229186i
\(525\) 0 0
\(526\) −137309. −0.496280
\(527\) 1049.47 1049.47i 0.00377875 0.00377875i
\(528\) −233881. 233881.i −0.838933 0.838933i
\(529\) 3481.11i 0.0124396i
\(530\) 0 0
\(531\) 36904.7 0.130886
\(532\) 129844. 129844.i 0.458775 0.458775i
\(533\) −47274.2 47274.2i −0.166406 0.166406i
\(534\) 196439.i 0.688882i
\(535\) 0 0
\(536\) −23017.2 −0.0801166
\(537\) 66091.5 66091.5i 0.229191 0.229191i
\(538\) −342522. 342522.i −1.18338 1.18338i
\(539\) 398026.i 1.37004i
\(540\) 0 0
\(541\) 509491. 1.74077 0.870387 0.492368i \(-0.163869\pi\)
0.870387 + 0.492368i \(0.163869\pi\)
\(542\) −106567. + 106567.i −0.362763 + 0.362763i
\(543\) 84772.3 + 84772.3i 0.287511 + 0.287511i
\(544\) 7459.49i 0.0252064i
\(545\) 0 0
\(546\) 27801.4 0.0932569
\(547\) −376658. + 376658.i −1.25885 + 1.25885i −0.307204 + 0.951644i \(0.599393\pi\)
−0.951644 + 0.307204i \(0.900607\pi\)
\(548\) 131482. + 131482.i 0.437830 + 0.437830i
\(549\) 80560.0i 0.267285i
\(550\) 0 0
\(551\) 377214. 1.24247
\(552\) −32282.4 + 32282.4i −0.105947 + 0.105947i
\(553\) −100474. 100474.i −0.328553 0.328553i
\(554\) 586780.i 1.91186i
\(555\) 0 0
\(556\) 54252.8 0.175498
\(557\) 76108.6 76108.6i 0.245315 0.245315i −0.573730 0.819045i \(-0.694504\pi\)
0.819045 + 0.573730i \(0.194504\pi\)
\(558\) −27098.9 27098.9i −0.0870327 0.0870327i
\(559\) 1846.42i 0.00590891i
\(560\) 0 0
\(561\) −6291.39 −0.0199904
\(562\) −227077. + 227077.i −0.718954 + 0.718954i
\(563\) 242876. + 242876.i 0.766244 + 0.766244i 0.977443 0.211199i \(-0.0677368\pi\)
−0.211199 + 0.977443i \(0.567737\pi\)
\(564\) 169633.i 0.533276i
\(565\) 0 0
\(566\) 544005. 1.69813
\(567\) 12112.3 12112.3i 0.0376755 0.0376755i
\(568\) −794.494 794.494i −0.00246260 0.00246260i
\(569\) 285859.i 0.882934i −0.897278 0.441467i \(-0.854458\pi\)
0.897278 0.441467i \(-0.145542\pi\)
\(570\) 0 0
\(571\) −28753.2 −0.0881890 −0.0440945 0.999027i \(-0.514040\pi\)
−0.0440945 + 0.999027i \(0.514040\pi\)
\(572\) −83332.0 + 83332.0i −0.254695 + 0.254695i
\(573\) 190663. + 190663.i 0.580708 + 0.580708i
\(574\) 199593.i 0.605789i
\(575\) 0 0
\(576\) 64880.0 0.195554
\(577\) 429650. 429650.i 1.29052 1.29052i 0.356048 0.934467i \(-0.384124\pi\)
0.934467 0.356048i \(-0.115876\pi\)
\(578\) −317540. 317540.i −0.950481 0.950481i
\(579\) 371406.i 1.10788i
\(580\) 0 0
\(581\) −171431. −0.507852
\(582\) 303784. 303784.i 0.896848 0.896848i
\(583\) 152398. + 152398.i 0.448376 + 0.448376i
\(584\) 57820.6i 0.169534i
\(585\) 0 0
\(586\) 15582.6 0.0453778
\(587\) 116615. 116615.i 0.338436 0.338436i −0.517343 0.855778i \(-0.673079\pi\)
0.855778 + 0.517343i \(0.173079\pi\)
\(588\) 87844.6 + 87844.6i 0.254074 + 0.254074i
