Properties

Label 75.5.c.h.26.3
Level $75$
Weight $5$
Character 75.26
Analytic conductor $7.753$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,5,Mod(26,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.26"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.75274723129\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-10}, \sqrt{26})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.3
Root \(-2.54951 + 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 75.26
Dual form 75.5.c.h.26.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.16228i q^{2} +(-7.64853 - 4.74342i) q^{3} +6.00000 q^{4} +(15.0000 - 24.1868i) q^{6} -15.2971 q^{7} +69.5701i q^{8} +(36.0000 + 72.5603i) q^{9} +96.7471i q^{11} +(-45.8912 - 28.4605i) q^{12} -244.753 q^{13} -48.3735i q^{14} -124.000 q^{16} +278.280i q^{17} +(-229.456 + 113.842i) q^{18} -308.000 q^{19} +(117.000 + 72.5603i) q^{21} -305.941 q^{22} +414.258i q^{23} +(330.000 - 532.109i) q^{24} -773.977i q^{26} +(68.8368 - 725.743i) q^{27} -91.7824 q^{28} +193.494i q^{29} +32.0000 q^{31} +720.999i q^{32} +(458.912 - 739.973i) q^{33} -880.000 q^{34} +(216.000 + 435.362i) q^{36} +1284.95 q^{37} -973.982i q^{38} +(1872.00 + 1160.97i) q^{39} +2080.06i q^{41} +(-229.456 + 369.986i) q^{42} +2585.20 q^{43} +580.483i q^{44} -1310.00 q^{46} -2444.44i q^{47} +(948.418 + 588.184i) q^{48} -2167.00 q^{49} +(1320.00 - 2128.44i) q^{51} -1468.52 q^{52} -1416.70i q^{53} +(2295.00 + 217.681i) q^{54} -1064.22i q^{56} +(2355.75 + 1460.97i) q^{57} -611.882 q^{58} -3966.63i q^{59} -928.000 q^{61} +101.193i q^{62} +(-550.694 - 1109.96i) q^{63} -4264.00 q^{64} +(2340.00 + 1451.21i) q^{66} +2585.20 q^{67} +1669.68i q^{68} +(1965.00 - 3168.47i) q^{69} -4643.86i q^{71} +(-5048.03 + 2504.52i) q^{72} -4221.99 q^{73} +4063.38i q^{74} -1848.00 q^{76} -1479.95i q^{77} +(-3671.29 + 5919.78i) q^{78} -8.00000 q^{79} +(-3969.00 + 5224.34i) q^{81} -6577.74 q^{82} +4436.68i q^{83} +(702.000 + 435.362i) q^{84} +8175.13i q^{86} +(917.824 - 1479.95i) q^{87} -6730.71 q^{88} +9287.72i q^{89} +3744.00 q^{91} +2485.55i q^{92} +(-244.753 - 151.789i) q^{93} +7730.00 q^{94} +(3420.00 - 5514.58i) q^{96} +2508.72 q^{97} -6852.66i q^{98} +(-7020.00 + 3482.90i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{4} + 60 q^{6} + 144 q^{9} - 496 q^{16} - 1232 q^{19} + 468 q^{21} + 1320 q^{24} + 128 q^{31} - 3520 q^{34} + 864 q^{36} + 7488 q^{39} - 5240 q^{46} - 8668 q^{49} + 5280 q^{51} + 9180 q^{54}+ \cdots - 28080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.16228i 0.790569i 0.918559 + 0.395285i \(0.129354\pi\)
−0.918559 + 0.395285i \(0.870646\pi\)
\(3\) −7.64853 4.74342i −0.849837 0.527046i
\(4\) 6.00000 0.375000
\(5\) 0 0
\(6\) 15.0000 24.1868i 0.416667 0.671855i
\(7\) −15.2971 −0.312185 −0.156092 0.987742i \(-0.549890\pi\)
−0.156092 + 0.987742i \(0.549890\pi\)
\(8\) 69.5701i 1.08703i
\(9\) 36.0000 + 72.5603i 0.444444 + 0.895806i
\(10\) 0 0
\(11\) 96.7471i 0.799563i 0.916611 + 0.399781i \(0.130914\pi\)
−0.916611 + 0.399781i \(0.869086\pi\)
\(12\) −45.8912 28.4605i −0.318689 0.197642i
\(13\) −244.753 −1.44824 −0.724121 0.689673i \(-0.757754\pi\)
−0.724121 + 0.689673i \(0.757754\pi\)
\(14\) 48.3735i 0.246804i
\(15\) 0 0
\(16\) −124.000 −0.484375
\(17\) 278.280i 0.962908i 0.876471 + 0.481454i \(0.159891\pi\)
−0.876471 + 0.481454i \(0.840109\pi\)
\(18\) −229.456 + 113.842i −0.708197 + 0.351364i
\(19\) −308.000 −0.853186 −0.426593 0.904444i \(-0.640286\pi\)
−0.426593 + 0.904444i \(0.640286\pi\)
\(20\) 0 0
\(21\) 117.000 + 72.5603i 0.265306 + 0.164536i
\(22\) −305.941 −0.632110
\(23\) 414.258i 0.783097i 0.920157 + 0.391549i \(0.128060\pi\)
−0.920157 + 0.391549i \(0.871940\pi\)
\(24\) 330.000 532.109i 0.572917 0.923800i
\(25\) 0 0
\(26\) 773.977i 1.14494i
\(27\) 68.8368 725.743i 0.0944263 0.995532i
\(28\) −91.7824 −0.117069
\(29\) 193.494i 0.230076i 0.993361 + 0.115038i \(0.0366990\pi\)
−0.993361 + 0.115038i \(0.963301\pi\)
\(30\) 0 0
\(31\) 32.0000 0.0332986 0.0166493 0.999861i \(-0.494700\pi\)
0.0166493 + 0.999861i \(0.494700\pi\)
\(32\) 720.999i 0.704101i
\(33\) 458.912 739.973i 0.421407 0.679498i
\(34\) −880.000 −0.761246
\(35\) 0 0
\(36\) 216.000 + 435.362i 0.166667 + 0.335927i
\(37\) 1284.95 0.938607 0.469303 0.883037i \(-0.344505\pi\)
0.469303 + 0.883037i \(0.344505\pi\)
\(38\) 973.982i 0.674502i
\(39\) 1872.00 + 1160.97i 1.23077 + 0.763291i
\(40\) 0 0
\(41\) 2080.06i 1.23740i 0.785629 + 0.618698i \(0.212340\pi\)
−0.785629 + 0.618698i \(0.787660\pi\)
\(42\) −229.456 + 369.986i −0.130077 + 0.209743i
\(43\) 2585.20 1.39816 0.699081 0.715042i \(-0.253593\pi\)
0.699081 + 0.715042i \(0.253593\pi\)
\(44\) 580.483i 0.299836i
\(45\) 0 0
\(46\) −1310.00 −0.619093
\(47\) 2444.44i 1.10658i −0.832988 0.553291i \(-0.813372\pi\)
0.832988 0.553291i \(-0.186628\pi\)
\(48\) 948.418 + 588.184i 0.411640 + 0.255288i
\(49\) −2167.00 −0.902541
\(50\) 0 0
\(51\) 1320.00 2128.44i 0.507497 0.818315i
\(52\) −1468.52 −0.543091
\(53\) 1416.70i 0.504343i −0.967683 0.252172i \(-0.918855\pi\)
0.967683 0.252172i \(-0.0811448\pi\)
\(54\) 2295.00 + 217.681i 0.787037 + 0.0746505i
\(55\) 0 0
\(56\) 1064.22i 0.339355i
\(57\) 2355.75 + 1460.97i 0.725068 + 0.449668i
\(58\) −611.882 −0.181891
\(59\) 3966.63i 1.13951i −0.821815 0.569754i \(-0.807038\pi\)
0.821815 0.569754i \(-0.192962\pi\)
\(60\) 0 0
\(61\) −928.000 −0.249395 −0.124698 0.992195i \(-0.539796\pi\)
−0.124698 + 0.992195i \(0.539796\pi\)
\(62\) 101.193i 0.0263249i
\(63\) −550.694 1109.96i −0.138749 0.279657i
\(64\) −4264.00 −1.04102
\(65\) 0 0
\(66\) 2340.00 + 1451.21i 0.537190 + 0.333151i
