Dirichlet series
| L(s) = 1 | + 44·4-s + 72·9-s + 940·16-s − 1.23e3·19-s + 128·31-s + 3.16e3·36-s − 9.13e3·49-s − 3.71e3·61-s + 8.80e3·64-s − 5.42e4·76-s − 32·79-s − 1.37e3·81-s + 2.54e4·109-s + 3.98e4·121-s + 5.63e3·124-s + 127-s + 131-s + 137-s + 139-s + 6.76e4·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 5.56e3·169-s − 8.87e4·171-s + ⋯ |
| L(s) = 1 | + 11/4·4-s + 8/9·9-s + 3.67·16-s − 3.41·19-s + 0.133·31-s + 22/9·36-s − 3.80·49-s − 0.997·61-s + 2.14·64-s − 9.38·76-s − 0.00512·79-s − 0.209·81-s + 2.13·109-s + 2.72·121-s + 0.366·124-s + 6.20e−5·127-s + 5.82e−5·131-s + 5.32e−5·137-s + 5.17e−5·139-s + 3.26·144-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + 0.194·169-s − 3.03·171-s + ⋯ |
Functional equation
Invariants
| Degree: | \(8\) |
| Conductor: | \(31640625\) = \(3^{4} \cdot 5^{8}\) |
| Sign: | $1$ |
| Analytic conductor: | \(3612.62\) |
| Root analytic conductor: | \(2.78437\) |
| Motivic weight: | \(4\) |
| Rational: | yes |
| Arithmetic: | yes |
| Character: | Trivial |
| Primitive: | no |
| Self-dual: | yes |
| Analytic rank: | \(0\) |
| Selberg data: | \((8,\ 31640625,\ (\ :2, 2, 2, 2),\ 1)\) |
Particular Values
| \(L(\frac{5}{2})\) | \(\approx\) | \(5.016314517\) |
| \(L(\frac12)\) | \(\approx\) | \(5.016314517\) |
| \(L(3)\) | not available | |
| \(L(1)\) | not available |
Euler product
| $p$ | $\Gal(F_p)$ | $F_p(T)$ | |
|---|---|---|---|
| bad | 3 | $C_2^2$ | \( 1 - 8 p^{2} T^{2} + p^{8} T^{4} \) |
| 5 | \( 1 \) | ||
| good | 2 | $C_2^2$ | \( ( 1 - 11 p T^{2} + p^{8} T^{4} )^{2} \) |
| 7 | $C_2^2$ | \( ( 1 + 4568 T^{2} + p^{8} T^{4} )^{2} \) | |
| 11 | $C_2^2$ | \( ( 1 - 19922 T^{2} + p^{8} T^{4} )^{2} \) | |
| 13 | $C_2^2$ | \( ( 1 - 214 p T^{2} + p^{8} T^{4} )^{2} \) | |
| 17 | $C_2^2$ | \( ( 1 - 89602 T^{2} + p^{8} T^{4} )^{2} \) | |
| 19 | $C_2$ | \( ( 1 + 308 T + p^{4} T^{2} )^{4} \) | |
| 23 | $C_2^2$ | \( ( 1 - 388072 T^{2} + p^{8} T^{4} )^{2} \) | |
| 29 | $C_2^2$ | \( ( 1 - 1377122 T^{2} + p^{8} T^{4} )^{2} \) | |
| 31 | $C_2$ | \( ( 1 - 32 T + p^{4} T^{2} )^{4} \) | |
| 37 | $C_2^2$ | \( ( 1 + 2097218 T^{2} + p^{8} T^{4} )^{2} \) | |
| 41 | $C_2^2$ | \( ( 1 - 1324862 T^{2} + p^{8} T^{4} )^{2} \) | |
| 43 | $C_2^2$ | \( ( 1 + 154328 T^{2} + p^{8} T^{4} )^{2} \) | |
| 47 | $C_2^2$ | \( ( 1 - 3784072 T^{2} + p^{8} T^{4} )^{2} \) | |
| 53 | $C_2^2$ | \( ( 1 - 13773922 T^{2} + p^{8} T^{4} )^{2} \) | |
| 59 | $C_2^2$ | \( ( 1 - 8500562 T^{2} + p^{8} T^{4} )^{2} \) | |
| 61 | $C_2$ | \( ( 1 + 928 T + p^{4} T^{2} )^{4} \) | |
| 67 | $C_2^2$ | \( ( 1 + 33618968 T^{2} + p^{8} T^{4} )^{2} \) | |
| 71 | $C_2^2$ | \( ( 1 - 29257922 T^{2} + p^{8} T^{4} )^{2} \) | |
| 73 | $C_2^2$ | \( ( 1 + 38971298 T^{2} + p^{8} T^{4} )^{2} \) | |
| 79 | $C_2$ | \( ( 1 + 8 T + p^{4} T^{2} )^{4} \) | |
| 83 | $C_2^2$ | \( ( 1 - 75232552 T^{2} + p^{8} T^{4} )^{2} \) | |
| 89 | $C_2^2$ | \( ( 1 - 39222722 T^{2} + p^{8} T^{4} )^{2} \) | |
| 97 | $C_2^2$ | \( ( 1 + 170764898 T^{2} + p^{8} T^{4} )^{2} \) | |
| show more | |||
| show less | |||
Imaginary part of the first few zeros on the critical line
−10.25949964943031990456708898712, −9.863971345531952065343425164016, −9.369103140582373527845874025808, −9.290404020332520169555084294406, −8.674978203427884348229391751629, −8.194938513935151130105712395360, −8.131128173456404989091139422749, −7.968936007023284562318892157503, −7.21248292970861316165984481824, −7.06132179658095188282352393732, −6.82944989024557793775279229477, −6.68107233291403665662742846401, −6.10577109875096889924542365741, −6.00656225657649521388237613816, −5.83908078730190760662338582089, −4.83301708454504493064409526956, −4.53526844587481686923438187718, −4.39555455396191878173550644546, −3.57009961599535403304284743719, −3.17000569511315101721430677944, −2.74068181530285147226818461064, −2.09357639942449417823164059186, −1.74114622374841319534927830500, −1.73793635366936271801659769751, −0.46398618199337959240624110096, 0.46398618199337959240624110096, 1.73793635366936271801659769751, 1.74114622374841319534927830500, 2.09357639942449417823164059186, 2.74068181530285147226818461064, 3.17000569511315101721430677944, 3.57009961599535403304284743719, 4.39555455396191878173550644546, 4.53526844587481686923438187718, 4.83301708454504493064409526956, 5.83908078730190760662338582089, 6.00656225657649521388237613816, 6.10577109875096889924542365741, 6.68107233291403665662742846401, 6.82944989024557793775279229477, 7.06132179658095188282352393732, 7.21248292970861316165984481824, 7.968936007023284562318892157503, 8.131128173456404989091139422749, 8.194938513935151130105712395360, 8.674978203427884348229391751629, 9.290404020332520169555084294406, 9.369103140582373527845874025808, 9.863971345531952065343425164016, 10.25949964943031990456708898712