\(589\) 159480.i 0.459703i
\(590\) 0 0
\(591\) 164074. 0.469749
\(592\) −289656. + 289656.i −0.826492 + 0.826492i
\(593\) 80973.9 + 80973.9i 0.230269 + 0.230269i 0.812805 0.582536i \(-0.197939\pi\)
−0.582536 + 0.812805i \(0.697939\pi\)
\(594\) 162453.i 0.460422i
\(595\) 0 0
\(596\) −321733. −0.905738
\(597\) 209533. 209533.i 0.587902 0.587902i
\(598\) 85703.3 + 85703.3i 0.239660 + 0.239660i
\(599\) 683966.i 1.90626i 0.302569 + 0.953128i \(0.402156\pi\)
−0.302569 + 0.953128i \(0.597844\pi\)
\(600\) 0 0
\(601\) −211089. −0.584408 −0.292204 0.956356i \(-0.594389\pi\)
−0.292204 + 0.956356i \(0.594389\pi\)
\(602\) 3897.82 3897.82i 0.0107555 0.0107555i
\(603\) 26622.1 + 26622.1i 0.0732162 + 0.0732162i
\(604\) 488692.i 1.33956i
\(605\) 0 0
\(606\) 113024. 0.307768
\(607\) −502579. + 502579.i −1.36404 + 1.36404i −0.495340 + 0.868699i \(0.664956\pi\)
−0.868699 + 0.495340i \(0.835044\pi\)
\(608\) 566784. + 566784.i 1.53324 + 1.53324i
\(609\) 76207.0i 0.205475i
\(610\) 0 0
\(611\) −106876. −0.286285
\(612\) 1388.51 1388.51i 0.00370721 0.00370721i
\(613\) −402276. 402276.i −1.07054 1.07054i −0.997316 0.0732238i \(-0.976671\pi\)
−0.0732238 0.997316i \(-0.523329\pi\)
\(614\) 220424.i 0.584685i
\(615\) 0 0
\(616\) −83497.2 −0.220044
\(617\) −439415. + 439415.i −1.15426 + 1.15426i −0.168574 + 0.985689i \(0.553916\pi\)
−0.985689 + 0.168574i \(0.946084\pi\)
\(618\) −3345.93 3345.93i −0.00876072 0.00876072i
\(619\) 555813.i 1.45060i 0.688434 + 0.725299i \(0.258299\pi\)
−0.688434 + 0.725299i \(0.741701\pi\)
\(620\) 0 0
\(621\) 74676.8 0.193643
\(622\) 76576.9 76576.9i 0.197932 0.197932i
\(623\) −116778. 116778.i −0.300874 0.300874i
\(624\) 65042.7i 0.167043i
\(625\) 0 0
\(626\) 881154. 2.24855
\(627\) −478030. + 478030.i −1.21596 + 1.21596i
\(628\) 240879. + 240879.i 0.610773 + 0.610773i
\(629\) 7791.73i 0.0196939i
\(630\) 0 0
\(631\) −448846. −1.12730 −0.563648 0.826015i \(-0.690603\pi\)
−0.563648 + 0.826015i \(0.690603\pi\)
\(632\) 70583.2 70583.2i 0.176713 0.176713i
\(633\) −186266. 186266.i −0.464865 0.464865i
\(634\) 430260.i 1.07042i
\(635\) 0 0
\(636\) −67268.7 −0.166303
\(637\) −55345.9 + 55345.9i −0.136398 + 0.136398i
\(638\) 511056. + 511056.i 1.25553 + 1.25553i
\(639\) 1837.85i 0.00450100i
\(640\) 0 0
\(641\) −579776. −1.41106 −0.705528 0.708682i \(-0.749290\pi\)
−0.705528 + 0.708682i \(0.749290\pi\)
\(642\) −232826. + 232826.i −0.564886 + 0.564886i
\(643\) −485382. 485382.i −1.17398 1.17398i −0.981252 0.192731i \(-0.938266\pi\)
−0.192731 0.981252i \(-0.561734\pi\)
\(644\) 161730.i 0.389958i
\(645\) 0 0
\(646\) 18282.5 0.0438097
\(647\) −227180. + 227180.i −0.542703 + 0.542703i −0.924320 0.381618i \(-0.875367\pi\)