\(67\) 2585.20 0.575897 0.287949 0.957646i \(-0.407027\pi\)
0.287949 + 0.957646i \(0.407027\pi\)
\(68\) 1669.68i 0.361091i
\(69\) 1965.00 3168.47i 0.412728 0.665505i
\(70\) 0 0
\(71\) 4643.86i 0.921218i −0.887603 0.460609i \(-0.847631\pi\)
0.887603 0.460609i \(-0.152369\pi\)
\(72\) −5048.03 + 2504.52i −0.973771 + 0.483126i
\(73\) −4221.99 −0.792266 −0.396133 0.918193i \(-0.629648\pi\)
−0.396133 + 0.918193i \(0.629648\pi\)
\(74\) 4063.38i 0.742034i
\(75\) 0 0
\(76\) −1848.00 −0.319945
\(77\) 1479.95i 0.249611i
\(78\) −3671.29 + 5919.78i −0.603434 + 0.973009i
\(79\) −8.00000 −0.00128185 −0.000640923 1.00000i \(-0.500204\pi\)
−0.000640923 1.00000i \(0.500204\pi\)
\(80\) 0 0
\(81\) −3969.00 + 5224.34i −0.604938 + 0.796272i
\(82\) −6577.74 −0.978247
\(83\) 4436.68i 0.644023i 0.946736 + 0.322012i \(0.104359\pi\)
−0.946736 + 0.322012i \(0.895641\pi\)
\(84\) 702.000 + 435.362i 0.0994898 + 0.0617010i
\(85\) 0 0
\(86\) 8175.13i 1.10534i
\(87\) 917.824 1479.95i 0.121261 0.195527i
\(88\) −6730.71 −0.869151
\(89\) 9287.72i 1.17254i 0.810114 + 0.586272i \(0.199405\pi\)
−0.810114 + 0.586272i \(0.800595\pi\)
\(90\) 0 0
\(91\) 3744.00 0.452119
\(92\) 2485.55i 0.293661i
\(93\) −244.753 151.789i −0.0282984 0.0175499i
\(94\) 7730.00 0.874830
\(95\) 0 0
\(96\) 3420.00 5514.58i 0.371094 0.598371i
\(97\) 2508.72 0.266630 0.133315 0.991074i \(-0.457438\pi\)
0.133315 + 0.991074i \(0.457438\pi\)
\(98\) 6852.66i 0.713521i
\(99\) −7020.00 + 3482.90i −0.716253 + 0.355361i
\(100\) 0 0
\(101\) 4837.35i 0.474204i −0.971485 0.237102i \(-0.923802\pi\)
0.971485 0.237102i \(-0.0761976\pi\)
\(102\) 6730.71 + 4174.21i 0.646934 + 0.401212i
\(103\) 5491.64 0.517640 0.258820 0.965926i \(-0.416666\pi\)
0.258820 + 0.965926i \(0.416666\pi\)
\(104\) 17027.5i 1.57429i
\(105\) 0 0
\(106\) 4480.00 0.398718
\(107\) 2925.11i 0.255490i 0.991807 + 0.127745i \(0.0407739\pi\)
−0.991807 + 0.127745i \(0.959226\pi\)
\(108\) 413.021 4354.46i 0.0354099 0.373324i
\(109\) 6352.00 0.534635 0.267318 0.963608i \(-0.413863\pi\)
0.267318 + 0.963608i \(0.413863\pi\)
\(110\) 0 0
\(111\) −9828.00 6095.07i −0.797663 0.494689i
\(112\) 1896.84 0.151215
\(113\) 8867.03i 0.694418i 0.937788 + 0.347209i \(0.112871\pi\)
−0.937788 + 0.347209i \(0.887129\pi\)
\(114\) −4620.00 + 7449.53i −0.355494 + 0.573217i
\(115\) 0 0
\(116\) 1160.97i 0.0862786i
\(117\) −8811.11 17759.4i −0.643663 1.29734i
\(118\) 12543.6 0.900861
\(119\) 4256.87i 0.300605i
\(120\) 0 0
\(121\) 5281.00 0.360699
\(122\) 2934.59i 0.197164i
\(123\) 9866.60 15909.4i 0.652165 1.05158i
\(124\) 192.000 0.0124870
\(125\) 0 0
\(126\) 3510.00 1741.45i 0.221088 0.109691i
\(127\) 3808.97 0.236156 0.118078 0.993004i \(-0.462327\pi\)
0.118078 + 0.993004i \(0.462327\pi\)
\(128\) 1947.96i 0.118894i
\(129\) −19773.0 12262.7i −1.18821 0.736896i
\(130\) 0 0
\(131\) 8030.01i 0.467922i 0.972246 + 0.233961i \(0.0751688\pi\)
−0.972246 + 0.233961i \(0.924831\pi\)
\(132\) 2753.47 4439.84i 0.158027 0.254812i
\(133\) 4711.49 0.266352
\(134\) 8175.13i 0.455287i
\(135\) 0 0
\(136\) −19360.0 −1.04671
\(137\) 21263.2i 1.13289i 0.824101 + 0.566443i \(0.191681\pi\)
−0.824101 + 0.566443i \(0.808319\pi\)
\(138\) 10019.6 + 6213.88i 0.526128 + 0.326290i
\(139\) 19372.0 1.00264 0.501320 0.865262i \(-0.332848\pi\)
0.501320 + 0.865262i \(0.332848\pi\)
\(140\) 0 0
\(141\) −11595.0 + 18696.4i −0.583220 + 0.940414i
\(142\) 14685.2 0.728287
\(143\) 23679.1i 1.15796i
\(144\) −4464.00 8997.48i −0.215278 0.433906i
\(145\) 0 0
\(146\) 13351.1i 0.626342i
\(147\) 16574.4 + 10279.0i 0.767012 + 0.475681i
\(148\) 7709.72 0.351978
\(149\) 16205.1i 0.729928i 0.931022 + 0.364964i \(0.118919\pi\)
−0.931022 + 0.364964i \(0.881081\pi\)
\(150\) 0 0
\(151\) 33272.0 1.45923 0.729617 0.683856i \(-0.239698\pi\)
0.729617 + 0.683856i \(0.239698\pi\)
\(152\) 21427.6i 0.927441i
\(153\) −20192.1 + 10018.1i −0.862579 + 0.427959i
\(154\) 4680.00 0.197335
\(155\) 0 0
\(156\) 11232.0 + 6965.79i 0.461538 + 0.286234i
\(157\) −29309.2 −1.18906 −0.594530 0.804073i \(-0.702662\pi\)
−0.594530 + 0.804073i \(0.702662\pi\)
\(158\) 25.2982i 0.00101339i
\(159\) −6720.00 + 10835.7i −0.265812 + 0.428609i
\(160\) 0 0
\(161\) 6336.93i 0.244471i
\(162\) −16520.8 12551.1i −0.629509 0.478246i
\(163\) −12252.9 −0.461174 −0.230587 0.973052i \(-0.574065\pi\)
−0.230587 + 0.973052i \(0.574065\pi\)
\(164\) 12480.4i 0.464023i
\(165\) 0 0
\(166\) −14030.0 −0.509145
\(167\) 2520.34i 0.0903702i −0.998979 0.0451851i \(-0.985612\pi\)
0.998979 0.0451851i \(-0.0143878\pi\)
\(168\) −5048.03 + 8139.70i −0.178856 + 0.288396i
\(169\) 31343.0 1.09741
\(170\) 0 0
\(171\) −11088.0 22348.6i −0.379194 0.764289i
\(172\) 15511.2 0.524311
\(173\) 49318.9i 1.64786i 0.566690 + 0.823931i \(0.308224\pi\)
−0.566690 + 0.823931i \(0.691776\pi\)
\(174\) 4680.00 + 2902.41i 0.154578 + 0.0958651i
\(175\) 0 0
\(176\) 11996.6i 0.387288i
\(177\) −18815.4 + 30338.9i −0.600574 + 0.968396i
\(178\) −29370.4 −0.926977
\(179\) 38021.6i 1.18665i −0.804961 0.593327i \(-0.797814\pi\)
0.804961 0.593327i \(-0.202186\pi\)
\(180\) 0 0
\(181\) 20342.0 0.620921 0.310461 0.950586i \(-0.399517\pi\)
0.310461 + 0.950586i \(0.399517\pi\)
\(182\) 11839.6i 0.357432i
\(183\) 7097.84 + 4401.89i 0.211945 + 0.131443i
\(184\) −28820.0 −0.851252
\(185\) 0 0
\(186\) 480.000 773.977i 0.0138744 0.0223719i
\(187\) −26922.8 −0.769905
\(188\) 14666.6i 0.414968i
\(189\) −1053.00 + 11101.7i −0.0294785 + 0.310790i
\(190\) 0 0
\(191\) 55532.8i 1.52224i 0.648611 + 0.761120i \(0.275350\pi\)
−0.648611 + 0.761120i \(0.724650\pi\)
\(192\) 32613.3 + 20225.9i 0.884693 + 0.548663i
\(193\) −50725.0 −1.36178 −0.680891 0.732384i \(-0.738407\pi\)
