Properties

Label 45.5.g.e.37.1
Level $45$
Weight $5$
Character 45.37
Analytic conductor $4.652$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [45,5,Mod(28,45)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(45, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("45.28"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 45.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.65164833877\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 60x^{5} + 1973x^{4} - 3300x^{3} + 1800x^{2} + 31560x + 276676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.1
Root \(3.80336 - 3.80336i\) of defining polynomial
Character \(\chi\) \(=\) 45.37
Dual form 45.5.g.e.28.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.80336 - 3.80336i) q^{2} +12.9311i q^{4} +(-6.56915 + 24.1215i) q^{5} +(16.6149 + 16.6149i) q^{7} +(-11.6720 + 11.6720i) q^{8} +(116.728 - 66.7579i) q^{10} +215.278 q^{11} +(-29.9347 + 29.9347i) q^{13} -126.385i q^{14} +295.684 q^{16} +(3.97694 + 3.97694i) q^{17} +604.349i q^{19} +(-311.919 - 84.9467i) q^{20} +(-818.782 - 818.782i) q^{22} +(-376.379 + 376.379i) q^{23} +(-538.692 - 316.916i) q^{25} +227.705 q^{26} +(-214.850 + 214.850i) q^{28} +624.166i q^{29} +263.888 q^{31} +(-937.842 - 937.842i) q^{32} -30.2515i q^{34} +(-509.922 + 291.630i) q^{35} +(979.613 + 979.613i) q^{37} +(2298.56 - 2298.56i) q^{38} +(-204.870 - 358.220i) q^{40} +1579.25 q^{41} +(-30.8409 + 30.8409i) q^{43} +2783.80i q^{44} +2863.01 q^{46} +(-1785.16 - 1785.16i) q^{47} -1848.89i q^{49} +(843.498 + 3254.19i) q^{50} +(-387.089 - 387.089i) q^{52} +(-707.912 + 707.912i) q^{53} +(-1414.20 + 5192.84i) q^{55} -387.857 q^{56} +(2373.93 - 2373.93i) q^{58} -1366.84i q^{59} -2983.71 q^{61} +(-1003.66 - 1003.66i) q^{62} +2402.96i q^{64} +(-525.423 - 918.714i) q^{65} +(-986.003 - 986.003i) q^{67} +(-51.4265 + 51.4265i) q^{68} +(3048.59 + 830.242i) q^{70} -68.0686 q^{71} +(2476.90 - 2476.90i) q^{73} -7451.65i q^{74} -7814.93 q^{76} +(3576.83 + 3576.83i) q^{77} -6047.25i q^{79} +(-1942.39 + 7132.33i) q^{80} +(-6006.45 - 6006.45i) q^{82} +(5158.95 - 5158.95i) q^{83} +(-122.055 + 69.8047i) q^{85} +234.598 q^{86} +(-2512.72 + 2512.72i) q^{88} +7028.50i q^{89} -994.722 q^{91} +(-4867.01 - 4867.01i) q^{92} +13579.2i q^{94} +(-14577.8 - 3970.06i) q^{95} +(10869.3 + 10869.3i) q^{97} +(-7032.00 + 7032.00i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 84 q^{5} + 20 q^{7} - 180 q^{8} + 104 q^{10} + 288 q^{11} - 340 q^{13} + 620 q^{16} - 900 q^{17} - 564 q^{20} - 1100 q^{22} + 1560 q^{23} - 1204 q^{25} + 3024 q^{26} + 3580 q^{28} - 512 q^{31} - 4980 q^{32}+ \cdots - 46440 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/45\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.80336 3.80336i −0.950841 0.950841i 0.0480062 0.998847i \(-0.484713\pi\)
−0.998847 + 0.0480062i \(0.984713\pi\)
\(3\) 0 0
\(4\) 12.9311i 0.808197i
\(5\) −6.56915 + 24.1215i −0.262766 + 0.964860i
\(6\) 0 0
\(7\) 16.6149 + 16.6149i 0.339079 + 0.339079i 0.856021 0.516941i \(-0.172929\pi\)
−0.516941 + 0.856021i \(0.672929\pi\)
\(8\) −11.6720 + 11.6720i −0.182374 + 0.182374i
\(9\) 0 0
\(10\) 116.728 66.7579i 1.16728 0.667579i
\(11\) 215.278 1.77916 0.889580 0.456779i \(-0.150997\pi\)
0.889580 + 0.456779i \(0.150997\pi\)
\(12\) 0 0
\(13\) −29.9347 + 29.9347i −0.177128 + 0.177128i −0.790103 0.612975i \(-0.789973\pi\)
0.612975 + 0.790103i \(0.289973\pi\)
\(14\) 126.385i 0.644821i
\(15\) 0 0
\(16\) 295.684 1.15501
\(17\) 3.97694 + 3.97694i 0.0137611 + 0.0137611i 0.713954 0.700193i \(-0.246903\pi\)
−0.700193 + 0.713954i \(0.746903\pi\)
\(18\) 0 0
\(19\) 604.349i 1.67410i 0.547128 + 0.837049i \(0.315721\pi\)
−0.547128 + 0.837049i \(0.684279\pi\)
\(20\) −311.919 84.9467i −0.779796 0.212367i
\(21\) 0 0
\(22\) −818.782 818.782i −1.69170 1.69170i
\(23\) −376.379 + 376.379i −0.711491 + 0.711491i −0.966847 0.255356i \(-0.917807\pi\)
0.255356 + 0.966847i \(0.417807\pi\)
\(24\) 0 0
\(25\) −538.692 316.916i −0.861908 0.507065i
\(26\) 227.705 0.336841
\(27\) 0 0
\(28\) −214.850 + 214.850i −0.274043 + 0.274043i
\(29\) 624.166i 0.742171i 0.928599 + 0.371086i \(0.121014\pi\)
−0.928599 + 0.371086i \(0.878986\pi\)
\(30\) 0 0
\(31\) 263.888 0.274597 0.137299 0.990530i \(-0.456158\pi\)
0.137299 + 0.990530i \(0.456158\pi\)
\(32\) −937.842 937.842i −0.915861 0.915861i
\(33\) 0 0
\(34\) 30.2515i 0.0261691i
\(35\) −509.922 + 291.630i −0.416263 + 0.238065i
\(36\) 0 0
\(37\) 979.613 + 979.613i 0.715568 + 0.715568i 0.967694 0.252126i \(-0.0811298\pi\)
−0.252126 + 0.967694i \(0.581130\pi\)
\(38\) 2298.56 2298.56i 1.59180 1.59180i
\(39\) 0 0
\(40\) −204.870 358.220i −0.128044 0.223887i
\(41\) 1579.25 0.939468 0.469734 0.882808i \(-0.344350\pi\)
0.469734 + 0.882808i \(0.344350\pi\)
\(42\) 0 0
\(43\) −30.8409 + 30.8409i −0.0166797 + 0.0166797i −0.715397 0.698718i \(-0.753754\pi\)
0.698718 + 0.715397i \(0.253754\pi\)
\(44\) 2783.80i 1.43791i
\(45\) 0 0
\(46\) 2863.01 1.35303
\(47\) −1785.16 1785.16i −0.808129 0.808129i 0.176221 0.984351i \(-0.443613\pi\)
−0.984351 + 0.176221i \(0.943613\pi\)
\(48\) 0 0
\(49\) 1848.89i 0.770050i
\(50\) 843.498 + 3254.19i 0.337399 + 1.30168i
\(51\) 0 0
\(52\) −387.089 387.089i −0.143154 0.143154i
\(53\) −707.912 + 707.912i −0.252016 + 0.252016i −0.821797 0.569781i \(-0.807028\pi\)
0.569781 + 0.821797i \(0.307028\pi\)
\(54\) 0 0
\(55\) −1414.20 + 5192.84i −0.467503 + 1.71664i
\(56\) −387.857 −0.123679
\(57\) 0 0
\(58\) 2373.93 2373.93i 0.705687 0.705687i
\(59\) 1366.84i 0.392657i −0.980538 0.196329i \(-0.937098\pi\)
0.980538 0.196329i \(-0.0629020\pi\)
\(60\) 0 0
\(61\) −2983.71 −0.801856 −0.400928 0.916110i \(-0.631312\pi\)
−0.400928 + 0.916110i \(0.631312\pi\)
\(62\) −1003.66 1003.66i −0.261098 0.261098i
\(63\) 0 0
\(64\) 2402.96i 0.586661i