0.381618 + 0.924320i \(0.375367\pi\)
\(648\) 8508.86 + 8508.86i 0.0202638 + 0.0202638i
\(649\) 294251.i 0.698601i
\(650\) 0 0
\(651\) −32219.1 −0.0760242
\(652\) 3626.04 3626.04i 0.00852977 0.00852977i
\(653\) −51532.9 51532.9i −0.120853 0.120853i 0.644093 0.764947i \(-0.277235\pi\)
−0.764947 + 0.644093i \(0.777235\pi\)
\(654\) 234232.i 0.547634i
\(655\) 0 0
\(656\) −466958. −1.08510
\(657\) 66876.3 66876.3i 0.154932 0.154932i
\(658\) 225617. + 225617.i 0.521099 + 0.521099i
\(659\) 447720.i 1.03095i −0.856906 0.515473i \(-0.827616\pi\)
0.856906 0.515473i \(-0.172384\pi\)
\(660\) 0 0
\(661\) −99640.8 −0.228052 −0.114026 0.993478i \(-0.536375\pi\)
−0.114026 + 0.993478i \(0.536375\pi\)
\(662\) 290006. 290006.i 0.661745 0.661745i
\(663\) 874.824 + 874.824i 0.00199019 + 0.00199019i
\(664\) 120430.i 0.273149i
\(665\) 0 0
\(666\) 201195. 0.453594
\(667\) 234923. 234923.i 0.528048 0.528048i
\(668\) −334337. 334337.i −0.749257 0.749257i
\(669\) 139558.i 0.311818i
\(670\) 0 0
\(671\) 642327. 1.42663
\(672\) 114505. 114505.i 0.253563 0.253563i
\(673\) 170652. + 170652.i 0.376774 + 0.376774i 0.869937 0.493163i \(-0.164159\pi\)
−0.493163 + 0.869937i \(0.664159\pi\)
\(674\) 675948.i 1.48797i
\(675\) 0 0
\(676\) −346152. −0.757483
\(677\) 178335. 178335.i 0.389099 0.389099i −0.485267 0.874366i \(-0.661278\pi\)
0.874366 + 0.485267i \(0.161278\pi\)
\(678\) 27056.4 + 27056.4i 0.0588587 + 0.0588587i
\(679\) 361183.i 0.783408i
\(680\) 0 0
\(681\) −176481. −0.380543
\(682\) 216067. 216067.i 0.464536 0.464536i
\(683\) −621359. 621359.i −1.33199 1.33199i −0.903588 0.428402i \(-0.859077\pi\)
−0.428402 0.903588i \(-0.640923\pi\)
\(684\) 211003.i 0.451000i
\(685\) 0 0
\(686\) 537122. 1.14137
\(687\) −18200.3 + 18200.3i −0.0385626 + 0.0385626i
\(688\) 9119.14 + 9119.14i 0.0192654 + 0.0192654i
\(689\) 42382.2i 0.0892782i
\(690\) 0 0
\(691\) −142980. −0.299446 −0.149723 0.988728i \(-0.547838\pi\)
−0.149723 + 0.988728i \(0.547838\pi\)
\(692\) 413683. 413683.i 0.863884 0.863884i
\(693\) 96574.3 + 96574.3i 0.201092 + 0.201092i
\(694\) 315858.i 0.655803i
\(695\) 0 0
\(696\) 53535.4 0.110515
\(697\) −6280.57 + 6280.57i −0.0129281 + 0.0129281i
\(698\) −361301. 361301.i −0.741582 0.741582i
\(699\) 447364.i 0.915601i
\(700\) 0 0
\(701\) 248096. 0.504876 0.252438 0.967613i \(-0.418768\pi\)
0.252438 + 0.967613i \(0.418768\pi\)
\(702\) 22589.3 22589.3i 0.0458383 0.0458383i
\(703\) 592028. + 592028.i 1.19793 + 1.19793i
\(704\) 517306.i 1.04376i
\(705\) 0 0
\(706\) 414500. 0.831602
\(707\) 67189.6 67189.6i 0.134420 0.134420i
\(708\) −64941.4 64941.4i −0.129555 0.129555i