−0.680891 + 0.732384i \(0.738407\pi\)
\(194\) 7933.26i 0.210789i
\(195\) 0 0
\(196\) −13002.0 −0.338453
\(197\) 28865.3i 0.743778i −0.928277 0.371889i \(-0.878710\pi\)
0.928277 0.371889i \(-0.121290\pi\)
\(198\) −11013.9 22199.2i −0.280938 0.566248i
\(199\) −34328.0 −0.866847 −0.433423 0.901190i \(-0.642695\pi\)
−0.433423 + 0.901190i \(0.642695\pi\)
\(200\) 0 0
\(201\) −19773.0 12262.7i −0.489419 0.303525i
\(202\) 15297.1 0.374891
\(203\) 2959.89i 0.0718263i
\(204\) 7920.00 12770.6i 0.190311 0.306868i
\(205\) 0 0
\(206\) 17366.1i 0.409230i
\(207\) −30058.7 + 14913.3i −0.701503 + 0.348043i
\(208\) 30349.4 0.701492
\(209\) 29798.1i 0.682175i
\(210\) 0 0
\(211\) −33268.0 −0.747243 −0.373621 0.927581i \(-0.621884\pi\)
−0.373621 + 0.927581i \(0.621884\pi\)
\(212\) 8500.20i 0.189129i
\(213\) −22027.8 + 35518.7i −0.485525 + 0.782885i
\(214\) −9250.00 −0.201983
\(215\) 0 0
\(216\) 50490.0 + 4788.98i 1.08218 + 0.102644i
\(217\) −489.506 −0.0103953
\(218\) 20086.8i 0.422666i
\(219\) 32292.0 + 20026.6i 0.673297 + 0.417561i
\(220\) 0 0
\(221\) 68110.0i 1.39452i
\(222\) 19274.3 31078.9i 0.391086 0.630608i
\(223\) 76011.1 1.52851 0.764253 0.644916i \(-0.223108\pi\)
0.764253 + 0.644916i \(0.223108\pi\)
\(224\) 11029.2i 0.219810i
\(225\) 0 0
\(226\) −28040.0 −0.548986
\(227\) 16788.5i 0.325807i −0.986642 0.162904i \(-0.947914\pi\)
0.986642 0.162904i \(-0.0520860\pi\)
\(228\) 14134.5 + 8765.83i 0.271901 + 0.168626i
\(229\) −40298.0 −0.768445 −0.384222 0.923241i \(-0.625530\pi\)
−0.384222 + 0.923241i \(0.625530\pi\)
\(230\) 0 0
\(231\) −7020.00 + 11319.4i −0.131557 + 0.212129i
\(232\) −13461.4 −0.250101
\(233\) 87253.6i 1.60721i −0.595166 0.803603i \(-0.702914\pi\)
0.595166 0.803603i \(-0.297086\pi\)
\(234\) 56160.0 27863.2i 1.02564 0.508860i
\(235\) 0 0
\(236\) 23799.8i 0.427316i
\(237\) 61.1882 + 37.9473i 0.00108936 + 0.000675592i
\(238\) 13461.4 0.237649
\(239\) 88620.3i 1.55145i 0.631072 + 0.775725i \(0.282615\pi\)
−0.631072 + 0.775725i \(0.717385\pi\)
\(240\) 0 0
\(241\) 72152.0 1.24227 0.621133 0.783706i \(-0.286673\pi\)
0.621133 + 0.783706i \(0.286673\pi\)
\(242\) 16700.0i 0.285158i
\(243\) 55138.2 21131.9i 0.933771 0.357871i
\(244\) −5568.00 −0.0935232
\(245\) 0 0
\(246\) 50310.0 + 31200.9i 0.831350 + 0.515582i
\(247\) 75383.9 1.23562
\(248\) 2226.24i 0.0361967i
\(249\) 21045.0 33934.0i 0.339430 0.547314i
\(250\) 0 0
\(251\) 15963.3i 0.253381i 0.991942 + 0.126691i \(0.0404355\pi\)
−0.991942 + 0.126691i \(0.959564\pi\)
\(252\) −3304.16 6659.76i −0.0520308 0.104871i
\(253\) −40078.3 −0.626135
\(254\) 12045.0i 0.186698i
\(255\) 0 0
\(256\) −62064.0 −0.947021
\(257\) 84938.8i 1.28600i 0.765868 + 0.642998i \(0.222310\pi\)
−0.765868 + 0.642998i \(0.777690\pi\)
\(258\) 38778.0 62527.7i 0.582568 0.939362i
\(259\) −19656.0 −0.293019
\(260\) 0 0
\(261\) −14040.0 + 6965.79i −0.206104 + 0.102256i
\(262\) −25393.1 −0.369925
\(263\) 2849.21i 0.0411920i −0.999788 0.0205960i \(-0.993444\pi\)
0.999788 0.0205960i \(-0.00655638\pi\)
\(264\) 51480.0 + 31926.5i 0.738636 + 0.458083i
\(265\) 0 0
\(266\) 14899.1i 0.210569i
\(267\) 44055.5 71037.4i 0.617985 0.996471i
\(268\) 15511.2 0.215961
\(269\) 3918.26i 0.0541487i 0.999633 + 0.0270744i \(0.00861909\pi\)
−0.999633 + 0.0270744i \(0.991381\pi\)
\(270\) 0 0
\(271\) −67048.0 −0.912951 −0.456475 0.889736i \(-0.650888\pi\)
−0.456475 + 0.889736i \(0.650888\pi\)
\(272\) 34506.8i 0.466409i
\(273\) −28636.1 17759.4i −0.384228 0.238288i
\(274\) −67240.0 −0.895626
\(275\) 0 0
\(276\) 11790.0 19010.8i 0.154773 0.249564i
\(277\) −10340.8 −0.134771 −0.0673853 0.997727i \(-0.521466\pi\)
−0.0673853 + 0.997727i \(0.521466\pi\)
\(278\) 61259.6i 0.792656i
\(279\) 1152.00 + 2321.93i 0.0147994 + 0.0298291i
\(280\) 0 0
\(281\) 22300.2i 0.282420i 0.989980 + 0.141210i \(0.0450994\pi\)
−0.989980 + 0.141210i \(0.954901\pi\)
\(282\) −59123.1 36666.6i −0.743463 0.461076i
\(283\) 117466. 1.46669 0.733347 0.679854i \(-0.237957\pi\)
0.733347 + 0.679854i \(0.237957\pi\)
\(284\) 27863.2i 0.345457i
\(285\) 0 0
\(286\) 74880.0 0.915448
\(287\) 31818.8i 0.386296i
\(288\) −52315.9 + 25956.0i −0.630738 + 0.312934i
\(289\) 6081.00 0.0728080
\(290\) 0 0
\(291\) −19188.0 11899.9i −0.226592 0.140526i
\(292\) −25331.9 −0.297100
\(293\) 57363.7i 0.668193i 0.942539 + 0.334097i \(0.108431\pi\)
−0.942539 + 0.334097i \(0.891569\pi\)
\(294\) −32505.0 + 52412.7i −0.376059 + 0.606376i
\(295\) 0 0
\(296\) 89394.3i 1.02030i
\(297\) 70213.5 + 6659.76i 0.795990 + 0.0754997i
\(298\) −51245.1 −0.577059
\(299\) 101391.i 1.13411i
\(300\) 0 0
\(301\) −39546.0 −0.436485
\(302\) 105215.i 1.15363i
\(303\) −22945.6 + 36998.6i −0.249927 + 0.402996i
\(304\) 38192.0 0.413262
\(305\) 0 0
\(306\) −31680.0 63853.1i −0.338331 0.681929i
\(307\) −10417.3 −0.110530 −0.0552648 0.998472i \(-0.517600\pi\)
−0.0552648 + 0.998472i \(0.517600\pi\)
\(308\) 8879.68i 0.0936043i
\(309\) −42003.0 26049.2i −0.439910 0.272820i
\(310\) 0 0
\(311\) 101971.i 1.05428i −0.849777 0.527142i \(-0.823264\pi\)
0.849777 0.527142i \(-0.176736\pi\)
\(312\) −80768.5 + 130235.i −0.829722 + 1.33789i
\(313\) −182586. −1.86371 −0.931854 0.362832i \(-0.881810\pi\)
−0.931854 + 0.362832i \(0.881810\pi\)
\(314\) 92683.7i 0.940035i
\(315\) 0 0
\(316\) −48.0000 −0.000480692
\(317\) 33494.8i 0.333319i −0.986015 0.166659i \(-0.946702\pi\)
0.986015 0.166659i \(-0.0532980\pi\)
\(318\) −34265.4 21250.5i −0.338845 0.210143i
\(319\) −18720.0 −0.183960
\(320\) 0 0
\(321\) 13875.0 22372.8i 0.134655 0.217125i
\(322\) 20039.1 0.193271
\(323\) 85710.4i 0.821539i
\(324\) −23814.0 + 31346.1i −0.226852 + 0.298602i