\(65\) −525.423 918.714i −0.124361 0.217447i
\(66\) 0 0
\(67\) −986.003 986.003i −0.219649 0.219649i 0.588702 0.808350i \(-0.299639\pi\)
−0.808350 + 0.588702i \(0.799639\pi\)
\(68\) −51.4265 + 51.4265i −0.0111216 + 0.0111216i
\(69\) 0 0
\(70\) 3048.59 + 830.242i 0.622162 + 0.169437i
\(71\) −68.0686 −0.0135030 −0.00675150 0.999977i \(-0.502149\pi\)
−0.00675150 + 0.999977i \(0.502149\pi\)
\(72\) 0 0
\(73\) 2476.90 2476.90i 0.464797 0.464797i −0.435427 0.900224i \(-0.643403\pi\)
0.900224 + 0.435427i \(0.143403\pi\)
\(74\) 7451.65i 1.36078i
\(75\) 0 0
\(76\) −7814.93 −1.35300
\(77\) 3576.83 + 3576.83i 0.603277 + 0.603277i
\(78\) 0 0
\(79\) 6047.25i 0.968955i −0.874804 0.484478i \(-0.839010\pi\)
0.874804 0.484478i \(-0.160990\pi\)
\(80\) −1942.39 + 7132.33i −0.303499 + 1.11443i
\(81\) 0 0
\(82\) −6006.45 6006.45i −0.893285 0.893285i
\(83\) 5158.95 5158.95i 0.748868 0.748868i −0.225398 0.974267i \(-0.572368\pi\)
0.974267 + 0.225398i \(0.0723684\pi\)
\(84\) 0 0
\(85\) −122.055 + 69.8047i −0.0168934 + 0.00966154i
\(86\) 234.598 0.0317196
\(87\) 0 0
\(88\) −2512.72 + 2512.72i −0.324473 + 0.324473i
\(89\) 7028.50i 0.887325i 0.896194 + 0.443662i \(0.146321\pi\)
−0.896194 + 0.443662i \(0.853679\pi\)
\(90\) 0 0
\(91\) −994.722 −0.120121
\(92\) −4867.01 4867.01i −0.575025 0.575025i
\(93\) 0 0
\(94\) 13579.2i 1.53681i
\(95\) −14577.8 3970.06i −1.61527 0.439896i
\(96\) 0 0
\(97\) 10869.3 + 10869.3i 1.15520 + 1.15520i 0.985495 + 0.169703i \(0.0542810\pi\)
0.169703 + 0.985495i \(0.445719\pi\)
\(98\) −7032.00 + 7032.00i −0.732195 + 0.732195i
\(99\) 0 0
\(100\) 4098.08 6965.91i 0.409808 0.696591i
\(101\) 4043.94 0.396426 0.198213 0.980159i \(-0.436486\pi\)
0.198213 + 0.980159i \(0.436486\pi\)
\(102\) 0 0
\(103\) −119.716 + 119.716i −0.0112844 + 0.0112844i −0.712726 0.701442i \(-0.752540\pi\)
0.701442 + 0.712726i \(0.252540\pi\)
\(104\) 698.792i 0.0646073i
\(105\) 0 0
\(106\) 5384.89 0.479254
\(107\) 8330.41 + 8330.41i 0.727610 + 0.727610i 0.970143 0.242533i \(-0.0779783\pi\)
−0.242533 + 0.970143i \(0.577978\pi\)
\(108\) 0 0
\(109\) 8380.72i 0.705389i −0.935739 0.352694i \(-0.885266\pi\)
0.935739 0.352694i \(-0.114734\pi\)
\(110\) 25128.9 14371.5i 2.07677 1.18773i
\(111\) 0 0
\(112\) 4912.75 + 4912.75i 0.391642 + 0.391642i
\(113\) −968.067 + 968.067i −0.0758139 + 0.0758139i −0.743997 0.668183i \(-0.767072\pi\)
0.668183 + 0.743997i \(0.267072\pi\)
\(114\) 0 0
\(115\) −6606.33 11551.3i −0.499533 0.873445i
\(116\) −8071.19 −0.599821
\(117\) 0 0
\(118\) −5198.59 + 5198.59i −0.373355 + 0.373355i
\(119\) 132.153i 0.00933218i
\(120\) 0 0
\(121\) 31703.8 2.16541
\(122\) 11348.1 + 11348.1i 0.762437 + 0.762437i
\(123\) 0 0
\(124\) 3412.37i 0.221929i
\(125\) 11183.2 10912.2i 0.715727 0.698381i
\(126\) 0 0
\(127\) −12023.3 12023.3i −0.745446 0.745446i 0.228174 0.973620i \(-0.426724\pi\)
−0.973620 + 0.228174i \(0.926724\pi\)
\(128\) −5866.12 + 5866.12i −0.358039 + 0.358039i
\(129\) 0 0
\(130\) −1495.83 + 5492.58i −0.0885105 + 0.325005i
\(131\) −4866.47 −0.283577 −0.141789 0.989897i \(-0.545285\pi\)
−0.141789 + 0.989897i \(0.545285\pi\)
\(132\) 0 0
\(133\) −10041.2 + 10041.2i −0.567652 + 0.567652i
\(134\) 7500.26i 0.417702i
\(135\) 0 0
\(136\) −92.8374 −0.00501933
\(137\) −10167.9 10167.9i −0.541736 0.541736i 0.382301 0.924038i \(-0.375132\pi\)
−0.924038 + 0.382301i \(0.875132\pi\)
\(138\) 0 0
\(139\) 4195.51i 0.217148i −0.994088 0.108574i \(-0.965372\pi\)
0.994088 0.108574i \(-0.0346284\pi\)
\(140\) −3771.11 6593.87i −0.192404 0.336422i
\(141\) 0 0
\(142\) 258.890 + 258.890i 0.0128392 + 0.0128392i
\(143\) −6444.29 + 6444.29i −0.315139 + 0.315139i
\(144\) 0 0
\(145\) −15055.8 4100.24i −0.716091 0.195018i
\(146\) −18841.1 −0.883895
\(147\) 0 0
\(148\) −12667.5 + 12667.5i −0.578320 + 0.578320i
\(149\) 24880.4i 1.12069i −0.828259 0.560345i \(-0.810669\pi\)
0.828259 0.560345i \(-0.189331\pi\)
\(150\) 0 0
\(151\) −37791.8 −1.65746 −0.828732 0.559645i \(-0.810937\pi\)
−0.828732 + 0.559645i \(0.810937\pi\)
\(152\) −7053.94 7053.94i −0.305312 0.305312i
\(153\) 0 0
\(154\) 27208.0i 1.14724i
\(155\) −1733.52 + 6365.37i −0.0721548 + 0.264948i
\(156\) 0 0
\(157\) 18627.8 + 18627.8i 0.755723 + 0.755723i 0.975541 0.219818i \(-0.0705463\pi\)
−0.219818 + 0.975541i \(0.570546\pi\)
\(158\) −22999.9 + 22999.9i −0.921322 + 0.921322i
\(159\) 0 0
\(160\) 28783.0 16461.3i 1.12433 0.643020i
\(161\) −12507.0 −0.482504
\(162\) 0 0
\(163\) −280.411 + 280.411i −0.0105541 + 0.0105541i −0.712364 0.701810i \(-0.752376\pi\)
0.701810 + 0.712364i \(0.252376\pi\)
\(164\) 20421.5i 0.759275i
\(165\) 0 0
\(166\) −39242.8 −1.42411
\(167\) 25855.1 + 25855.1i 0.927073 + 0.927073i 0.997516 0.0704428i \(-0.0224412\pi\)
−0.0704428 + 0.997516i \(0.522441\pi\)
\(168\) 0 0
\(169\) 26768.8i 0.937251i
\(170\) 729.712 + 198.727i 0.0252495 + 0.00687636i
\(171\) 0 0
\(172\) −398.808 398.808i −0.0134805 0.0134805i
\(173\) 31991.2 31991.2i 1.06890 1.06890i 0.0714600 0.997443i \(-0.477234\pi\)
0.997443 0.0714600i \(-0.0227658\pi\)
\(174\) 0 0
\(175\) −3684.80 14215.8i −0.120320 0.464190i
\(176\) 63654.3 2.05496
\(177\) 0 0
\(178\) 26731.9 26731.9i 0.843705 0.843705i
\(179\) 17987.8i 0.561400i −0.959796 0.280700i \(-0.909433\pi\)
0.959796 0.280700i \(-0.0905666\pi\)
\(180\) 0 0
\(181\) 23072.1 0.704255 0.352127 0.935952i \(-0.385458\pi\)
0.352127 + 0.935952i \(0.385458\pi\)
\(182\) 3783.29 + 3783.29i 0.114216 + 0.114216i
\(183\) 0 0
\(184\) 8786.16i 0.259515i
\(185\) −30065.0 + 17194.5i −0.878450 + 0.502396i
\(186\) 0 0
\(187\) 856.150 + 856.150i 0.0244831 + 0.0244831i
\(188\) 23084.1 23084.1i 0.653128 0.653128i
\(189\) 0 0
\(190\) 40345.1 + 70544.3i 1.11759 + 1.95414i
\(191\) −51892.0 −1.42244 −0.711220 0.702970i \(-0.751857\pi\)
−0.711220 + 0.702970i \(0.751857\pi\)
\(192\) 0 0