\(709\) 669146.i 1.33115i −0.746329 0.665577i \(-0.768186\pi\)
0.746329 0.665577i \(-0.231814\pi\)
\(710\) 0 0
\(711\) −163276. −0.322985
\(712\) 82036.4 82036.4i 0.161825 0.161825i
\(713\) −99321.8 99321.8i −0.195373 0.195373i
\(714\) 3693.53i 0.00724511i
\(715\) 0 0
\(716\) −232603. −0.453722
\(717\) 149207. 149207.i 0.290235 0.290235i
\(718\) −229940. 229940.i −0.446031 0.446031i
\(719\) 244719.i 0.473380i −0.971585 0.236690i \(-0.923937\pi\)
0.971585 0.236690i \(-0.0760626\pi\)
\(720\) 0 0
\(721\) −3978.14 −0.00765260
\(722\) 893475. 893475.i 1.71399 1.71399i
\(723\) 89811.5 + 89811.5i 0.171813 + 0.171813i
\(724\) 298349.i 0.569177i
\(725\) 0 0
\(726\) −886086. −1.68114
\(727\) 515647. 515647.i 0.975626 0.975626i −0.0240837 0.999710i \(-0.507667\pi\)
0.999710 + 0.0240837i \(0.00766684\pi\)
\(728\) 11610.4 + 11610.4i 0.0219070 + 0.0219070i
\(729\) 19683.0i 0.0370370i
\(730\) 0 0
\(731\) 245.305 0.000459062
\(732\) −141762. + 141762.i −0.264568 + 0.264568i
\(733\) −98009.3 98009.3i −0.182414 0.182414i 0.609993 0.792407i \(-0.291172\pi\)
−0.792407 + 0.609993i \(0.791172\pi\)
\(734\) 641526.i 1.19075i
\(735\) 0 0
\(736\) 705967. 1.30325
\(737\) −212265. + 212265.i −0.390790 + 0.390790i
\(738\) 162174. + 162174.i 0.297762 + 0.297762i
\(739\) 31323.0i 0.0573554i 0.999589 + 0.0286777i \(0.00912965\pi\)
−0.999589 + 0.0286777i \(0.990870\pi\)
\(740\) 0 0
\(741\) 132941. 0.242116
\(742\) −89469.4 + 89469.4i −0.162505 + 0.162505i
\(743\) −46804.2 46804.2i −0.0847828 0.0847828i 0.663444 0.748226i \(-0.269094\pi\)
−0.748226 + 0.663444i \(0.769094\pi\)
\(744\) 22633.9i 0.0408897i
\(745\) 0 0
\(746\) −514252. −0.924056
\(747\) −139292. + 139292.i −0.249623 + 0.249623i
\(748\) 11071.0 + 11071.0i 0.0197872 + 0.0197872i
\(749\) 276818.i 0.493435i
\(750\) 0 0
\(751\) −186.753 −0.000331121 −0.000165561 1.00000i \(-0.500053\pi\)
−0.000165561 1.00000i \(0.500053\pi\)
\(752\) −527842. + 527842.i −0.933401 + 0.933401i
\(753\) −264365. 264365.i −0.466244 0.466244i
\(754\) 142126.i 0.249994i
\(755\) 0 0
\(756\) −42628.0 −0.0745850
\(757\) −596186. + 596186.i −1.04037 + 1.04037i −0.0412248 + 0.999150i \(0.513126\pi\)
−0.999150 + 0.0412248i \(0.986874\pi\)
\(758\) −489308. 489308.i −0.851616 0.851616i
\(759\) 595419.i 1.03357i
\(760\) 0 0
\(761\) −1.04441e6 −1.80344 −0.901722 0.432315i \(-0.857697\pi\)
−0.901722 + 0.432315i \(0.857697\pi\)
\(762\) −336038. + 336038.i −0.578733 + 0.578733i
\(763\) −139245. 139245.i −0.239183 0.239183i
\(764\) 671023.i 1.14961i
\(765\) 0 0
\(766\) 1.12181e6 1.91188
\(767\) 40915.9 40915.9i 0.0695507 0.0695507i
\(768\) 305216. + 305216.i 0.517470 + 0.517470i
