Properties

Label 75.5.c.h
Level $75$
Weight $5$
Character orbit 75.c
Analytic conductor $7.753$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(26,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.26"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-10}, \sqrt{26})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 2 \beta_1) q^{3} + 6 q^{4} + (\beta_{3} + 15) q^{6} + (2 \beta_{2} - \beta_1) q^{7} + 22 \beta_1 q^{8} + ( - 3 \beta_{3} + 36) q^{9} - 4 \beta_{3} q^{11} + (6 \beta_{2} - 12 \beta_1) q^{12}+ \cdots + ( - 144 \beta_{3} - 7020) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{4} + 60 q^{6} + 144 q^{9} - 496 q^{16} - 1232 q^{19} + 468 q^{21} + 1320 q^{24} + 128 q^{31} - 3520 q^{34} + 864 q^{36} + 7488 q^{39} - 5240 q^{46} - 8668 q^{49} + 5280 q^{51} + 9180 q^{54}+ \cdots - 28080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 8x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + \nu ) / 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 26\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\nu^{2} - 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 12 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{2} + 26\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
−2.54951 1.58114i
2.54951 1.58114i
−2.54951 + 1.58114i
2.54951 + 1.58114i
3.16228i −7.64853 + 4.74342i 6.00000 0 15.0000 + 24.1868i −15.2971 69.5701i 36.0000 72.5603i 0
26.2 3.16228i 7.64853 + 4.74342i 6.00000 0 15.0000 24.1868i 15.2971 69.5701i 36.0000 + 72.5603i 0
26.3 3.16228i −7.64853 4.74342i 6.00000 0 15.0000 24.1868i −15.2971 69.5701i 36.0000 + 72.5603i 0
26.4 3.16228i 7.64853 4.74342i 6.00000 0 15.0000 + 24.1868i 15.2971 69.5701i 36.0000 72.5603i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 75.5.c.h 4
3.b odd 2 1 inner 75.5.c.h 4
5.b even 2 1 inner 75.5.c.h 4
5.c odd 4 2 15.5.d.c 4
15.d odd 2 1 inner 75.5.c.h 4
15.e even 4 2 15.5.d.c 4
20.e even 4 2 240.5.c.c 4
60.l odd 4 2 240.5.c.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.5.d.c 4 5.c odd 4 2
15.5.d.c 4 15.e even 4 2
75.5.c.h 4 1.a even 1 1 trivial
75.5.c.h 4 3.b odd 2 1 inner
75.5.c.h 4 5.b even 2 1 inner
75.5.c.h 4 15.d odd 2 1 inner
240.5.c.c 4 20.e even 4 2
240.5.c.c 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{5}^{\mathrm{new}}(75, [\chi])\):

\( T_{2}^{2} + 10 \) Copy content Toggle raw display
\( T_{7}^{2} - 234 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 10)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 72T^{2} + 6561 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 234)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 9360)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 59904)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 77440)^{2} \) Copy content Toggle raw display
$19$ \( (T + 308)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 171610)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 37440)^{2} \) Copy content Toggle raw display
$31$ \( (T - 32)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 1651104)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4326660)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 6683274)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 5975290)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2007040)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 15734160)^{2} \) Copy content Toggle raw display
$61$ \( (T + 928)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6683274)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 21565440)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 17825184)^{2} \) Copy content Toggle raw display
$79$ \( (T + 8)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 19684090)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 86261760)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 6293664)^{2} \) Copy content Toggle raw display
show more
show less