\(193\) 50542.0 50542.0i 1.35687 1.35687i 0.479118 0.877751i \(-0.340957\pi\)
0.877751 0.479118i \(-0.159043\pi\)
\(194\) 82679.5i 2.19682i
\(195\) 0 0
\(196\) 23908.3 0.622352
\(197\) 22327.7 + 22327.7i 0.575323 + 0.575323i 0.933611 0.358288i \(-0.116640\pi\)
−0.358288 + 0.933611i \(0.616640\pi\)
\(198\) 0 0
\(199\) 57027.8i 1.44006i 0.693943 + 0.720030i \(0.255872\pi\)
−0.693943 + 0.720030i \(0.744128\pi\)
\(200\) 9986.62 2588.57i 0.249665 0.0647143i
\(201\) 0 0
\(202\) −15380.6 15380.6i −0.376938 0.376938i
\(203\) −10370.5 + 10370.5i −0.251655 + 0.251655i
\(204\) 0 0
\(205\) −10374.3 + 38093.8i −0.246860 + 0.906455i
\(206\) 910.647 0.0214593
\(207\) 0 0
\(208\) −8851.19 + 8851.19i −0.204586 + 0.204586i
\(209\) 130103.i 2.97849i
\(210\) 0 0
\(211\) −50695.3 −1.13868 −0.569341 0.822101i \(-0.692802\pi\)
−0.569341 + 0.822101i \(0.692802\pi\)
\(212\) −9154.12 9154.12i −0.203678 0.203678i
\(213\) 0 0
\(214\) 63367.1i 1.38368i
\(215\) −541.329 946.526i −0.0117107 0.0204765i
\(216\) 0 0
\(217\) 4384.47 + 4384.47i 0.0931102 + 0.0931102i
\(218\) −31874.9 + 31874.9i −0.670712 + 0.670712i
\(219\) 0 0
\(220\) −67149.3 18287.2i −1.38738 0.377835i
\(221\) −238.097 −0.00487494
\(222\) 0 0
\(223\) −18991.4 + 18991.4i −0.381898 + 0.381898i −0.871786 0.489888i \(-0.837038\pi\)
0.489888 + 0.871786i \(0.337038\pi\)
\(224\) 31164.3i 0.621099i
\(225\) 0 0
\(226\) 7363.82 0.144174
\(227\) −24016.1 24016.1i −0.466069 0.466069i 0.434570 0.900638i \(-0.356900\pi\)
−0.900638 + 0.434570i \(0.856900\pi\)
\(228\) 0 0
\(229\) 4953.50i 0.0944586i −0.998884 0.0472293i \(-0.984961\pi\)
0.998884 0.0472293i \(-0.0150391\pi\)
\(230\) −18807.6 + 69060.1i −0.355530 + 1.30548i
\(231\) 0 0
\(232\) −7285.24 7285.24i −0.135353 0.135353i
\(233\) 60878.5 60878.5i 1.12138 1.12138i 0.129844 0.991534i \(-0.458552\pi\)
0.991534 0.129844i \(-0.0414475\pi\)
\(234\) 0 0
\(235\) 54787.6 31333.7i 0.992080 0.567382i
\(236\) 17674.8 0.317345
\(237\) 0 0
\(238\) 502.626 502.626i 0.00887342 0.00887342i
\(239\) 40609.0i 0.710929i −0.934690 0.355464i \(-0.884323\pi\)
0.934690 0.355464i \(-0.115677\pi\)
\(240\) 0 0
\(241\) 24443.6 0.420854 0.210427 0.977610i \(-0.432515\pi\)
0.210427 + 0.977610i \(0.432515\pi\)
\(242\) −120581. 120581.i −2.05896 2.05896i
\(243\) 0 0
\(244\) 38582.7i 0.648057i
\(245\) 44598.0 + 12145.6i 0.742990 + 0.202343i
\(246\) 0 0
\(247\) −18091.0 18091.0i −0.296530 0.296530i
\(248\) −3080.09 + 3080.09i −0.0500795 + 0.0500795i
\(249\) 0 0
\(250\) −84036.9 1030.83i −1.34459 0.0164932i
\(251\) 71951.0 1.14206 0.571030 0.820929i \(-0.306544\pi\)
0.571030 + 0.820929i \(0.306544\pi\)
\(252\) 0 0
\(253\) −81026.3 + 81026.3i −1.26586 + 1.26586i
\(254\) 91457.9i 1.41760i
\(255\) 0 0
\(256\) 83069.4 1.26754
\(257\) −33507.3 33507.3i −0.507310 0.507310i 0.406390 0.913700i \(-0.366787\pi\)
−0.913700 + 0.406390i \(0.866787\pi\)
\(258\) 0 0
\(259\) 32552.3i 0.485269i
\(260\) 11880.0 6794.32i 0.175740 0.100508i
\(261\) 0 0
\(262\) 18508.9 + 18508.9i 0.269637 + 0.269637i
\(263\) 18051.0 18051.0i 0.260969 0.260969i −0.564479 0.825448i \(-0.690923\pi\)
0.825448 + 0.564479i \(0.190923\pi\)
\(264\) 0 0
\(265\) −12425.5 21726.3i −0.176939 0.309381i
\(266\) 76380.6 1.07949
\(267\) 0 0
\(268\) 12750.2 12750.2i 0.177519 0.177519i
\(269\) 90057.7i 1.24456i 0.782794 + 0.622281i \(0.213794\pi\)
−0.782794 + 0.622281i \(0.786206\pi\)
\(270\) 0 0
\(271\) 28019.1 0.381518 0.190759 0.981637i \(-0.438905\pi\)
0.190759 + 0.981637i \(0.438905\pi\)
\(272\) 1175.92 + 1175.92i 0.0158942 + 0.0158942i
\(273\) 0 0
\(274\) 77344.1i 1.03021i
\(275\) −115969. 68225.1i −1.53347 0.902150i
\(276\) 0 0
\(277\) −77139.7 77139.7i −1.00535 1.00535i −0.999986 0.00536651i \(-0.998292\pi\)
−0.00536651 0.999986i \(-0.501708\pi\)
\(278\) −15957.1 + 15957.1i −0.206473 + 0.206473i
\(279\) 0 0
\(280\) 2547.89 9355.68i 0.0324986 0.119333i
\(281\) −59704.3 −0.756125 −0.378062 0.925780i \(-0.623409\pi\)
−0.378062 + 0.925780i \(0.623409\pi\)
\(282\) 0 0
\(283\) 71516.3 71516.3i 0.892960 0.892960i −0.101841 0.994801i \(-0.532473\pi\)
0.994801 + 0.101841i \(0.0324733\pi\)
\(284\) 880.205i 0.0109131i
\(285\) 0 0
\(286\) 49019.9 0.599295
\(287\) 26239.0 + 26239.0i 0.318554 + 0.318554i
\(288\) 0 0
\(289\) 83489.4i 0.999621i
\(290\) 41668.0 + 72857.5i 0.495458 + 0.866319i
\(291\) 0 0
\(292\) 32029.2 + 32029.2i 0.375647 + 0.375647i
\(293\) −2048.52 + 2048.52i −0.0238619 + 0.0238619i −0.718937 0.695075i \(-0.755371\pi\)
0.695075 + 0.718937i \(0.255371\pi\)
\(294\) 0 0
\(295\) 32970.2 + 8978.99i 0.378859 + 0.103177i
\(296\) −22868.0 −0.261003
\(297\) 0 0
\(298\) −94629.4 + 94629.4i −1.06560 + 1.06560i
\(299\) 22533.5i 0.252050i
\(300\) 0 0
\(301\) −1024.83 −0.0113115
\(302\) 143736. + 143736.i 1.57598 + 1.57598i
\(303\) 0 0
\(304\) 178696.i 1.93361i
\(305\) 19600.4 71971.4i 0.210701 0.773678i
\(306\) 0 0
\(307\) −28977.5 28977.5i −0.307457 0.307457i 0.536465 0.843922i \(-0.319759\pi\)
−0.843922 + 0.536465i \(0.819759\pi\)
\(308\) −46252.5 + 46252.5i −0.487566 + 0.487566i
\(309\) 0 0
\(310\) 30803.0 17616.6i 0.320531 0.183315i
\(311\) 20134.0 0.208166 0.104083 0.994569i \(-0.466809\pi\)
0.104083 + 0.994569i \(0.466809\pi\)
\(312\) 0 0
\(313\) 115839. 115839.i 1.18240 1.18240i 0.203283 0.979120i \(-0.434839\pi\)
0.979120 0.203283i \(-0.0651611\pi\)
\(314\) 141697.i 1.43715i
\(315\) 0 0
\(316\) 78197.9 0.783106
\(317\) −56563.1 56563.1i −0.562879 0.562879i 0.367245 0.930124i \(-0.380301\pi\)
−0.930124 + 0.367245i \(0.880301\pi\)
\(318\) 0 0
\(319\) 134370.i 1.32044i
\(320\) −57963.1 15785.4i −0.566046 0.154155i
\(321\) 0 0
\(322\) 47568.6 + 47568.6i 0.458785 + 0.458785i
\(323\) −2403.46 + 2403.46i −0.0230373 + 0.0230373i
\(324\) 0 0
\(325\) 25612.3 6638.82i 0.242484 0.0628527i
\(326\) 2133.01 0.0200705