\(769\) 577158.i 0.975982i −0.872849 0.487991i \(-0.837730\pi\)
0.872849 0.487991i \(-0.162270\pi\)
\(770\) 0 0
\(771\) −246227. −0.414217
\(772\) −653566. + 653566.i −1.09662 + 1.09662i
\(773\) 414104. + 414104.i 0.693027 + 0.693027i 0.962897 0.269870i \(-0.0869807\pi\)
−0.269870 + 0.962897i \(0.586981\pi\)
\(774\) 6334.14i 0.0105732i
\(775\) 0 0
\(776\) 253731. 0.421357
\(777\) 119605. 119605.i 0.198110 0.198110i
\(778\) 668111. + 668111.i 1.10380 + 1.10380i
\(779\) 954417.i 1.57276i
\(780\) 0 0
\(781\) −14653.7 −0.0240240
\(782\) 11386.0 11386.0i 0.0186191 0.0186191i
\(783\) −61920.0 61920.0i −0.100997 0.100997i
\(784\) 546687.i 0.889419i
\(785\) 0 0
\(786\) −136012. −0.220157
\(787\) 337250. 337250.i 0.544505 0.544505i −0.380341 0.924846i \(-0.624193\pi\)
0.924846 + 0.380341i \(0.124193\pi\)
\(788\) −288723. 288723.i −0.464974 0.464974i
\(789\) 132647.i 0.213080i
\(790\) 0 0
\(791\) 32168.7 0.0514138
\(792\) −67843.5 + 67843.5i −0.108158 + 0.108158i
\(793\) −89316.2 89316.2i −0.142031 0.142031i
\(794\) 450317.i 0.714294i
\(795\) 0 0
\(796\) −737435. −1.16385
\(797\) 365276. 365276.i 0.575048 0.575048i −0.358487 0.933535i \(-0.616707\pi\)
0.933535 + 0.358487i \(0.116707\pi\)
\(798\) −280640. 280640.i −0.440701 0.440701i
\(799\) 14198.9i 0.0222414i
\(800\) 0 0
\(801\) −189770. −0.295775
\(802\) −311606. + 311606.i −0.484460 + 0.484460i
\(803\) 533223. + 533223.i 0.826948 + 0.826948i
\(804\) 93694.1i 0.144944i
\(805\) 0 0
\(806\) −60088.5 −0.0924957
\(807\) −330893. + 330893.i −0.508090 + 0.508090i
\(808\) 47200.7 + 47200.7i 0.0722979 + 0.0722979i
\(809\) 1.04908e6i 1.60292i 0.598051 + 0.801458i \(0.295942\pi\)
−0.598051 + 0.801458i \(0.704058\pi\)
\(810\) 0 0
\(811\) −882064. −1.34109 −0.670546 0.741868i \(-0.733940\pi\)
−0.670546 + 0.741868i \(0.733940\pi\)
\(812\) −134102. + 134102.i −0.203387 + 0.203387i
\(813\) 102949. + 102949.i 0.155754 + 0.155754i
\(814\) 1.60418e6i 2.42105i
\(815\) 0 0
\(816\) 8641.20 0.0129776
\(817\) 18638.6 18638.6i 0.0279235 0.0279235i
\(818\) 407916. + 407916.i 0.609627 + 0.609627i
\(819\) 26857.5i 0.0400403i
\(820\) 0 0
\(821\) 1.11452e6 1.65348 0.826742 0.562581i \(-0.190191\pi\)
0.826742 + 0.562581i \(0.190191\pi\)
\(822\) 284180. 284180.i 0.420582 0.420582i
\(823\) 258025. + 258025.i 0.380945 + 0.380945i 0.871443 0.490497i \(-0.163185\pi\)
−0.490497 + 0.871443i \(0.663185\pi\)
\(824\) 2794.64i 0.00411596i
\(825\) 0 0
\(826\) −172748. −0.253194
\(827\) 55607.8 55607.8i 0.0813063 0.0813063i −0.665284 0.746590i \(-0.731690\pi\)
0.746590 + 0.665284i \(0.231690\pi\)
\(828\) −131409. 131409.i −0.191675 0.191675i
\(829\) 1.03445e6i 1.50522i −0.658468 0.752609i \(-0.728795\pi\)
