Properties

Label 75.5.d.c
Level $75$
Weight $5$
Character orbit 75.d
Analytic conductor $7.753$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(74,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.74"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,76] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{35})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 17x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 2 \beta_1) q^{2} + 3 \beta_1 q^{3} + 19 q^{4} + (3 \beta_{3} + 54) q^{6} + 72 \beta_{2} q^{7} + ( - 3 \beta_{2} + 6 \beta_1) q^{8} + (9 \beta_{3} + 81) q^{9} + ( - 62 \beta_{3} - 31) q^{11}+ \cdots + ( - 4743 \beta_{3} + 2511) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 76 q^{4} + 210 q^{6} + 306 q^{9} - 796 q^{16} - 1468 q^{19} - 432 q^{21} + 630 q^{24} - 1272 q^{31} + 1820 q^{34} + 5814 q^{36} + 1212 q^{39} - 840 q^{46} - 11132 q^{49} + 2730 q^{51} + 15120 q^{54}+ \cdots + 19530 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 17x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 8\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 9\beta_{2} + 8\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
74.1
−2.95804 0.500000i
−2.95804 + 0.500000i
2.95804 0.500000i
2.95804 + 0.500000i
−5.91608 −8.87412 1.50000i 19.0000 0 52.5000 + 8.87412i 72.0000i −17.7482 76.5000 + 26.6224i 0
74.2 −5.91608 −8.87412 + 1.50000i 19.0000 0 52.5000 8.87412i 72.0000i −17.7482 76.5000 26.6224i 0
74.3 5.91608 8.87412 1.50000i 19.0000 0 52.5000 8.87412i 72.0000i 17.7482 76.5000 26.6224i 0
74.4 5.91608 8.87412 + 1.50000i 19.0000 0 52.5000 + 8.87412i 72.0000i 17.7482 76.5000 + 26.6224i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.5.d.c 4
3.b odd 2 1 inner 75.5.d.c 4
5.b even 2 1 inner 75.5.d.c 4
5.c odd 4 1 75.5.c.d 2
5.c odd 4 1 75.5.c.f yes 2
15.d odd 2 1 inner 75.5.d.c 4
15.e even 4 1 75.5.c.d 2
15.e even 4 1 75.5.c.f yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.5.c.d 2 5.c odd 4 1
75.5.c.d 2 15.e even 4 1
75.5.c.f yes 2 5.c odd 4 1
75.5.c.f yes 2 15.e even 4 1
75.5.d.c 4 1.a even 1 1 trivial
75.5.d.c 4 3.b odd 2 1 inner
75.5.d.c 4 5.b even 2 1 inner
75.5.d.c 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 35 \) acting on \(S_{5}^{\mathrm{new}}(75, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 35)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 153T^{2} + 6561 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 5184)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 33635)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 40804)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 5915)^{2} \) Copy content Toggle raw display
$19$ \( (T + 367)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 1260)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 134540)^{2} \) Copy content Toggle raw display
$31$ \( (T + 318)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 565504)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 2570435)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 964324)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 1428140)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 5544140)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 560)^{2} \) Copy content Toggle raw display
$61$ \( (T + 3728)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 55398249)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 45326540)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 157609)^{2} \) Copy content Toggle raw display
$79$ \( (T - 6108)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 176715315)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 22456035)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 64673764)^{2} \) Copy content Toggle raw display
show more
show less