\(327\) 0 0
\(328\) −18432.9 + 18432.9i −0.171335 + 0.171335i
\(329\) 59320.4i 0.548040i
\(330\) 0 0
\(331\) −76249.8 −0.695958 −0.347979 0.937502i \(-0.613132\pi\)
−0.347979 + 0.937502i \(0.613132\pi\)
\(332\) 66711.2 + 66711.2i 0.605233 + 0.605233i
\(333\) 0 0
\(334\) 196673.i 1.76300i
\(335\) 30261.1 17306.7i 0.269646 0.154214i
\(336\) 0 0
\(337\) 88861.9 + 88861.9i 0.782448 + 0.782448i 0.980243 0.197795i \(-0.0633780\pi\)
−0.197795 + 0.980243i \(0.563378\pi\)
\(338\) 101812. 101812.i 0.891177 0.891177i
\(339\) 0 0
\(340\) −902.654 1578.31i −0.00780843 0.0136532i
\(341\) 56809.4 0.488552
\(342\) 0 0
\(343\) 70611.5 70611.5i 0.600188 0.600188i
\(344\) 719.946i 0.00608392i
\(345\) 0 0
\(346\) −243348. −2.03271
\(347\) 41523.5 + 41523.5i 0.344854 + 0.344854i 0.858189 0.513334i \(-0.171590\pi\)
−0.513334 + 0.858189i \(0.671590\pi\)
\(348\) 0 0
\(349\) 94995.3i 0.779922i −0.920831 0.389961i \(-0.872489\pi\)
0.920831 0.389961i \(-0.127511\pi\)
\(350\) −40053.3 + 68082.6i −0.326966 + 0.555776i
\(351\) 0 0
\(352\) −201897. 201897.i −1.62946 1.62946i
\(353\) −54491.3 + 54491.3i −0.437298 + 0.437298i −0.891102 0.453804i \(-0.850067\pi\)
0.453804 + 0.891102i \(0.350067\pi\)
\(354\) 0 0
\(355\) 447.153 1641.92i 0.00354813 0.0130285i
\(356\) −90886.6 −0.717133
\(357\) 0 0
\(358\) −68414.2 + 68414.2i −0.533802 + 0.533802i
\(359\) 60457.0i 0.469092i 0.972105 + 0.234546i \(0.0753603\pi\)
−0.972105 + 0.234546i \(0.924640\pi\)
\(360\) 0 0
\(361\) −234917. −1.80260
\(362\) −87751.6 87751.6i −0.669634 0.669634i
\(363\) 0 0
\(364\) 12862.9i 0.0970814i
\(365\) 43475.4 + 76017.7i 0.326331 + 0.570596i
\(366\) 0 0
\(367\) 84336.6 + 84336.6i 0.626158 + 0.626158i 0.947099 0.320941i \(-0.103999\pi\)
−0.320941 + 0.947099i \(0.603999\pi\)
\(368\) −111289. + 111289.i −0.821783 + 0.821783i
\(369\) 0 0
\(370\) 179745. + 48951.0i 1.31296 + 0.357568i
\(371\) −23523.8 −0.170907
\(372\) 0 0
\(373\) −67604.9 + 67604.9i −0.485915 + 0.485915i −0.907015 0.421099i \(-0.861644\pi\)
0.421099 + 0.907015i \(0.361644\pi\)
\(374\) 6512.50i 0.0465591i
\(375\) 0 0
\(376\) 41672.6 0.294764
\(377\) −18684.2 18684.2i −0.131459 0.131459i
\(378\) 0 0
\(379\) 128651.i 0.895645i −0.894123 0.447822i \(-0.852200\pi\)
0.894123 0.447822i \(-0.147800\pi\)
\(380\) 51337.5 188508.i 0.355523 1.30546i
\(381\) 0 0
\(382\) 197364. + 197364.i 1.35251 + 1.35251i
\(383\) −147476. + 147476.i −1.00536 + 1.00536i −0.00537910 + 0.999986i \(0.501712\pi\)
−0.999986 + 0.00537910i \(0.998288\pi\)
\(384\) 0 0
\(385\) −109775. + 62781.7i −0.740598 + 0.423557i
\(386\) −384459. −2.58033
\(387\) 0 0
\(388\) −140552. + 140552.i −0.933628 + 0.933628i
\(389\) 175663.i 1.16086i −0.814309 0.580432i \(-0.802884\pi\)
0.814309 0.580432i \(-0.197116\pi\)
\(390\) 0 0
\(391\) −2993.68 −0.0195817
\(392\) 21580.2 + 21580.2i 0.140437 + 0.140437i
\(393\) 0 0
\(394\) 169841.i 1.09408i
\(395\) 145869. + 39725.3i 0.934906 + 0.254609i
\(396\) 0 0
\(397\) 59199.8 + 59199.8i 0.375612 + 0.375612i 0.869516 0.493904i \(-0.164431\pi\)
−0.493904 + 0.869516i \(0.664431\pi\)
\(398\) 216897. 216897.i 1.36927 1.36927i
\(399\) 0 0
\(400\) −159283. 93706.8i −0.995516 0.585667i
\(401\) −81929.2 −0.509507 −0.254753 0.967006i \(-0.581994\pi\)
−0.254753 + 0.967006i \(0.581994\pi\)
\(402\) 0 0
\(403\) −7899.39 + 7899.39i −0.0486389 + 0.0486389i
\(404\) 52292.8i 0.320390i
\(405\) 0 0
\(406\) 78885.2 0.478568
\(407\) 210890. + 210890.i 1.27311 + 1.27311i
\(408\) 0 0
\(409\) 107251.i 0.641145i 0.947224 + 0.320573i \(0.103875\pi\)
−0.947224 + 0.320573i \(0.896125\pi\)
\(410\) 184342. 105427.i 1.09662 0.627170i
\(411\) 0 0
\(412\) −1548.07 1548.07i −0.00912000 0.00912000i
\(413\) 22709.9 22709.9i 0.133142 0.133142i
\(414\) 0 0
\(415\) 90551.7 + 158332.i 0.525775 + 0.919330i
\(416\) 56147.9 0.324449
\(417\) 0 0
\(418\) 494830. 494830.i 2.83207 2.83207i
\(419\) 25226.4i 0.143690i 0.997416 + 0.0718451i \(0.0228887\pi\)
−0.997416 + 0.0718451i \(0.977111\pi\)
\(420\) 0 0
\(421\) 165855. 0.935762 0.467881 0.883792i \(-0.345018\pi\)
0.467881 + 0.883792i \(0.345018\pi\)
\(422\) 192813. + 192813.i 1.08271 + 1.08271i
\(423\) 0 0
\(424\) 16525.4i 0.0919224i
\(425\) −881.994 3402.70i −0.00488301 0.0188385i
\(426\) 0 0
\(427\) −49573.9 49573.9i −0.271893 0.271893i
\(428\) −107722. + 107722.i −0.588052 + 0.588052i
\(429\) 0 0
\(430\) −1541.11 + 5658.85i −0.00833483 + 0.0306049i
\(431\) 181899. 0.979210 0.489605 0.871944i \(-0.337141\pi\)
0.489605 + 0.871944i \(0.337141\pi\)
\(432\) 0 0
\(433\) −178342. + 178342.i −0.951214 + 0.951214i −0.998864 0.0476501i \(-0.984827\pi\)
0.0476501 + 0.998864i \(0.484827\pi\)
\(434\) 33351.5i 0.177066i
\(435\) 0 0
\(436\) 108372. 0.570093
\(437\) −227464. 227464.i −1.19111 1.19111i
\(438\) 0 0
\(439\) 24924.4i 0.129329i 0.997907 + 0.0646645i \(0.0205977\pi\)
−0.997907 + 0.0646645i \(0.979402\pi\)
\(440\) −44104.1 77117.0i −0.227811 0.398332i
\(441\) 0 0
\(442\) 905.569 + 905.569i 0.00463529 + 0.00463529i
\(443\) 75101.4 75101.4i 0.382684 0.382684i −0.489384 0.872068i \(-0.662778\pi\)
0.872068 + 0.489384i \(0.162778\pi\)
\(444\) 0 0
\(445\) −169538. 46171.3i −0.856144 0.233159i
\(446\) 144462. 0.726248
\(447\) 0 0
\(448\) −39925.0 + 39925.0i −0.198925 + 0.198925i
\(449\) 226867.i 1.12533i 0.826687 + 0.562663i \(0.190223\pi\)
−0.826687 + 0.562663i \(0.809777\pi\)
\(450\) 0 0
\(451\) 339978. 1.67147
\(452\) −12518.2 12518.2i −0.0612725 0.0612725i
\(453\) 0 0
\(454\) 182684.i 0.886314i
\(455\) 6534.48 23994.2i 0.0315637 0.115900i
\(456\) 0 0
\(457\) −3272.88 3272.88i −0.0156710 0.0156710i 0.699228 0.714899i \(-0.253527\pi\)
−0.714899 + 0.699228i \(0.753527\pi\)
\(458\) −18840.0 + 18840.0i −0.0898151 + 0.0898151i
\(459\) 0 0
\(460\) 149372. 85427.4i 0.705915 0.403721i