\(325\) 0 0
\(326\) 38747.2i 0.364590i
\(327\) −48583.5 30130.2i −0.454352 0.281777i
\(328\) −144710. −1.34509
\(329\) 37392.8i 0.345458i
\(330\) 0 0
\(331\) 204092. 1.86282 0.931408 0.363977i \(-0.118581\pi\)
0.931408 + 0.363977i \(0.118581\pi\)
\(332\) 26620.1i 0.241509i
\(333\) 46258.3 + 93236.6i 0.417159 + 0.840810i
\(334\) 7970.00 0.0714439
\(335\) 0 0
\(336\) −14508.0 8997.48i −0.128508 0.0796971i
\(337\) −44912.2 −0.395461 −0.197731 0.980256i \(-0.563357\pi\)
−0.197731 + 0.980256i \(0.563357\pi\)
\(338\) 99115.3i 0.867575i
\(339\) 42060.0 67819.7i 0.365991 0.590142i
\(340\) 0 0
\(341\) 3095.91i 0.0266244i
\(342\) 70672.4 35063.3i 0.604224 0.299779i
\(343\) 69877.0 0.593944
\(344\) 179853.i 1.51985i
\(345\) 0 0
\(346\) −155960. −1.30275
\(347\) 135260.i 1.12334i −0.827362 0.561669i \(-0.810159\pi\)
0.827362 0.561669i \(-0.189841\pi\)
\(348\) 5506.94 8879.68i 0.0454728 0.0733227i
\(349\) 228682. 1.87751 0.938753 0.344592i \(-0.111983\pi\)
0.938753 + 0.344592i \(0.111983\pi\)
\(350\) 0 0
\(351\) −16848.0 + 177628.i −0.136752 + 1.44177i
\(352\) −69754.6 −0.562973
\(353\) 106923.i 0.858067i 0.903288 + 0.429034i \(0.141146\pi\)
−0.903288 + 0.429034i \(0.858854\pi\)
\(354\) −95940.0 59499.5i −0.765585 0.474795i
\(355\) 0 0
\(356\) 55726.3i 0.439704i
\(357\) −20192.1 + 32558.8i −0.158433 + 0.255465i
\(358\) 120235. 0.938133
\(359\) 176467.i 1.36922i 0.728909 + 0.684611i \(0.240028\pi\)
−0.728909 + 0.684611i \(0.759972\pi\)
\(360\) 0 0
\(361\) −35457.0 −0.272074
\(362\) 64327.1i 0.490881i
\(363\) −40391.9 25050.0i −0.306536 0.190105i
\(364\) 22464.0 0.169545
\(365\) 0 0
\(366\) −13920.0 + 22445.3i −0.103915 + 0.167557i
\(367\) 178042. 1.32188 0.660939 0.750440i \(-0.270158\pi\)
0.660939 + 0.750440i \(0.270158\pi\)
\(368\) 51368.0i 0.379313i
\(369\) −150930. + 74882.2i −1.10847 + 0.549954i
\(370\) 0 0
\(371\) 21671.3i 0.157448i
\(372\) −1468.52 910.736i −0.0106119 0.00658122i
\(373\) 77770.2 0.558979 0.279490 0.960149i \(-0.409835\pi\)
0.279490 + 0.960149i \(0.409835\pi\)
\(374\) 85137.4i 0.608664i
\(375\) 0 0
\(376\) 170060. 1.20289
\(377\) 47358.3i 0.333206i
\(378\) −35106.7 3329.88i −0.245701 0.0233048i
\(379\) 12292.0 0.0855745 0.0427872 0.999084i \(-0.486376\pi\)
0.0427872 + 0.999084i \(0.486376\pi\)
\(380\) 0 0
\(381\) −29133.0 18067.5i −0.200694 0.124465i
\(382\) −175610. −1.20344
\(383\) 246111.i 1.67777i −0.544308 0.838886i \(-0.683208\pi\)
0.544308 0.838886i \(-0.316792\pi\)
\(384\) −9240.00 + 14899.1i −0.0626628 + 0.101041i
\(385\) 0 0
\(386\) 160407.i 1.07658i
\(387\) 93067.3 + 187583.i 0.621406 + 1.25248i
\(388\) 15052.3 0.0999861
\(389\) 99794.6i 0.659490i −0.944070 0.329745i \(-0.893037\pi\)
0.944070 0.329745i \(-0.106963\pi\)
\(390\) 0 0
\(391\) −115280. −0.754051
\(392\) 150758.i 0.981091i
\(393\) 38089.7 61417.8i 0.246617 0.397657i
\(394\) 91280.0 0.588008
\(395\) 0 0
\(396\) −42120.0 + 20897.4i −0.268595 + 0.133260i
\(397\) 143548. 0.910783 0.455391 0.890291i \(-0.349499\pi\)
0.455391 + 0.890291i \(0.349499\pi\)
\(398\) 108555.i 0.685303i
\(399\) −36036.0 22348.6i −0.226355 0.140380i
\(400\) 0 0
\(401\) 245738.i 1.52821i 0.645092 + 0.764105i \(0.276819\pi\)
−0.645092 + 0.764105i \(0.723181\pi\)
\(402\) 38778.0 62527.7i 0.239957 0.386919i
\(403\) −7832.09 −0.0482245
\(404\) 29024.1i 0.177826i
\(405\) 0 0
\(406\) 9360.00 0.0567837
\(407\) 124315.i 0.750475i
\(408\) 148076. + 91832.5i 0.889535 + 0.551666i
\(409\) −34808.0 −0.208081 −0.104041 0.994573i \(-0.533177\pi\)
−0.104041 + 0.994573i \(0.533177\pi\)
\(410\) 0 0
\(411\) 100860. 162632.i 0.597084 0.962769i
\(412\) 32949.9 0.194115
\(413\) 60677.8i 0.355737i
\(414\) −47160.0 95054.0i −0.275152 0.554587i
\(415\) 0 0
\(416\) 176467.i 1.01971i
\(417\) −148167. 91889.5i −0.852080 0.528437i
\(418\) 94229.9 0.539307
\(419\) 219326.i 1.24928i −0.780911 0.624642i \(-0.785245\pi\)
0.780911 0.624642i \(-0.214755\pi\)
\(420\) 0 0
\(421\) 168992. 0.953459 0.476729 0.879050i \(-0.341822\pi\)
0.476729 + 0.879050i \(0.341822\pi\)
\(422\) 105203.i 0.590747i
\(423\) 177369. 87999.9i 0.991284 0.491814i
\(424\) 98560.0 0.548238
\(425\) 0 0
\(426\) −112320. 69657.9i −0.618925 0.383841i
\(427\) 14195.7 0.0778574
\(428\) 17550.6i 0.0958088i
\(429\) −112320. + 181111.i −0.610299 + 0.984077i
\(430\) 0 0
\(431\) 154989.i 0.834345i −0.908827 0.417173i \(-0.863021\pi\)
0.908827 0.417173i \(-0.136979\pi\)
\(432\) −8535.76 + 89992.1i −0.0457377 + 0.482211i
\(433\) 153644. 0.819481 0.409740 0.912202i \(-0.365619\pi\)
0.409740 + 0.912202i \(0.365619\pi\)
\(434\) 1547.95i 0.00821823i
\(435\) 0 0
\(436\) 38112.0 0.200488
\(437\) 127592.i 0.668127i
\(438\) −63329.8 + 102116.i −0.330111 + 0.532288i
\(439\) −65168.0 −0.338147 −0.169073 0.985603i \(-0.554078\pi\)
−0.169073 + 0.985603i \(0.554078\pi\)
\(440\) 0 0
\(441\) −78012.0 157238.i −0.401129 0.808502i
\(442\) 215383. 1.10247
\(443\) 116514.i 0.593706i 0.954923 + 0.296853i \(0.0959371\pi\)
−0.954923 + 0.296853i \(0.904063\pi\)
\(444\) −58968.0 36570.4i −0.299123 0.185508i
\(445\) 0 0
\(446\) 240368.i 1.20839i
\(447\) 76867.7 123945.i 0.384706 0.620320i
\(448\) 65226.7 0.324989
\(449\) 79090.7i 0.392313i 0.980573 + 0.196157i \(0.0628461\pi\)
−0.980573 + 0.196157i \(0.937154\pi\)
\(450\) 0 0
\(451\) −201240. −0.989376
\(452\) 53202.2i 0.260407i
\(453\) −254482. 157823.i −1.24011 0.769084i
\(454\) 53090.0 0.257573
\(455\) 0 0
\(456\) −101640. + 163890.i −0.488804 + 0.788173i
\(457\) −389402. −1.86451 −0.932257 0.361797i \(-0.882164\pi\)
−0.932257 + 0.361797i \(0.882164\pi\)
\(458\) 127433.i 0.607509i
\(459\) 201960. + 19155.9i 0.958606 + 0.0909238i