0.658468 0.752609i \(-0.271205\pi\)
\(830\) 0 0
\(831\) 566858. 0.820867
\(832\) 71931.9 71931.9i 0.103914 0.103914i
\(833\) 7352.94 + 7352.94i 0.0105967 + 0.0105967i
\(834\) 117260.i 0.168584i
\(835\) 0 0
\(836\) 1.68239e6 2.40720
\(837\) −26178.8 + 26178.8i −0.0373679 + 0.0373679i
\(838\) −95945.1 95945.1i −0.136626 0.136626i
\(839\) 426954.i 0.606537i 0.952905 + 0.303268i \(0.0980778\pi\)
−0.952905 + 0.303268i \(0.901922\pi\)
\(840\) 0 0
\(841\) 317698. 0.449182
\(842\) −630808. + 630808.i −0.889761 + 0.889761i
\(843\) 219368. + 219368.i 0.308687 + 0.308687i
\(844\) 655548.i 0.920279i
\(845\) 0 0
\(846\) 366639. 0.512268
\(847\) −526755. + 526755.i −0.734247 + 0.734247i
\(848\) −209318. 209318.i −0.291082 0.291082i
\(849\) 525535.i 0.729099i
\(850\) 0 0
\(851\) 737411. 1.01824
\(852\) 3234.08 3234.08i 0.00445525 0.00445525i
\(853\) 63890.0 + 63890.0i 0.0878081 + 0.0878081i 0.749647 0.661838i \(-0.230224\pi\)
−0.661838 + 0.749647i \(0.730224\pi\)
\(854\) 377095.i 0.517053i
\(855\) 0 0
\(856\) −194464. −0.265395
\(857\) 104328. 104328.i 0.142049 0.142049i −0.632506 0.774555i \(-0.717974\pi\)
0.774555 + 0.632506i \(0.217974\pi\)
\(858\) 180111. + 180111.i 0.244661 + 0.244661i
\(859\) 1.25585e6i 1.70196i 0.525196 + 0.850982i \(0.323992\pi\)
−0.525196 + 0.850982i \(0.676008\pi\)
\(860\) 0 0
\(861\) 192817. 0.260099
\(862\) 691828. 691828.i 0.931073 0.931073i
\(863\) −618705. 618705.i −0.830734 0.830734i 0.156883 0.987617i \(-0.449855\pi\)
−0.987617 + 0.156883i \(0.949855\pi\)
\(864\) 186076.i 0.249266i
\(865\) 0 0
\(866\) −1.35660e6 −1.80891
\(867\) −306760. + 306760.i −0.408094 + 0.408094i
\(868\) 56696.2 + 56696.2i 0.0752514 + 0.0752514i
\(869\) 1.30184e6i 1.72393i
\(870\) 0 0
\(871\) 59031.3 0.0778119
\(872\) 97819.4 97819.4i 0.128645 0.128645i
\(873\) −293470. 293470.i −0.385066 0.385066i
\(874\) 1.73026e6i 2.26510i
\(875\) 0 0
\(876\) −235365. −0.306715
\(877\) 446207. 446207.i 0.580146 0.580146i −0.354797 0.934943i \(-0.615450\pi\)
0.934943 + 0.354797i \(0.115450\pi\)
\(878\) 94796.6 + 94796.6i 0.122971 + 0.122971i
\(879\) 15053.5i 0.0194832i
\(880\) 0 0
\(881\) −226795. −0.292201 −0.146101 0.989270i \(-0.546672\pi\)
−0.146101 + 0.989270i \(0.546672\pi\)
\(882\) 189864. 189864.i 0.244065 0.244065i
\(883\) −235051. 235051.i −0.301467 0.301467i 0.540121 0.841588i \(-0.318379\pi\)
−0.841588 + 0.540121i \(0.818379\pi\)
\(884\) 3078.87i 0.00393991i
\(885\) 0 0
\(886\) −571276. −0.727744
\(887\) 789601. 789601.i 1.00360 1.00360i 0.00360590 0.999993i \(-0.498852\pi\)
0.999993 0.00360590i \(-0.00114779\pi\)
\(888\) 84022.4 + 84022.4i 0.106554 + 0.106554i
\(889\) 399531.i 0.505531i
\(890\) 0 0