\(461\) −94982.0 −0.446930 −0.223465 0.974712i \(-0.571737\pi\)
−0.223465 + 0.974712i \(0.571737\pi\)
\(462\) 0 0
\(463\) −216080. + 216080.i −1.00798 + 1.00798i −0.00801234 + 0.999968i \(0.502550\pi\)
−0.999968 + 0.00801234i \(0.997450\pi\)
\(464\) 184556.i 0.857219i
\(465\) 0 0
\(466\) −463086. −2.13250
\(467\) −7732.59 7732.59i −0.0354561 0.0354561i 0.689156 0.724613i \(-0.257981\pi\)
−0.724613 + 0.689156i \(0.757981\pi\)
\(468\) 0 0
\(469\) 32764.7i 0.148957i
\(470\) −327551. 89203.9i −1.48280 0.403820i
\(471\) 0 0
\(472\) 15953.7 + 15953.7i 0.0716106 + 0.0716106i
\(473\) −6639.37 + 6639.37i −0.0296759 + 0.0296759i
\(474\) 0 0
\(475\) 191528. 325558.i 0.848876 1.44292i
\(476\) −1708.89 −0.00754224
\(477\) 0 0
\(478\) −154451. + 154451.i −0.675980 + 0.675980i
\(479\) 320749.i 1.39796i −0.715142 0.698980i \(-0.753638\pi\)
0.715142 0.698980i \(-0.246362\pi\)
\(480\) 0 0
\(481\) −58648.8 −0.253495
\(482\) −92967.9 92967.9i −0.400165 0.400165i
\(483\) 0 0
\(484\) 409967.i 1.75008i
\(485\) −333585. + 190781.i −1.41815 + 0.811057i
\(486\) 0 0
\(487\) 5262.88 + 5262.88i 0.0221904 + 0.0221904i 0.718115 0.695925i \(-0.245005\pi\)
−0.695925 + 0.718115i \(0.745005\pi\)
\(488\) 34825.7 34825.7i 0.146238 0.146238i
\(489\) 0 0
\(490\) −123428. 215817.i −0.514070 0.898862i
\(491\) −191704. −0.795183 −0.397592 0.917562i \(-0.630154\pi\)
−0.397592 + 0.917562i \(0.630154\pi\)
\(492\) 0 0
\(493\) −2482.27 + 2482.27i −0.0102131 + 0.0102131i
\(494\) 137613.i 0.563905i
\(495\) 0 0
\(496\) 78027.4 0.317164
\(497\) −1130.95 1130.95i −0.00457859 0.00457859i
\(498\) 0 0
\(499\) 261730.i 1.05112i −0.850756 0.525561i \(-0.823855\pi\)
0.850756 0.525561i \(-0.176145\pi\)
\(500\) 141107. + 144612.i 0.564429 + 0.578448i
\(501\) 0 0
\(502\) −273656. 273656.i −1.08592 1.08592i
\(503\) −206538. + 206538.i −0.816328 + 0.816328i −0.985574 0.169245i \(-0.945867\pi\)
0.169245 + 0.985574i \(0.445867\pi\)
\(504\) 0 0
\(505\) −26565.3 + 97545.8i −0.104167 + 0.382495i
\(506\) 616345. 2.40726
\(507\) 0 0
\(508\) 155475. 155475.i 0.602467 0.602467i
\(509\) 44082.3i 0.170149i −0.996375 0.0850743i \(-0.972887\pi\)
0.996375 0.0850743i \(-0.0271128\pi\)
\(510\) 0 0
\(511\) 82306.9 0.315206
\(512\) −222085. 222085.i −0.847188 0.847188i
\(513\) 0 0
\(514\) 254881.i 0.964741i
\(515\) −2101.30 3674.16i −0.00792269 0.0138530i
\(516\) 0 0
\(517\) −384306. 384306.i −1.43779 1.43779i
\(518\) 123808. 123808.i 0.461414 0.461414i
\(519\) 0 0
\(520\) 16855.9 + 4590.47i 0.0623369 + 0.0169766i
\(521\) 507981. 1.87142 0.935712 0.352764i \(-0.114758\pi\)
0.935712 + 0.352764i \(0.114758\pi\)
\(522\) 0 0
\(523\) −119838. + 119838.i −0.438119 + 0.438119i −0.891378 0.453260i \(-0.850261\pi\)
0.453260 + 0.891378i \(0.350261\pi\)
\(524\) 62929.0i 0.229186i
\(525\) 0 0
\(526\) −137309. −0.496280
\(527\) 1049.47 + 1049.47i 0.00377875 + 0.00377875i
\(528\) 0 0
\(529\) 3481.11i 0.0124396i
\(530\) −35374.2 + 129892.i −0.125932 + 0.462413i
\(531\) 0 0
\(532\) −129844. 129844.i −0.458775 0.458775i
\(533\) −47274.2 + 47274.2i −0.166406 + 0.166406i
\(534\) 0 0
\(535\) −255666. + 146218.i −0.893233 + 0.510850i
\(536\) 23017.2 0.0801166
\(537\) 0 0
\(538\) 342522. 342522.i 1.18338 1.18338i
\(539\) 398026.i 1.37004i
\(540\) 0 0
\(541\) 509491. 1.74077 0.870387 0.492368i \(-0.163869\pi\)
0.870387 + 0.492368i \(0.163869\pi\)
\(542\) −106567. 106567.i −0.362763 0.362763i
\(543\) 0 0
\(544\) 7459.49i 0.0252064i
\(545\) 202156. + 55054.3i 0.680601 + 0.185352i
\(546\) 0 0
\(547\) 376658. + 376658.i 1.25885 + 1.25885i 0.951644 + 0.307204i \(0.0993933\pi\)
0.307204 + 0.951644i \(0.400607\pi\)
\(548\) 131482. 131482.i 0.437830 0.437830i
\(549\) 0 0
\(550\) 181587. + 700557.i 0.600288 + 2.31589i
\(551\) −377214. −1.24247
\(552\) 0 0
\(553\) 100474. 100474.i 0.328553 0.328553i
\(554\) 586780.i 1.91186i
\(555\) 0 0
\(556\) 54252.8 0.175498
\(557\) 76108.6 + 76108.6i 0.245315 + 0.245315i 0.819045 0.573730i \(-0.194504\pi\)
−0.573730 + 0.819045i \(0.694504\pi\)
\(558\) 0 0
\(559\) 1846.42i 0.00590891i
\(560\) −150776. + 86230.3i −0.480789 + 0.274969i
\(561\) 0 0
\(562\) 227077. + 227077.i 0.718954 + 0.718954i
\(563\) 242876. 242876.i 0.766244 0.766244i −0.211199 0.977443i \(-0.567737\pi\)
0.977443 + 0.211199i \(0.0677368\pi\)
\(564\) 0 0
\(565\) −16991.8 29710.6i −0.0532284 0.0930711i
\(566\) −544005. −1.69813
\(567\) 0 0
\(568\) 794.494 794.494i 0.00246260 0.00246260i
\(569\) 285859.i 0.882934i −0.897278 0.441467i \(-0.854458\pi\)
0.897278 0.441467i \(-0.145542\pi\)
\(570\) 0 0
\(571\) −28753.2 −0.0881890 −0.0440945 0.999027i \(-0.514040\pi\)
−0.0440945 + 0.999027i \(0.514040\pi\)
\(572\) −83332.0 83332.0i −0.254695 0.254695i
\(573\) 0 0
\(574\) 199593.i 0.605789i
\(575\) 322033. 83472.2i 0.974012 0.252468i
\(576\) 0 0
\(577\) −429650. 429650.i −1.29052 1.29052i −0.934467 0.356048i \(-0.884124\pi\)
−0.356048 0.934467i \(-0.615876\pi\)
\(578\) −317540. + 317540.i −0.950481 + 0.950481i
\(579\) 0 0
\(580\) 53020.9 194689.i 0.157613 0.578743i
\(581\) 171431. 0.507852
\(582\) 0 0
\(583\) −152398. + 152398.i −0.448376 + 0.448376i
\(584\) 57820.6i 0.169534i
\(585\) 0 0
\(586\) 15582.6 0.0453778
\(587\) 116615. + 116615.i 0.338436 + 0.338436i 0.855778 0.517343i \(-0.173079\pi\)
−0.517343 + 0.855778i \(0.673079\pi\)
\(588\) 0 0
\(589\) 159480.i 0.459703i
\(590\) −91247.4 159548.i −0.262130 0.458340i
\(591\) 0 0
\(592\) 289656. + 289656.i 0.826492 + 0.826492i
\(593\) 80973.9 80973.9i 0.230269 0.230269i −0.582536 0.812805i \(-0.697939\pi\)
0.812805 + 0.582536i \(0.197939\pi\)
\(594\) 0 0
\(595\) −3187.73 868.133i −0.00900424 0.00245218i
\(596\) 321733. 0.905738
\(597\) 0 0
\(598\) −85703.3 + 85703.3i −0.239660 + 0.239660i
\(599\) 683966.i 1.90626i 0.302569 + 0.953128i \(0.402156\pi\)
−0.302569 + 0.953128i \(0.597844\pi\)