\(460\) 0 0
\(461\) 236643.i 1.11351i 0.830678 + 0.556753i \(0.187953\pi\)
−0.830678 + 0.556753i \(0.812047\pi\)
\(462\) −35795.1 22199.2i −0.167703 0.104005i
\(463\) −253793. −1.18391 −0.591955 0.805971i \(-0.701644\pi\)
−0.591955 + 0.805971i \(0.701644\pi\)
\(464\) 23993.3i 0.111443i
\(465\) 0 0
\(466\) 275920. 1.27061
\(467\) 365853.i 1.67754i 0.544485 + 0.838771i \(0.316725\pi\)
−0.544485 + 0.838771i \(0.683275\pi\)
\(468\) −52866.6 106556.i −0.241374 0.486504i
\(469\) −39546.0 −0.179786
\(470\) 0 0
\(471\) 224172. + 139026.i 1.01051 + 0.626690i
\(472\) 275959. 1.23868
\(473\) 250111.i 1.11792i
\(474\) −120.000 + 193.494i −0.000534102 + 0.000861214i
\(475\) 0 0
\(476\) 25541.2i 0.112727i
\(477\) 102796. 51001.2i 0.451794 0.224153i
\(478\) −280242. −1.22653
\(479\) 255606.i 1.11404i 0.830500 + 0.557019i \(0.188055\pi\)
−0.830500 + 0.557019i \(0.811945\pi\)
\(480\) 0 0
\(481\) −314496. −1.35933
\(482\) 228165.i 0.982097i
\(483\) −30058.7 + 48468.2i −0.128848 + 0.207760i
\(484\) 31686.0 0.135262
\(485\) 0 0
\(486\) 66825.0 + 174362.i 0.282922 + 0.738211i
\(487\) −445925. −1.88020 −0.940099 0.340902i \(-0.889267\pi\)
−0.940099 + 0.340902i \(0.889267\pi\)
\(488\) 64561.1i 0.271101i
\(489\) 93717.0 + 58120.8i 0.391923 + 0.243060i
\(490\) 0 0
\(491\) 229387.i 0.951495i −0.879582 0.475747i \(-0.842178\pi\)
0.879582 0.475747i \(-0.157822\pi\)
\(492\) 59199.6 95456.5i 0.244562 0.394344i
\(493\) −53845.6 −0.221542
\(494\) 238385.i 0.976843i
\(495\) 0 0
\(496\) −3968.00 −0.0161290
\(497\) 71037.4i 0.287590i
\(498\) 107309. + 66550.1i 0.432690 + 0.268343i
\(499\) −157748. −0.633524 −0.316762 0.948505i \(-0.602596\pi\)
−0.316762 + 0.948505i \(0.602596\pi\)
\(500\) 0 0
\(501\) −11955.0 + 19276.9i −0.0476293 + 0.0767999i
\(502\) −50480.3 −0.200315
\(503\) 499630.i 1.97475i 0.158390 + 0.987377i \(0.449370\pi\)
−0.158390 + 0.987377i \(0.550630\pi\)
\(504\) 77220.0 38311.8i 0.303997 0.150825i
\(505\) 0 0
\(506\) 126739.i 0.495003i
\(507\) −239728. 148673.i −0.932615 0.578384i
\(508\) 22853.8 0.0885587
\(509\) 153441.i 0.592251i −0.955149 0.296125i \(-0.904305\pi\)
0.955149 0.296125i \(-0.0956946\pi\)
\(510\) 0 0
\(511\) 64584.0 0.247334
\(512\) 227431.i 0.867580i
\(513\) −21201.7 + 223529.i −0.0805631 + 0.849373i
\(514\) −268600. −1.01667
\(515\) 0 0
\(516\) −118638. 73576.2i −0.445579 0.276336i
\(517\) 236493. 0.884782
\(518\) 62157.7i 0.231652i
\(519\) 233940. 377217.i 0.868500 1.40041i
\(520\) 0 0
\(521\) 242642.i 0.893902i −0.894558 0.446951i \(-0.852510\pi\)
0.894558 0.446951i \(-0.147490\pi\)
\(522\) −22027.8 44398.4i −0.0808406 0.162939i
\(523\) −133865. −0.489398 −0.244699 0.969599i \(-0.578689\pi\)
−0.244699 + 0.969599i \(0.578689\pi\)
\(524\) 48180.1i 0.175471i
\(525\) 0 0
\(526\) 9010.00 0.0325652
\(527\) 8904.97i 0.0320635i
\(528\) −56905.1 + 91756.6i −0.204119 + 0.329132i
\(529\) 108231. 0.386759
\(530\) 0 0
\(531\) 287820. 142799.i 1.02078 0.506448i
\(532\) 28269.0 0.0998819
\(533\) 509101.i 1.79205i
\(534\) 224640. + 139316.i 0.787779 + 0.488560i
\(535\) 0 0
\(536\) 179853.i 0.626019i
\(537\) −180352. + 290809.i −0.625422 + 1.00846i
\(538\) −12390.6 −0.0428083
\(539\) 209651.i 0.721638i
\(540\) 0 0
\(541\) −195478. −0.667888 −0.333944 0.942593i \(-0.608380\pi\)
−0.333944 + 0.942593i \(0.608380\pi\)
\(542\) 212024.i 0.721751i
\(543\) −155586. 96490.6i −0.527682 0.327254i
\(544\) −200640. −0.677984
\(545\) 0 0
\(546\) 56160.0 90555.3i 0.188383 0.303759i
\(547\) 143165. 0.478479 0.239239 0.970961i \(-0.423102\pi\)
0.239239 + 0.970961i \(0.423102\pi\)
\(548\) 127579.i 0.424833i
\(549\) −33408.0 67336.0i −0.110842 0.223410i
\(550\) 0 0
\(551\) 59596.2i 0.196298i
\(552\) 220431. + 136705.i 0.723425 + 0.448649i
\(553\) 122.376 0.000400173
\(554\) 32700.5i 0.106545i
\(555\) 0 0
\(556\) 116232. 0.375990
\(557\) 401799.i 1.29509i 0.762029 + 0.647543i \(0.224203\pi\)
−0.762029 + 0.647543i \(0.775797\pi\)
\(558\) −7342.59 + 3642.94i −0.0235820 + 0.0117000i
\(559\) −632736. −2.02488
\(560\) 0 0
\(561\) 205920. + 127706.i 0.654294 + 0.405776i
\(562\) −70519.4 −0.223273
\(563\) 126178.i 0.398077i −0.979992 0.199038i \(-0.936218\pi\)
0.979992 0.199038i \(-0.0637819\pi\)
\(564\) −69570.0 + 112178.i −0.218708 + 0.352655i
\(565\) 0 0
\(566\) 371460.i 1.15952i
\(567\) 60714.0 79917.1i 0.188853 0.248584i
\(568\) 323074. 1.00139
\(569\) 355497.i 1.09802i −0.835815 0.549012i \(-0.815004\pi\)
0.835815 0.549012i \(-0.184996\pi\)
\(570\) 0 0
\(571\) −454108. −1.39279 −0.696397 0.717657i \(-0.745215\pi\)
−0.696397 + 0.717657i \(0.745215\pi\)
\(572\) 142075.i 0.434235i
\(573\) 263415. 424744.i 0.802291 1.29366i
\(574\) 100620. 0.305394
\(575\) 0 0
\(576\) −153504. 309397.i −0.462674 0.932548i
\(577\) 103163. 0.309866 0.154933 0.987925i \(-0.450484\pi\)
0.154933 + 0.987925i \(0.450484\pi\)
\(578\) 19229.8i 0.0575598i
\(579\) 387972. + 240610.i 1.15729 + 0.717723i
\(580\) 0 0
\(581\) 67868.1i 0.201054i
\(582\) 37630.8 60677.8i 0.111096 0.179136i
\(583\) 137062. 0.403254
\(584\) 293724.i 0.861220i
\(585\) 0 0
\(586\) −181400. −0.528253
\(587\) 474661.i 1.37755i −0.724975 0.688775i \(-0.758149\pi\)
0.724975 0.688775i \(-0.241851\pi\)
\(588\) 99446.2 + 61673.9i 0.287630 + 0.178380i
\(589\) −9856.00 −0.0284099
\(590\) 0 0
\(591\) −136920. + 220777.i −0.392005 + 0.632090i
\(592\) −159334. −0.454638
\(593\) 173103.i 0.492261i 0.969237 + 0.246130i \(0.0791592\pi\)
−0.969237 + 0.246130i \(0.920841\pi\)
\(594\) −21060.0 + 222035.i −0.0596878 + 0.629285i
\(595\) 0 0
\(596\) 97230.8i 0.273723i
\(597\) 262559. + 162832.i 0.736678 + 0.456868i
\(598\) 320626. 0.896596