\(891\) 156938. 0.197685
\(892\) 245581. 245581.i 0.308649 0.308649i
\(893\) 1.07886e6 + 1.07886e6i 1.35289 + 1.35289i
\(894\) 695381.i 0.870057i
\(895\) 0 0
\(896\) 194930. 0.242808
\(897\) 82793.5 82793.5i 0.102899 0.102899i
\(898\) −862857. 862857.i −1.07001 1.07001i
\(899\) 164710.i 0.203798i
\(900\) 0 0
\(901\) −5630.65 −0.00693600
\(902\) −1.29306e6 + 1.29306e6i −1.58930 + 1.58930i
\(903\) −3765.48 3765.48i −0.00461791 0.00461791i
\(904\) 22598.5i 0.0276530i
\(905\) 0 0
\(906\) 1.05624e6 1.28679
\(907\) 36080.2 36080.2i 0.0438585 0.0438585i −0.684837 0.728696i \(-0.740127\pi\)
0.728696 + 0.684837i \(0.240127\pi\)
\(908\) 310555. + 310555.i 0.376675 + 0.376675i
\(909\) 109186.i 0.132142i
\(910\) 0 0
\(911\) 216456. 0.260815 0.130407 0.991460i \(-0.458371\pi\)
0.130407 + 0.991460i \(0.458371\pi\)
\(912\) 656572. 656572.i 0.789392 0.789392i
\(913\) −1.11061e6 1.11061e6i −1.33236 1.33236i
\(914\) 24895.9i 0.0298013i
\(915\) 0 0
\(916\) 64054.5 0.0763411
\(917\) −80855.8 + 80855.8i −0.0961552 + 0.0961552i
\(918\) −3001.08 3001.08i −0.00356117 0.00356117i
\(919\) 358123.i 0.424034i 0.977266 + 0.212017i \(0.0680032\pi\)
−0.977266 + 0.212017i \(0.931997\pi\)
\(920\) 0 0
\(921\) 212940. 0.251037
\(922\) −361251. + 361251.i −0.424959 + 0.424959i
\(923\) 2037.61 + 2037.61i 0.00239176 + 0.00239176i
\(924\) 339885.i 0.398096i
\(925\) 0 0
\(926\) −1.64366e6 −1.91686
\(927\) −3232.33 + 3232.33i −0.00376146 + 0.00376146i
\(928\) −585369. 585369.i −0.679726 0.679726i
\(929\) 12991.3i 0.0150530i −0.999972 0.00752649i \(-0.997604\pi\)
0.999972 0.00752649i \(-0.00239578\pi\)
\(930\) 0 0
\(931\) 1.11738e6 1.28914
\(932\) 787229. 787229.i 0.906294 0.906294i
\(933\) −73977.0 73977.0i −0.0849832 0.0849832i
\(934\) 58819.7i 0.0674262i
\(935\) 0 0
\(936\) 18867.4 0.0215358
\(937\) −253354. + 253354.i −0.288568 + 0.288568i −0.836514 0.547946i \(-0.815410\pi\)
0.547946 + 0.836514i \(0.315410\pi\)
\(938\) −124616. 124616.i −0.141634 0.141634i
\(939\) 851238.i 0.965428i
\(940\) 0 0
\(941\) −1.24657e6 −1.40779 −0.703893 0.710306i \(-0.748557\pi\)
−0.703893 + 0.710306i \(0.748557\pi\)
\(942\) 520627. 520627.i 0.586712 0.586712i
\(943\) 594395. + 594395.i 0.668424 + 0.668424i
\(944\) 404153.i 0.453525i
\(945\) 0 0
\(946\) 50503.9 0.0564342
\(947\) −550159. + 550159.i −0.613462 + 0.613462i −0.943847 0.330384i \(-0.892822\pi\)
0.330384 + 0.943847i \(0.392822\pi\)
\(948\) 287317. + 287317.i 0.319702 + 0.319702i
\(949\) 148290.i 0.164657i
\(950\) 0 0
\(951\) −415652. −0.459589
\(952\) 1542.48 1542.48i 0.00170195 0.00170195i
\(953\) −457502. 457502.i −0.503741 0.503741i 0.408858 0.912598i \(-0.365927\pi\)