\(600\) 0 0
\(601\) −211089. −0.584408 −0.292204 0.956356i \(-0.594389\pi\)
−0.292204 + 0.956356i \(0.594389\pi\)
\(602\) 3897.82 + 3897.82i 0.0107555 + 0.0107555i
\(603\) 0 0
\(604\) 488692.i 1.33956i
\(605\) −208267. + 764743.i −0.568997 + 2.08932i
\(606\) 0 0
\(607\) 502579. + 502579.i 1.36404 + 1.36404i 0.868699 + 0.495340i \(0.164956\pi\)
0.495340 + 0.868699i \(0.335044\pi\)
\(608\) 566784. 566784.i 1.53324 1.53324i
\(609\) 0 0
\(610\) −348281. + 199186.i −0.935987 + 0.535302i
\(611\) 106876. 0.286285
\(612\) 0 0
\(613\) 402276. 402276.i 1.07054 1.07054i 0.0732238 0.997316i \(-0.476671\pi\)
0.997316 0.0732238i \(-0.0233287\pi\)
\(614\) 220424.i 0.584685i
\(615\) 0 0
\(616\) −83497.2 −0.220044
\(617\) −439415. 439415.i −1.15426 1.15426i −0.985689 0.168574i \(-0.946084\pi\)
−0.168574 0.985689i \(-0.553916\pi\)
\(618\) 0 0
\(619\) 555813.i 1.45060i −0.688434 0.725299i \(-0.741701\pi\)
0.688434 0.725299i \(-0.258299\pi\)
\(620\) −82311.5 22416.4i −0.214130 0.0583153i
\(621\) 0 0
\(622\) −76576.9 76576.9i −0.197932 0.197932i
\(623\) −116778. + 116778.i −0.300874 + 0.300874i
\(624\) 0 0
\(625\) 189754. + 341440.i 0.485771 + 0.874086i
\(626\) −881154. −2.24855
\(627\) 0 0
\(628\) −240879. + 240879.i −0.610773 + 0.610773i
\(629\) 7791.73i 0.0196939i
\(630\) 0 0
\(631\) −448846. −1.12730 −0.563648 0.826015i \(-0.690603\pi\)
−0.563648 + 0.826015i \(0.690603\pi\)
\(632\) 70583.2 + 70583.2i 0.176713 + 0.176713i
\(633\) 0 0
\(634\) 430260.i 1.07042i
\(635\) 369003. 211037.i 0.915128 0.523373i
\(636\) 0 0
\(637\) 55345.9 + 55345.9i 0.136398 + 0.136398i
\(638\) 511056. 511056.i 1.25553 1.25553i
\(639\) 0 0
\(640\) −102964. 180035.i −0.251377 0.439538i
\(641\) 579776. 1.41106 0.705528 0.708682i \(-0.250710\pi\)
0.705528 + 0.708682i \(0.250710\pi\)
\(642\) 0 0
\(643\) 485382. 485382.i 1.17398 1.17398i 0.192731 0.981252i \(-0.438266\pi\)
0.981252 0.192731i \(-0.0617344\pi\)
\(644\) 161730.i 0.389958i
\(645\) 0 0
\(646\) 18282.5 0.0438097
\(647\) −227180. 227180.i −0.542703 0.542703i 0.381618 0.924320i \(-0.375367\pi\)
−0.924320 + 0.381618i \(0.875367\pi\)
\(648\) 0 0
\(649\) 294251.i 0.698601i
\(650\) −122663. 72163.2i −0.290326 0.170800i
\(651\) 0 0
\(652\) −3626.04 3626.04i −0.00852977 0.00852977i
\(653\) −51532.9 + 51532.9i −0.120853 + 0.120853i −0.764947 0.644093i \(-0.777235\pi\)
0.644093 + 0.764947i \(0.277235\pi\)
\(654\) 0 0
\(655\) 31968.6 117386.i 0.0745145 0.273612i
\(656\) 466958. 1.08510
\(657\) 0 0
\(658\) −225617. + 225617.i −0.521099 + 0.521099i
\(659\) 447720.i 1.03095i −0.856906 0.515473i \(-0.827616\pi\)
0.856906 0.515473i \(-0.172384\pi\)
\(660\) 0 0
\(661\) −99640.8 −0.228052 −0.114026 0.993478i \(-0.536375\pi\)
−0.114026 + 0.993478i \(0.536375\pi\)
\(662\) 290006. + 290006.i 0.661745 + 0.661745i
\(663\) 0 0
\(664\) 120430.i 0.273149i
\(665\) −176246. 308171.i −0.398545 0.696864i
\(666\) 0 0
\(667\) −234923. 234923.i −0.528048 0.528048i
\(668\) −334337. + 334337.i −0.749257 + 0.749257i
\(669\) 0 0
\(670\) −180917. 49270.3i −0.403024 0.109758i
\(671\) −642327. −1.42663
\(672\) 0 0
\(673\) −170652. + 170652.i −0.376774 + 0.376774i −0.869937 0.493163i \(-0.835841\pi\)
0.493163 + 0.869937i \(0.335841\pi\)
\(674\) 675948.i 1.48797i
\(675\) 0 0
\(676\) −346152. −0.757483
\(677\) 178335. + 178335.i 0.389099 + 0.389099i 0.874366 0.485267i \(-0.161278\pi\)
−0.485267 + 0.874366i \(0.661278\pi\)
\(678\) 0 0
\(679\) 361183.i 0.783408i
\(680\) 609.863 2239.38i 0.00131891 0.00484294i
\(681\) 0 0
\(682\) −216067. 216067.i −0.464536 0.464536i
\(683\) −621359. + 621359.i −1.33199 + 1.33199i −0.428402 + 0.903588i \(0.640923\pi\)
−0.903588 + 0.428402i \(0.859077\pi\)
\(684\) 0 0
\(685\) 312058. 178470.i 0.665049 0.380350i
\(686\) −537122. −1.14137
\(687\) 0 0
\(688\) −9119.14 + 9119.14i −0.0192654 + 0.0192654i
\(689\) 42382.2i 0.0892782i
\(690\) 0 0
\(691\) −142980. −0.299446 −0.149723 0.988728i \(-0.547838\pi\)
−0.149723 + 0.988728i \(0.547838\pi\)
\(692\) 413683. + 413683.i 0.863884 + 0.863884i
\(693\) 0 0
\(694\) 315858.i 0.655803i
\(695\) 101202. + 27561.0i 0.209517 + 0.0570591i
\(696\) 0 0
\(697\) 6280.57 + 6280.57i 0.0129281 + 0.0129281i
\(698\) −361301. + 361301.i −0.741582 + 0.741582i
\(699\) 0 0
\(700\) 183827. 47648.7i 0.375157 0.0972422i
\(701\) −248096. −0.504876 −0.252438 0.967613i \(-0.581232\pi\)
−0.252438 + 0.967613i \(0.581232\pi\)
\(702\) 0 0
\(703\) −592028. + 592028.i −1.19793 + 1.19793i
\(704\) 517306.i 1.04376i
\(705\) 0 0
\(706\) 414500. 0.831602
\(707\) 67189.6 + 67189.6i 0.134420 + 0.134420i
\(708\) 0 0
\(709\) 669146.i 1.33115i 0.746329 + 0.665577i \(0.231814\pi\)
−0.746329 + 0.665577i \(0.768186\pi\)
\(710\) −7945.49 + 4544.12i −0.0157617 + 0.00901432i
\(711\) 0 0
\(712\) −82036.4 82036.4i −0.161825 0.161825i
\(713\) −99321.8 + 99321.8i −0.195373 + 0.195373i
\(714\) 0 0
\(715\) −113112. 197779.i −0.221257 0.386873i
\(716\) 232603. 0.453722
\(717\) 0 0
\(718\) 229940. 229940.i 0.446031 0.446031i
\(719\) 244719.i 0.473380i −0.971585 0.236690i \(-0.923937\pi\)
0.971585 0.236690i \(-0.0760626\pi\)
\(720\) 0 0
\(721\) −3978.14 −0.00765260
\(722\) 893475. + 893475.i 1.71399 + 1.71399i
\(723\) 0 0
\(724\) 298349.i 0.569177i
\(725\) 197808. 336234.i 0.376329 0.639683i
\(726\) 0 0
\(727\) −515647. 515647.i −0.975626 0.975626i 0.0240837 0.999710i \(-0.492333\pi\)
−0.999710 + 0.0240837i \(0.992333\pi\)
\(728\) 11610.4 11610.4i 0.0219070 0.0219070i
\(729\) 0 0
\(730\) 123770. 454476.i 0.232258 0.852835i
\(731\) −245.305 −0.000459062
\(732\) 0 0
\(733\) 98009.3 98009.3i 0.182414 0.182414i −0.609993 0.792407i \(-0.708828\pi\)
0.792407 + 0.609993i \(0.208828\pi\)
\(734\) 641526.i 1.19075i
\(735\) 0 0
\(736\) 705967. 1.30325
\(737\) −212265. 212265.i −0.390790 0.390790i
\(738\) 0 0