\(599\) 587255.i 1.63671i 0.574710 + 0.818357i \(0.305115\pi\)
−0.574710 + 0.818357i \(0.694885\pi\)
\(600\) 0 0
\(601\) 475352. 1.31603 0.658016 0.753004i \(-0.271396\pi\)
0.658016 + 0.753004i \(0.271396\pi\)
\(602\) 125055.i 0.345072i
\(603\) 93067.3 + 187583.i 0.255954 + 0.515892i
\(604\) 199632. 0.547213
\(605\) 0 0
\(606\) −117000. 72560.3i −0.318596 0.197585i
\(607\) −311310. −0.844921 −0.422461 0.906381i \(-0.638834\pi\)
−0.422461 + 0.906381i \(0.638834\pi\)
\(608\) 222068.i 0.600729i
\(609\) −14040.0 + 22638.8i −0.0378558 + 0.0610407i
\(610\) 0 0
\(611\) 598284.i 1.60260i
\(612\) −121153. + 60108.6i −0.323467 + 0.160485i
\(613\) 224316. 0.596952 0.298476 0.954417i \(-0.403522\pi\)
0.298476 + 0.954417i \(0.403522\pi\)
\(614\) 32942.4i 0.0873813i
\(615\) 0 0
\(616\) 102960. 0.271336
\(617\) 200463.i 0.526580i −0.964717 0.263290i \(-0.915192\pi\)
0.964717 0.263290i \(-0.0848076\pi\)
\(618\) 82374.7 132825.i 0.215683 0.347779i
\(619\) −22508.0 −0.0587429 −0.0293715 0.999569i \(-0.509351\pi\)
−0.0293715 + 0.999569i \(0.509351\pi\)
\(620\) 0 0
\(621\) 300645. + 28516.2i 0.779598 + 0.0739450i
\(622\) 322462. 0.833485
\(623\) 142075.i 0.366050i
\(624\) −232128. 143960.i −0.596154 0.369719i
\(625\) 0 0
\(626\) 577387.i 1.47339i
\(627\) −141345. + 227912.i −0.359538 + 0.579738i
\(628\) −175855. −0.445898
\(629\) 357577.i 0.903792i
\(630\) 0 0
\(631\) −157408. −0.395338 −0.197669 0.980269i \(-0.563337\pi\)
−0.197669 + 0.980269i \(0.563337\pi\)
\(632\) 556.561i 0.00139341i
\(633\) 254451. + 157804.i 0.635034 + 0.393832i
\(634\) 105920. 0.263511
\(635\) 0 0
\(636\) −40320.0 + 65014.0i −0.0996796 + 0.160729i
\(637\) 530380. 1.30710
\(638\) 59197.8i 0.145434i
\(639\) 336960. 167179.i 0.825233 0.409430i
\(640\) 0 0
\(641\) 297836.i 0.724871i −0.932009 0.362436i \(-0.881945\pi\)
0.932009 0.362436i \(-0.118055\pi\)
\(642\) 70748.9 + 43876.6i 0.171652 + 0.106454i
\(643\) −130805. −0.316376 −0.158188 0.987409i \(-0.550565\pi\)
−0.158188 + 0.987409i \(0.550565\pi\)
\(644\) 38021.6i 0.0916767i
\(645\) 0 0
\(646\) 271040. 0.649484
\(647\) 117520.i 0.280739i −0.990099 0.140369i \(-0.955171\pi\)
0.990099 0.140369i \(-0.0448290\pi\)
\(648\) −363458. 276124.i −0.865574 0.657588i
\(649\) 383760. 0.911109
\(650\) 0 0
\(651\) 3744.00 + 2321.93i 0.00883433 + 0.00547882i
\(652\) −73517.7 −0.172940
\(653\) 640829.i 1.50285i −0.659818 0.751426i \(-0.729367\pi\)
0.659818 0.751426i \(-0.270633\pi\)
\(654\) 95280.0 153634.i 0.222765 0.359197i
\(655\) 0 0
\(656\) 257928.i 0.599364i
\(657\) −151992. 306349.i −0.352118 0.709717i
\(658\) −118246. −0.273109
\(659\) 121805.i 0.280474i 0.990118 + 0.140237i \(0.0447865\pi\)
−0.990118 + 0.140237i \(0.955214\pi\)
\(660\) 0 0
\(661\) 5072.00 0.0116085 0.00580425 0.999983i \(-0.498152\pi\)
0.00580425 + 0.999983i \(0.498152\pi\)
\(662\) 645396.i 1.47269i
\(663\) −323074. + 520941.i −0.734979 + 1.18512i
\(664\) −308660. −0.700074
\(665\) 0 0
\(666\) −294840. + 146282.i −0.664719 + 0.329793i
\(667\) −80156.6 −0.180172
\(668\) 15122.0i 0.0338888i
\(669\) −581373. 360552.i −1.29898 0.805593i
\(670\) 0 0
\(671\) 89781.3i 0.199407i
\(672\) −52315.9 + 84356.9i −0.115850 + 0.186802i
\(673\) 181790. 0.401366 0.200683 0.979656i \(-0.435684\pi\)
0.200683 + 0.979656i \(0.435684\pi\)
\(674\) 142025.i 0.312640i
\(675\) 0 0
\(676\) 188058. 0.411527
\(677\) 304666.i 0.664733i −0.943150 0.332367i \(-0.892153\pi\)
0.943150 0.332367i \(-0.107847\pi\)
\(678\) 214465. + 133005.i 0.466548 + 0.289341i
\(679\) −38376.0 −0.0832377
\(680\) 0 0
\(681\) −79635.0 + 128408.i −0.171716 + 0.276883i
\(682\) −9790.12 −0.0210484
\(683\) 627816.i 1.34583i 0.739718 + 0.672917i \(0.234959\pi\)
−0.739718 + 0.672917i \(0.765041\pi\)
\(684\) −66528.0 134091.i −0.142198 0.286608i
\(685\) 0 0
\(686\) 220970.i 0.469554i
\(687\) 308220. + 191150.i 0.653052 + 0.405006i
\(688\) −320565. −0.677235
\(689\) 346742.i 0.730411i
\(690\) 0 0
\(691\) −17308.0 −0.0362486 −0.0181243 0.999836i \(-0.505769\pi\)
−0.0181243 + 0.999836i \(0.505769\pi\)
\(692\) 295913.i 0.617949i
\(693\) 107385. 53278.1i 0.223603 0.110938i
\(694\) 427730. 0.888077
\(695\) 0 0
\(696\) 102960. + 63853.1i 0.212545 + 0.131815i
\(697\) −578841. −1.19150
\(698\) 723156.i 1.48430i
\(699\) −413880. + 667361.i −0.847072 + 1.36586i
\(700\) 0 0
\(701\) 23944.9i 0.0487278i 0.999703 + 0.0243639i \(0.00775604\pi\)
−0.999703 + 0.0243639i \(0.992244\pi\)
\(702\) −561708. 53278.1i −1.13982 0.108112i
\(703\) −395765. −0.800806
\(704\) 412530.i 0.832357i
\(705\) 0 0
\(706\) −338120. −0.678362
\(707\) 73997.3i 0.148039i
\(708\) −112892. + 182033.i −0.225215 + 0.363149i
\(709\) 381322. 0.758577 0.379288 0.925279i \(-0.376169\pi\)
0.379288 + 0.925279i \(0.376169\pi\)
\(710\) 0 0
\(711\) −288.000 580.483i −0.000569709 0.00114829i
\(712\) −646148. −1.27459
\(713\) 13256.3i 0.0260761i
\(714\) −102960. 63853.1i −0.201963 0.125252i
\(715\) 0 0
\(716\) 228130.i 0.444996i
\(717\) 420363. 677815.i 0.817686 1.31848i
\(718\) −558037. −1.08247
\(719\) 927031.i 1.79323i −0.442810 0.896616i \(-0.646018\pi\)
0.442810 0.896616i \(-0.353982\pi\)
\(720\) 0 0
\(721\) −84006.0 −0.161599
\(722\) 112125.i 0.215094i
\(723\) −551857. 342247.i −1.05572 0.654731i
\(724\) 122052. 0.232845
\(725\) 0 0
\(726\) 79215.0 127730.i 0.150291 0.242338i
\(727\) 373998. 0.707620 0.353810 0.935317i \(-0.384886\pi\)
0.353810 + 0.935317i \(0.384886\pi\)
\(728\) 260470.i 0.491469i
\(729\) −521964. 99915.6i −0.982167 0.188009i
\(730\) 0 0
\(731\) 719411.i 1.34630i
\(732\) 42587.0 + 26411.3i 0.0794795 + 0.0492911i
\(733\) 318240. 0.592307 0.296153 0.955140i \(-0.404296\pi\)
