Properties

Label 75.5.c.f
Level $75$
Weight $5$
Character orbit 75.c
Analytic conductor $7.753$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(26,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.26"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-35}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{-35})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 2 \beta + 1) q^{2} + 3 \beta q^{3} - 19 q^{4} + ( - 3 \beta + 54) q^{6} - 72 q^{7} + (6 \beta - 3) q^{8} + (9 \beta - 81) q^{9} + (62 \beta - 31) q^{11} - 57 \beta q^{12} - 202 q^{13} + (144 \beta - 72) q^{14} + \cdots + ( - 4743 \beta - 2511) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} - 38 q^{4} + 105 q^{6} - 144 q^{7} - 153 q^{9} - 57 q^{12} - 404 q^{13} - 398 q^{16} + 315 q^{18} + 734 q^{19} - 216 q^{21} + 2170 q^{22} - 315 q^{24} - 702 q^{27} + 2736 q^{28} - 636 q^{31}+ \cdots - 9765 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.500000 + 2.95804i
0.500000 2.95804i
5.91608i 1.50000 + 8.87412i −19.0000 0 52.5000 8.87412i −72.0000 17.7482i −76.5000 + 26.6224i 0
26.2 5.91608i 1.50000 8.87412i −19.0000 0 52.5000 + 8.87412i −72.0000 17.7482i −76.5000 26.6224i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.5.c.f yes 2
3.b odd 2 1 inner 75.5.c.f yes 2
5.b even 2 1 75.5.c.d 2
5.c odd 4 2 75.5.d.c 4
15.d odd 2 1 75.5.c.d 2
15.e even 4 2 75.5.d.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.5.c.d 2 5.b even 2 1
75.5.c.d 2 15.d odd 2 1
75.5.c.f yes 2 1.a even 1 1 trivial
75.5.c.f yes 2 3.b odd 2 1 inner
75.5.d.c 4 5.c odd 4 2
75.5.d.c 4 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(75, [\chi])\):

\( T_{2}^{2} + 35 \) Copy content Toggle raw display
\( T_{7} + 72 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 35 \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 72)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 33635 \) Copy content Toggle raw display
$13$ \( (T + 202)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 5915 \) Copy content Toggle raw display
$19$ \( (T - 367)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1260 \) Copy content Toggle raw display
$29$ \( T^{2} + 134540 \) Copy content Toggle raw display
$31$ \( (T + 318)^{2} \) Copy content Toggle raw display
$37$ \( (T + 752)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 2570435 \) Copy content Toggle raw display
$43$ \( (T + 982)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 1428140 \) Copy content Toggle raw display
$53$ \( T^{2} + 5544140 \) Copy content Toggle raw display
$59$ \( T^{2} + 560 \) Copy content Toggle raw display
$61$ \( (T + 3728)^{2} \) Copy content Toggle raw display
$67$ \( (T - 7443)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 45326540 \) Copy content Toggle raw display
$73$ \( (T + 397)^{2} \) Copy content Toggle raw display
$79$ \( (T + 6108)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 176715315 \) Copy content Toggle raw display
$89$ \( T^{2} + 22456035 \) Copy content Toggle raw display
$97$ \( (T + 8042)^{2} \) Copy content Toggle raw display
show more
show less