−0.912598 + 0.408858i \(0.865927\pi\)
\(954\) 145392.i 0.159751i
\(955\) 0 0
\(956\) −525121. −0.574570
\(957\) 493705. 493705.i 0.539068 0.539068i
\(958\) 1.21993e6 + 1.21993e6i 1.32924 + 1.32924i
\(959\) 337875.i 0.367383i
\(960\) 0 0
\(961\) −853884. −0.924596
\(962\) 223063. 223063.i 0.241033 0.241033i
\(963\) 224921. + 224921.i 0.242537 + 0.242537i
\(964\) 316084.i 0.340133i
\(965\) 0 0
\(966\) −349557. −0.374596
\(967\) −72229.7 + 72229.7i −0.0772437 + 0.0772437i −0.744673 0.667429i \(-0.767395\pi\)
0.667429 + 0.744673i \(0.267395\pi\)
\(968\) −370045. 370045.i −0.394916 0.394916i
\(969\) 17661.8i 0.0188099i
\(970\) 0 0
\(971\) 864636. 0.917054 0.458527 0.888680i \(-0.348377\pi\)
0.458527 + 0.888680i \(0.348377\pi\)
\(972\) −34636.3 + 34636.3i −0.0366606 + 0.0366606i
\(973\) −69708.0 69708.0i −0.0736303 0.0736303i
\(974\) 40033.3i 0.0421992i
\(975\) 0 0
\(976\) −882233. −0.926155
\(977\) −838896. + 838896.i −0.878859 + 0.878859i −0.993417 0.114558i \(-0.963455\pi\)
0.114558 + 0.993417i \(0.463455\pi\)
\(978\) −7837.19 7837.19i −0.00819374 0.00819374i
\(979\) 1.51308e6i 1.57869i
\(980\) 0 0
\(981\) −226280. −0.235130
\(982\) −729119. + 729119.i −0.756093 + 0.756093i
\(983\) 1.04189e6 + 1.04189e6i 1.07823 + 1.07823i 0.996668 + 0.0815669i \(0.0259924\pi\)
0.0815669 + 0.996668i \(0.474008\pi\)
\(984\) 135454.i 0.139894i
\(985\) 0 0
\(986\) −18882.0 −0.0194220
\(987\) 217957. 217957.i 0.223736 0.223736i
\(988\) −233937. 233937.i −0.239654 0.239654i
\(989\) 23215.7i 0.0237350i
\(990\) 0 0
\(991\) −1.02008e6 −1.03869 −0.519347 0.854564i \(-0.673825\pi\)
−0.519347 + 0.854564i \(0.673825\pi\)
\(992\) −247485. + 247485.i −0.251493 + 0.251493i
\(993\) −280160. 280160.i −0.284124 0.284124i
\(994\) 8602.85i 0.00870702i
\(995\) 0 0
\(996\) 490225. 0.494171
\(997\) 398909. 398909.i 0.401313 0.401313i −0.477382 0.878696i \(-0.658414\pi\)
0.878696 + 0.477382i \(0.158414\pi\)
\(998\) −995456. 995456.i −0.999450 0.999450i
\(999\) 194364.i 0.194753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.5.f.e.43.1 8
3.2 odd 2 225.5.g.m.118.4 8
5.2 odd 4 inner 75.5.f.e.7.1 8
5.3 odd 4 15.5.f.a.7.4 8
5.4 even 2 15.5.f.a.13.4 yes 8
15.2 even 4 225.5.g.m.82.4 8
15.8 even 4 45.5.g.e.37.1 8
15.14 odd 2 45.5.g.e.28.1 8
20.3 even 4 240.5.bg.c.97.4 8
20.19 odd 2 240.5.bg.c.193.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.4 8 5.3 odd 4
15.5.f.a.13.4 yes 8 5.4 even 2
45.5.g.e.28.1 8 15.14 odd 2
45.5.g.e.37.1 8 15.8 even 4
75.5.f.e.7.1 8 5.2 odd 4 inner
75.5.f.e.43.1 8 1.1 even 1 trivial
225.5.g.m.82.4 8 15.2 even 4
225.5.g.m.118.4 8 3.2 odd 2
240.5.bg.c.97.4 8 20.3 even 4
240.5.bg.c.193.4 8 20.19 odd 2