0.296153 + 0.955140i \(0.404296\pi\)
\(734\) 563020.i 1.04504i
\(735\) 0 0
\(736\) −298680. −0.551379
\(737\) 250111.i 0.460466i
\(738\) −236798. 477283.i −0.434777 0.876320i
\(739\) −409268. −0.749409 −0.374705 0.927144i \(-0.622256\pi\)
−0.374705 + 0.927144i \(0.622256\pi\)
\(740\) 0 0
\(741\) −576576. 357577.i −1.05007 0.651229i
\(742\) −68530.8 −0.124474
\(743\) 11400.0i 0.0206504i 0.999947 + 0.0103252i \(0.00328667\pi\)
−0.999947 + 0.0103252i \(0.996713\pi\)
\(744\) 10560.0 17027.5i 0.0190773 0.0307613i
\(745\) 0 0
\(746\) 245931.i 0.441912i
\(747\) −321927. + 159720.i −0.576920 + 0.286233i
\(748\) −161537. −0.288715
\(749\) 44745.5i 0.0797602i
\(750\) 0 0
\(751\) 347432. 0.616013 0.308007 0.951384i \(-0.400338\pi\)
0.308007 + 0.951384i \(0.400338\pi\)
\(752\) 303111.i 0.536001i
\(753\) 75720.4 122096.i 0.133544 0.215333i
\(754\) 149760. 0.263423
\(755\) 0 0
\(756\) −6318.00 + 66610.4i −0.0110544 + 0.116546i
\(757\) 886067. 1.54623 0.773116 0.634265i \(-0.218697\pi\)
0.773116 + 0.634265i \(0.218697\pi\)
\(758\) 38870.7i 0.0676525i
\(759\) 306540. + 190108.i 0.532113 + 0.330002i
\(760\) 0 0
\(761\) 261604.i 0.451726i −0.974159 0.225863i \(-0.927480\pi\)
0.974159 0.225863i \(-0.0725202\pi\)
\(762\) 57134.5 92126.6i 0.0983985 0.158663i
\(763\) −97166.9 −0.166905
\(764\) 333197.i 0.570840i
\(765\) 0 0
\(766\) 778270. 1.32639
\(767\) 970845.i 1.65029i
\(768\) 474698. + 294395.i 0.804814 + 0.499124i
\(769\) 832882. 1.40842 0.704208 0.709994i \(-0.251302\pi\)
0.704208 + 0.709994i \(0.251302\pi\)
\(770\) 0 0
\(771\) 402900. 649657.i 0.677780 1.09289i
\(772\) −304350. −0.510669
\(773\) 38529.2i 0.0644809i −0.999480 0.0322404i \(-0.989736\pi\)
0.999480 0.0322404i \(-0.0102642\pi\)
\(774\) −593190. + 294305.i −0.990175 + 0.491264i
\(775\) 0 0
\(776\) 174532.i 0.289835i
\(777\) 150339. + 93236.6i 0.249018 + 0.154435i
\(778\) 315578. 0.521372
\(779\) 640659.i 1.05573i
\(780\) 0 0
\(781\) 449280. 0.736572
\(782\) 364547.i 0.596129i
\(783\) 140427. + 13319.5i 0.229048 + 0.0217253i
\(784\) 268708. 0.437168
\(785\) 0 0
\(786\) 194220. + 120450.i 0.314376 + 0.194967i
\(787\) 627164. 1.01259 0.506293 0.862362i \(-0.331016\pi\)
0.506293 + 0.862362i \(0.331016\pi\)
\(788\) 173192.i 0.278917i
\(789\) −13515.0 + 21792.3i −0.0217101 + 0.0350065i
\(790\) 0 0
\(791\) 135639.i 0.216787i
\(792\) −242305. 488382.i −0.386289 0.778591i
\(793\) 227131. 0.361185
\(794\) 453937.i 0.720037i
\(795\) 0 0
\(796\) −205968. −0.325068
\(797\) 1.09025e6i 1.71637i −0.513343 0.858184i \(-0.671593\pi\)
0.513343 0.858184i \(-0.328407\pi\)
\(798\) 70672.4 113956.i 0.110980 0.178950i
\(799\) 680240. 1.06554
\(800\) 0 0
\(801\) −673920. + 334358.i −1.05037 + 0.521131i
\(802\) −777091. −1.20816
\(803\) 408465.i 0.633467i
\(804\) −118638. 73576.2i −0.183532 0.113822i
\(805\) 0 0
\(806\) 24767.3i 0.0381248i
\(807\) 18585.9 29968.9i 0.0285389 0.0460176i
\(808\) 336535. 0.515475
\(809\) 101004.i 0.154327i 0.997018 + 0.0771634i \(0.0245863\pi\)
−0.997018 + 0.0771634i \(0.975414\pi\)
\(810\) 0 0
\(811\) −400948. −0.609602 −0.304801 0.952416i \(-0.598590\pi\)
−0.304801 + 0.952416i \(0.598590\pi\)
\(812\) 17759.4i 0.0269349i
\(813\) 512819. + 318037.i 0.775859 + 0.481167i
\(814\) −393120. −0.593303
\(815\) 0 0
\(816\) −163680. + 263926.i −0.245819 + 0.396371i
\(817\) −796242. −1.19289
\(818\) 110073.i 0.164502i
\(819\) 134784. + 271666.i 0.200942 + 0.405011i
\(820\) 0 0
\(821\) 777895.i 1.15408i −0.816717 0.577038i \(-0.804208\pi\)
0.816717 0.577038i \(-0.195792\pi\)
\(822\) 514287. + 318947.i 0.761136 + 0.472036i
\(823\) −218457. −0.322528 −0.161264 0.986911i \(-0.551557\pi\)
−0.161264 + 0.986911i \(0.551557\pi\)
\(824\) 382054.i 0.562692i
\(825\) 0 0
\(826\) −191880. −0.281235
\(827\) 460867.i 0.673852i −0.941531 0.336926i \(-0.890613\pi\)
0.941531 0.336926i \(-0.109387\pi\)
\(828\) −180352. + 89479.8i −0.263064 + 0.130516i
\(829\) 60352.0 0.0878178 0.0439089 0.999036i \(-0.486019\pi\)
0.0439089 + 0.999036i \(0.486019\pi\)
\(830\) 0 0
\(831\) 79092.0 + 49050.8i 0.114533 + 0.0710303i
\(832\) 1.04363e6 1.50764
\(833\) 603034.i 0.869064i
\(834\) 290580. 468546.i 0.417767 0.673628i
\(835\) 0 0
\(836\) 178789.i 0.255816i
\(837\) 2202.78 23223.8i 0.00314427 0.0331499i
\(838\) 693569. 0.987646
\(839\) 162148.i 0.230350i 0.993345 + 0.115175i \(0.0367429\pi\)
−0.993345 + 0.115175i \(0.963257\pi\)
\(840\) 0 0
\(841\) 669841. 0.947065
\(842\) 534400.i 0.753775i
\(843\) 105779. 170564.i 0.148849 0.240011i
\(844\) −199608. −0.280216
\(845\) 0 0
\(846\) 278280. + 560891.i 0.388813 + 0.783679i
\(847\) −80783.8 −0.112605
\(848\) 175671.i 0.244291i
\(849\) −898443. 557191.i −1.24645 0.773016i
\(850\) 0 0
\(851\) 532303.i 0.735020i
\(852\) −132167. + 213112.i −0.182072 + 0.293582i
\(853\) 1.27675e6 1.75472 0.877362 0.479828i \(-0.159301\pi\)
0.877362 + 0.479828i \(0.159301\pi\)
\(854\) 44890.7i 0.0615517i
\(855\) 0 0
\(856\) −203500. −0.277726
\(857\) 311105.i 0.423589i 0.977314 + 0.211795i \(0.0679308\pi\)
−0.977314 + 0.211795i \(0.932069\pi\)
\(858\) −572722. 355187.i −0.777981 0.482484i
\(859\) −1.14631e6 −1.55351 −0.776757 0.629801i \(-0.783137\pi\)
−0.776757 + 0.629801i \(0.783137\pi\)
\(860\) 0 0
\(861\) −150930. + 243367.i −0.203596 + 0.328289i
\(862\) 490118. 0.659608
\(863\) 640839.i 0.860453i −0.902721 0.430227i \(-0.858434\pi\)
0.902721 0.430227i \(-0.141566\pi\)
\(864\) 523260. + 49631.3i 0.700955 + 0.0664856i
\(865\) 0 0
\(866\) 485864.i 0.647857i
\(867\) −46510.7 28844.7i −0.0618749 0.0383732i
\(868\) −2937.04 −0.00389825
\(869\) 773.977i 0.00102492i
\(870\) 0 0