\(739\) 31323.0i 0.0573554i −0.999589 0.0286777i \(-0.990870\pi\)
0.999589 0.0286777i \(-0.00912965\pi\)
\(740\) −222345. 388774.i −0.406035 0.709961i
\(741\) 0 0
\(742\) 89469.4 + 89469.4i 0.162505 + 0.162505i
\(743\) −46804.2 + 46804.2i −0.0847828 + 0.0847828i −0.748226 0.663444i \(-0.769094\pi\)
0.663444 + 0.748226i \(0.269094\pi\)
\(744\) 0 0
\(745\) 600153. + 163443.i 1.08131 + 0.294479i
\(746\) 514252. 0.924056
\(747\) 0 0
\(748\) −11071.0 + 11071.0i −0.0197872 + 0.0197872i
\(749\) 276818.i 0.493435i
\(750\) 0 0
\(751\) −186.753 −0.000331121 −0.000165561 1.00000i \(-0.500053\pi\)
−0.000165561 1.00000i \(0.500053\pi\)
\(752\) −527842. 527842.i −0.933401 0.933401i
\(753\) 0 0
\(754\) 142126.i 0.249994i
\(755\) 248260. 911596.i 0.435525 1.59922i
\(756\) 0 0
\(757\) 596186. + 596186.i 1.04037 + 1.04037i 0.999150 + 0.0412248i \(0.0131260\pi\)
0.0412248 + 0.999150i \(0.486874\pi\)
\(758\) −489308. + 489308.i −0.851616 + 0.851616i
\(759\) 0 0
\(760\) 216490. 123813.i 0.374809 0.214358i
\(761\) 1.04441e6 1.80344 0.901722 0.432315i \(-0.142303\pi\)
0.901722 + 0.432315i \(0.142303\pi\)
\(762\) 0 0
\(763\) 139245. 139245.i 0.239183 0.239183i
\(764\) 671023.i 1.14961i
\(765\) 0 0
\(766\) 1.12181e6 1.91188
\(767\) 40915.9 + 40915.9i 0.0695507 + 0.0695507i
\(768\) 0 0
\(769\) 577158.i 0.975982i 0.872849 + 0.487991i \(0.162270\pi\)
−0.872849 + 0.487991i \(0.837730\pi\)
\(770\) 656296. + 178733.i 1.10693 + 0.301456i
\(771\) 0 0
\(772\) 653566. + 653566.i 1.09662 + 1.09662i
\(773\) 414104. 414104.i 0.693027 0.693027i −0.269870 0.962897i \(-0.586981\pi\)
0.962897 + 0.269870i \(0.0869807\pi\)
\(774\) 0 0
\(775\) −142154. 83630.2i −0.236677 0.139239i
\(776\) −253731. −0.421357
\(777\) 0 0
\(778\) −668111. + 668111.i −1.10380 + 1.10380i
\(779\) 954417.i 1.57276i
\(780\) 0 0
\(781\) −14653.7 −0.0240240
\(782\) 11386.0 + 11386.0i 0.0186191 + 0.0186191i
\(783\) 0 0
\(784\) 546687.i 0.889419i
\(785\) −571700. + 326962.i −0.927745 + 0.530588i
\(786\) 0 0
\(787\) −337250. 337250.i −0.544505 0.544505i 0.380341 0.924846i \(-0.375807\pi\)
−0.924846 + 0.380341i \(0.875807\pi\)
\(788\) −288723. + 288723.i −0.464974 + 0.464974i
\(789\) 0 0
\(790\) −403702. 705881.i −0.646854 1.13104i
\(791\) −32168.7 −0.0514138
\(792\) 0 0
\(793\) 89316.2 89316.2i 0.142031 0.142031i
\(794\) 450317.i 0.714294i
\(795\) 0 0
\(796\) −737435. −1.16385
\(797\) 365276. + 365276.i 0.575048 + 0.575048i 0.933535 0.358487i \(-0.116707\pi\)
−0.358487 + 0.933535i \(0.616707\pi\)
\(798\) 0 0
\(799\) 14198.9i 0.0222414i
\(800\) 207992. + 802425.i 0.324987 + 1.25379i
\(801\) 0 0
\(802\) 311606. + 311606.i 0.484460 + 0.484460i
\(803\) 533223. 533223.i 0.826948 0.826948i
\(804\) 0 0
\(805\) 82160.3 301687.i 0.126786 0.465549i
\(806\) 60088.5 0.0924957
\(807\) 0 0
\(808\) −47200.7 + 47200.7i −0.0722979 + 0.0722979i
\(809\) 1.04908e6i 1.60292i 0.598051 + 0.801458i \(0.295942\pi\)
−0.598051 + 0.801458i \(0.704058\pi\)
\(810\) 0 0
\(811\) −882064. −1.34109 −0.670546 0.741868i \(-0.733940\pi\)
−0.670546 + 0.741868i \(0.733940\pi\)
\(812\) −134102. 134102.i −0.203387 0.203387i
\(813\) 0 0
\(814\) 1.60418e6i 2.42105i
\(815\) −4921.87 8606.00i −0.00740995 0.0129565i
\(816\) 0 0
\(817\) −18638.6 18638.6i −0.0279235 0.0279235i
\(818\) 407916. 407916.i 0.609627 0.609627i
\(819\) 0 0
\(820\) −492596. 134152.i −0.732594 0.199512i
\(821\) −1.11452e6 −1.65348 −0.826742 0.562581i \(-0.809809\pi\)
−0.826742 + 0.562581i \(0.809809\pi\)
\(822\) 0 0
\(823\) −258025. + 258025.i −0.380945 + 0.380945i −0.871443 0.490497i \(-0.836815\pi\)
0.490497 + 0.871443i \(0.336815\pi\)
\(824\) 2794.64i 0.00411596i
\(825\) 0 0
\(826\) −172748. −0.253194
\(827\) 55607.8 + 55607.8i 0.0813063 + 0.0813063i 0.746590 0.665284i \(-0.231690\pi\)
−0.665284 + 0.746590i \(0.731690\pi\)
\(828\) 0 0
\(829\) 1.03445e6i 1.50522i 0.658468 + 0.752609i \(0.271205\pi\)
−0.658468 + 0.752609i \(0.728795\pi\)
\(830\) 257792. 946594.i 0.374208 1.37407i
\(831\) 0 0
\(832\) −71931.9 71931.9i −0.103914 0.103914i
\(833\) 7352.94 7352.94i 0.0105967 0.0105967i
\(834\) 0 0
\(835\) −793511. + 453818.i −1.13810 + 0.650892i
\(836\) −1.68239e6 −2.40720
\(837\) 0 0
\(838\) 95945.1 95945.1i 0.136626 0.136626i
\(839\) 426954.i 0.606537i 0.952905 + 0.303268i \(0.0980778\pi\)
−0.952905 + 0.303268i \(0.901922\pi\)
\(840\) 0 0
\(841\) 317698. 0.449182
\(842\) −630808. 630808.i −0.889761 0.889761i
\(843\) 0 0
\(844\) 655548.i 0.920279i
\(845\) −645704. 175849.i −0.904316 0.246278i
\(846\) 0 0
\(847\) 526755. + 526755.i 0.734247 + 0.734247i
\(848\) −209318. + 209318.i −0.291082 + 0.291082i
\(849\) 0 0
\(850\) −9587.18 + 16296.3i −0.0132695 + 0.0225554i
\(851\) −737411. −1.01824
\(852\) 0 0
\(853\) −63890.0 + 63890.0i −0.0878081 + 0.0878081i −0.749647 0.661838i \(-0.769776\pi\)
0.661838 + 0.749647i \(0.269776\pi\)
\(854\) 377095.i 0.517053i
\(855\) 0 0
\(856\) −194464. −0.265395
\(857\) 104328. + 104328.i 0.142049 + 0.142049i 0.774555 0.632506i \(-0.217974\pi\)
−0.632506 + 0.774555i \(0.717974\pi\)
\(858\) 0 0
\(859\) 1.25585e6i 1.70196i −0.525196 0.850982i \(-0.676008\pi\)
0.525196 0.850982i \(-0.323992\pi\)
\(860\) 12239.7 7000.01i 0.0165490 0.00946458i
\(861\) 0 0
\(862\) −691828. 691828.i −0.931073 0.931073i
\(863\) −618705. + 618705.i −0.830734 + 0.830734i −0.987617 0.156883i \(-0.949855\pi\)
0.156883 + 0.987617i \(0.449855\pi\)
\(864\) 0 0
\(865\) 561520. + 981831.i 0.750470 + 1.31221i
\(866\) 1.35660e6 1.80891
\(867\) 0 0
\(868\) −56696.2 + 56696.2i −0.0752514 + 0.0752514i
\(869\) 1.30184e6i 1.72393i
\(870\) 0 0
\(871\) 59031.3 0.0778119
\(872\) 97819.4 + 97819.4i 0.128645 + 0.128645i
\(873\) 0 0
\(874\) 1.73026e6i 2.26510i
\(875\) 367113. + 4503.14i 0.479495 + 0.00588165i
\(876\) 0 0
\(877\) −446207. 446207.i −0.580146 0.580146i 0.354797 0.934943i \(-0.384550\pi\)
−0.934943 + 0.354797i \(0.884550\pi\)
\(878\) 94796.6 94796.6i 0.122971 0.122971i
\(879\) 0 0
\(880\) −418155. + 1.53544e6i −0.539973 + 1.98274i
\(881\) 226795. 0.292201 0.146101 0.989270i \(-0.453328\pi\)
0.146101 + 0.989270i \(0.453328\pi\)
\(882\) 0 0
\(883\) 235051. 235051.i 0.301467 0.301467i −0.540121 0.841588i \(-0.681621\pi\)
0.841588 + 0.540121i \(0.181621\pi\)
\(884\) 3078.87i 0.00393991i
\(885\) 0 0
\(886\) −571276. −0.727744
\(887\) 789601. + 789601.i 1.00360 + 1.00360i 0.999993 + 0.00360590i \(0.00114779\pi\)
0.00360590 + 0.999993i \(0.498852\pi\)
\(888\) 0 0
\(889\) 399531.i 0.505531i
\(890\) 469208. + 820421.i 0.592360 + 1.03575i
\(891\) 0 0
\(892\) −245581. 245581.i −0.308649 0.308649i
\(893\) 1.07886e6 1.07886e6i 1.35289 1.35289i
\(894\) 0 0
\(895\) 433893. + 118165.i 0.541672 + 0.147517i
\(896\) −194930. −0.242808
\(897\) 0 0
\(898\) 862857. 862857.i 1.07001 1.07001i
\(899\) 164710.i 0.203798i
\(900\) 0 0
\(901\) −5630.65 −0.00693600
\(902\) −1.29306e6 1.29306e6i −1.58930 1.58930i
\(903\) 0 0
\(904\) 22598.5i 0.0276530i
\(905\) −151564. + 556533.i −0.185054 + 0.679507i
\(906\) 0 0
\(907\) −36080.2 36080.2i −0.0438585 0.0438585i 0.684837 0.728696i \(-0.259873\pi\)
−0.728696 + 0.684837i \(0.759873\pi\)
\(908\) 310555. 310555.i 0.376675 0.376675i
\(909\) 0 0
\(910\) −116112. + 66405.6i −0.140214 + 0.0801903i
\(911\) −216456. −0.260815 −0.130407 0.991460i \(-0.541629\pi\)
−0.130407 + 0.991460i \(0.541629\pi\)
\(912\) 0 0
\(913\) 1.11061e6 1.11061e6i 1.33236 1.33236i
\(914\) 24895.9i 0.0298013i
\(915\) 0 0
\(916\) 64054.5 0.0763411
\(917\) −80855.8 80855.8i −0.0961552 0.0961552i
\(918\) 0 0
\(919\) 358123.i 0.424034i −0.977266 0.212017i \(-0.931997\pi\)
0.977266 0.212017i \(-0.0680032\pi\)
\(920\) 211935. + 57717.6i 0.250396 + 0.0681919i
\(921\) 0 0
\(922\) 361251. + 361251.i 0.424959 + 0.424959i
\(923\) 2037.61 2037.61i 0.00239176 0.00239176i
\(924\) 0 0
\(925\) −217256. 838165.i −0.253914 0.979594i
\(926\) 1.64366e6 1.91686
\(927\) 0 0
\(928\) 585369. 585369.i 0.679726 0.679726i
\(929\) 12991.3i 0.0150530i −0.999972 0.00752649i \(-0.997604\pi\)
0.999972 0.00752649i \(-0.00239578\pi\)
\(930\) 0 0
\(931\) 1.11738e6 1.28914
\(932\) 787229. + 787229.i 0.906294 + 0.906294i
\(933\) 0 0
\(934\) 58819.7i 0.0674262i
\(935\) −26275.8 + 15027.4i −0.0300561 + 0.0171894i
\(936\) 0 0
\(937\) 253354. + 253354.i 0.288568 + 0.288568i 0.836514 0.547946i \(-0.184590\pi\)
−0.547946 + 0.836514i \(0.684590\pi\)
\(938\) −124616. + 124616.i −0.141634 + 0.141634i
\(939\) 0 0
\(940\) 405181. + 708467.i 0.458557 + 0.801796i
\(941\) 1.24657e6 1.40779 0.703893 0.710306i \(-0.251443\pi\)
0.703893 + 0.710306i \(0.251443\pi\)
\(942\) 0 0
\(943\) −594395. + 594395.i −0.668424 + 0.668424i
\(944\) 404153.i 0.453525i
\(945\) 0 0
\(946\) 50503.9 0.0564342
\(947\) −550159. 550159.i −0.613462 0.613462i 0.330384 0.943847i \(-0.392822\pi\)
−0.943847 + 0.330384i \(0.892822\pi\)
\(948\) 0 0
\(949\) 148290.i 0.164657i
\(950\) −1.96667e6 + 509768.i −2.17913 + 0.564839i
\(951\) 0 0
\(952\) −1542.48 1542.48i −0.00170195 0.00170195i
\(953\) −457502. + 457502.i −0.503741 + 0.503741i −0.912598 0.408858i \(-0.865927\pi\)
0.408858 + 0.912598i \(0.365927\pi\)
\(954\) 0 0
\(955\) 340887. 1.25171e6i 0.373769 1.37245i
\(956\) 525121. 0.574570
\(957\) 0 0
\(958\) −1.21993e6 + 1.21993e6i −1.32924 + 1.32924i
\(959\) 337875.i 0.367383i
\(960\) 0 0
\(961\) −853884. −0.924596
\(962\) 223063. + 223063.i 0.241033 + 0.241033i
\(963\) 0 0
\(964\) 316084.i 0.340133i
\(965\) 887130. + 1.55117e6i 0.952648 + 1.66573i
\(966\) 0 0
\(967\) 72229.7 + 72229.7i 0.0772437 + 0.0772437i 0.744673 0.667429i \(-0.232605\pi\)
−0.667429 + 0.744673i \(0.732605\pi\)
\(968\) −370045. + 370045.i −0.394916 + 0.394916i
\(969\) 0 0
\(970\) 1.99435e6 + 543134.i 2.11962 + 0.577250i
\(971\) −864636. −0.917054 −0.458527 0.888680i \(-0.651623\pi\)
−0.458527 + 0.888680i \(0.651623\pi\)
\(972\) 0 0
\(973\) 69708.0 69708.0i 0.0736303 0.0736303i
\(974\) 40033.3i 0.0421992i
\(975\) 0 0
\(976\) −882233. −0.926155
\(977\) −838896. 838896.i −0.878859 0.878859i 0.114558 0.993417i \(-0.463455\pi\)
−0.993417 + 0.114558i \(0.963455\pi\)
\(978\) 0 0
\(979\) 1.51308e6i 1.57869i
\(980\) −157057. + 576703.i −0.163533 + 0.600482i
\(981\) 0 0
\(982\) 729119. + 729119.i 0.756093 + 0.756093i
\(983\) 1.04189e6 1.04189e6i 1.07823 1.07823i 0.0815669 0.996668i \(-0.474008\pi\)
0.996668 0.0815669i \(-0.0259924\pi\)
\(984\) 0 0
\(985\) −685251. + 391903.i −0.706281 + 0.403930i
\(986\) 18882.0 0.0194220
\(987\) 0 0
\(988\) 233937. 233937.i 0.239654 0.239654i
\(989\) 23215.7i 0.0237350i
\(990\) 0 0
\(991\) −1.02008e6 −1.03869 −0.519347 0.854564i \(-0.673825\pi\)
−0.519347 + 0.854564i \(0.673825\pi\)
\(992\) −247485. 247485.i −0.251493 0.251493i
\(993\) 0 0
\(994\) 8602.85i 0.00870702i
\(995\) −1.37560e6 374624.i −1.38945 0.378399i
\(996\) 0 0
\(997\) −398909. 398909.i −0.401313 0.401313i 0.477382 0.878696i \(-0.341586\pi\)
−0.878696 + 0.477382i \(0.841586\pi\)
\(998\) −995456. + 995456.i −0.999450 + 0.999450i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.5.g.e.37.1 8
3.2 odd 2 15.5.f.a.7.4 8
5.2 odd 4 225.5.g.m.118.4 8
5.3 odd 4 inner 45.5.g.e.28.1 8
5.4 even 2 225.5.g.m.82.4 8
12.11 even 2 240.5.bg.c.97.4 8
15.2 even 4 75.5.f.e.43.1 8
15.8 even 4 15.5.f.a.13.4 yes 8
15.14 odd 2 75.5.f.e.7.1 8
60.23 odd 4 240.5.bg.c.193.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.f.a.7.4 8 3.2 odd 2
15.5.f.a.13.4 yes 8 15.8 even 4
45.5.g.e.28.1 8 5.3 odd 4 inner
45.5.g.e.37.1 8 1.1 even 1 trivial
75.5.f.e.7.1 8 15.14 odd 2
75.5.f.e.43.1 8 15.2 even 4
225.5.g.m.82.4 8 5.4 even 2
225.5.g.m.118.4 8 5.2 odd 4
240.5.bg.c.97.4 8 12.11 even 2
240.5.bg.c.193.4 8 60.23 odd 4