\(871\) −632736. −0.834039
\(872\) 441909.i 0.581166i
\(873\) 90313.8 + 182033.i 0.118502 + 0.238848i
\(874\) 403480. 0.528201
\(875\) 0 0
\(876\) 193752. + 120160.i 0.252486 + 0.156585i
\(877\) 447959. 0.582424 0.291212 0.956659i \(-0.405942\pi\)
0.291212 + 0.956659i \(0.405942\pi\)
\(878\) 206079.i 0.267329i
\(879\) 272100. 438748.i 0.352169 0.567855i
\(880\) 0 0
\(881\) 72995.7i 0.0940471i −0.998894 0.0470235i \(-0.985026\pi\)
0.998894 0.0470235i \(-0.0149736\pi\)
\(882\) 497231. 246696.i 0.639177 0.317120i
\(883\) −797910. −1.02337 −0.511685 0.859173i \(-0.670978\pi\)
−0.511685 + 0.859173i \(0.670978\pi\)
\(884\) 408660.i 0.522947i
\(885\) 0 0
\(886\) −368450. −0.469365
\(887\) 1.04890e6i 1.33317i −0.745428 0.666586i \(-0.767755\pi\)
0.745428 0.666586i \(-0.232245\pi\)
\(888\) 424034. 683735.i 0.537744 0.867085i
\(889\) −58266.0 −0.0737245
\(890\) 0 0
\(891\) −505440. 383989.i −0.636670 0.483686i
\(892\) 456067. 0.573190
\(893\) 752888.i 0.944120i
\(894\) 391950. + 243077.i 0.490406 + 0.304137i
\(895\) 0 0
\(896\) 29798.1i 0.0371170i
\(897\) −480940. + 775492.i −0.597731 + 0.963812i
\(898\) −250107. −0.310151
\(899\) 6191.81i 0.00766123i
\(900\) 0 0
\(901\) 394240. 0.485636
\(902\) 636377.i 0.782170i
\(903\) 302469. + 187583.i 0.370941 + 0.230048i
\(904\) −616880. −0.754856
\(905\) 0 0
\(906\) 499080. 804742.i 0.608014 0.980394i
\(907\) −1.06515e6 −1.29478 −0.647390 0.762159i \(-0.724139\pi\)
−0.647390 + 0.762159i \(0.724139\pi\)
\(908\) 100731.i 0.122178i
\(909\) 351000. 174145.i 0.424795 0.210757i
\(910\) 0 0
\(911\) 1.25520e6i 1.51243i −0.654324 0.756215i \(-0.727047\pi\)
0.654324 0.756215i \(-0.272953\pi\)
\(912\) −292113. 181161.i −0.351205 0.217808i
\(913\) −429235. −0.514937
\(914\) 1.23140e6i 1.47403i
\(915\) 0 0
\(916\) −241788. −0.288167
\(917\) 122836.i 0.146078i
\(918\) −60576.4 + 638654.i −0.0718816 + 0.757844i
\(919\) −552368. −0.654030 −0.327015 0.945019i \(-0.606043\pi\)
−0.327015 + 0.945019i \(0.606043\pi\)
\(920\) 0 0
\(921\) 79677.0 + 49413.6i 0.0939320 + 0.0582542i
\(922\) −748332. −0.880304
\(923\) 1.13660e6i 1.33415i
\(924\) −42120.0 + 67916.5i −0.0493338 + 0.0795483i
\(925\) 0 0
\(926\) 802566.i 0.935963i
\(927\) 197699. + 398475.i 0.230062 + 0.463705i
\(928\) −139509. −0.161997
\(929\) 748290.i 0.867039i 0.901144 + 0.433520i \(0.142729\pi\)
−0.901144 + 0.433520i \(0.857271\pi\)
\(930\) 0 0
\(931\) 667436. 0.770035
\(932\) 523521.i 0.602702i
\(933\) −483693. + 779932.i −0.555657 + 0.895969i
\(934\) −1.15693e6 −1.32621
\(935\) 0 0
\(936\) 1.23552e6 612990.i 1.41026 0.699683i
\(937\) −173102. −0.197161 −0.0985807 0.995129i \(-0.531430\pi\)
−0.0985807 + 0.995129i \(0.531430\pi\)
\(938\) 125055.i 0.142134i
\(939\) 1.39651e6 + 866080.i 1.58385 + 0.982261i
\(940\) 0 0
\(941\) 1.74861e6i 1.97475i 0.158388 + 0.987377i \(0.449370\pi\)
−0.158388 + 0.987377i \(0.550630\pi\)
\(942\) −439637. + 708894.i −0.495442 + 0.798876i
\(943\) −861683. −0.969001
\(944\) 491862.i 0.551950i
\(945\) 0 0
\(946\) −790920. −0.883792
\(947\) 983427.i 1.09658i 0.836287 + 0.548292i \(0.184722\pi\)
−0.836287 + 0.548292i \(0.815278\pi\)
\(948\) 367.129 + 227.684i 0.000408510 + 0.000253347i
\(949\) 1.03334e6 1.14739
\(950\) 0 0
\(951\) −158880. + 256186.i −0.175674 + 0.283266i
\(952\) 296151. 0.326768
\(953\) 894507.i 0.984913i −0.870337 0.492457i \(-0.836099\pi\)
0.870337 0.492457i \(-0.163901\pi\)
\(954\) 161280. + 325070.i 0.177208 + 0.357175i
\(955\) 0 0
\(956\) 531722.i 0.581793i
\(957\) 143180. + 88796.8i 0.156336 + 0.0969557i
\(958\) −808297. −0.880724
\(959\) 325264.i 0.353670i
\(960\) 0 0
\(961\) −922497. −0.998891
\(962\) 994524.i 1.07464i
\(963\) −212247. + 105304.i −0.228870 + 0.113551i
\(964\) 432912. 0.465849
\(965\) 0 0
\(966\) −153270. 95054.0i −0.164249 0.101863i
\(967\) −811983. −0.868349 −0.434174 0.900829i \(-0.642960\pi\)
−0.434174 + 0.900829i \(0.642960\pi\)
\(968\) 367400.i 0.392092i
\(969\) −406560. + 655558.i −0.432989 + 0.698174i
\(970\) 0 0
\(971\) 333487.i 0.353705i 0.984237 + 0.176852i \(0.0565915\pi\)
−0.984237 + 0.176852i \(0.943409\pi\)
\(972\) 330829. 126792.i 0.350164 0.134202i
\(973\) −296335. −0.313009
\(974\) 1.41014e6i 1.48643i
\(975\) 0 0
\(976\) 115072. 0.120801
\(977\) 1.32479e6i 1.38790i 0.720023 + 0.693951i \(0.244131\pi\)
−0.720023 + 0.693951i \(0.755869\pi\)
\(978\) −183794. + 296359.i −0.192156 + 0.309842i
\(979\) −898560. −0.937522
\(980\) 0 0
\(981\) 228672. + 460903.i 0.237616 + 0.478930i
\(982\) 725387. 0.752223
\(983\) 815276.i 0.843719i 0.906661 + 0.421859i \(0.138622\pi\)
−0.906661 + 0.421859i \(0.861378\pi\)
\(984\) 1.10682e6 + 686421.i 1.14311 + 0.708925i
\(985\) 0 0
\(986\) 170275.i 0.175145i
\(987\) 177369. 286000.i 0.182073 0.293583i
\(988\) 452303. 0.463357
\(989\) 1.07094e6i 1.09490i
\(990\) 0 0
\(991\) 1.57635e6 1.60511 0.802557 0.596575i \(-0.203472\pi\)
0.802557 + 0.596575i \(0.203472\pi\)
\(992\) 23072.0i 0.0234456i
\(993\) −1.56100e6 968093.i −1.58309 0.981790i
\(994\) −224640. −0.227360
\(995\) 0 0
\(996\) 126270. 203604.i 0.127286 0.205243i
\(997\) 128251. 0.129024 0.0645118 0.997917i \(-0.479451\pi\)
0.0645118 + 0.997917i \(0.479451\pi\)
\(998\) 498843.i 0.500844i
\(999\) 88452.0 932545.i 0.0886292 0.934413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.5.c.h.26.3 4
3.2 odd 2 inner 75.5.c.h.26.1 4
5.2 odd 4 15.5.d.c.14.2 yes 4
5.3 odd 4 15.5.d.c.14.3 yes 4
5.4 even 2 inner 75.5.c.h.26.2 4
15.2 even 4 15.5.d.c.14.4 yes 4
15.8 even 4 15.5.d.c.14.1 4
15.14 odd 2 inner 75.5.c.h.26.4 4
20.3 even 4 240.5.c.c.209.2 4
20.7 even 4 240.5.c.c.209.3 4
60.23 odd 4 240.5.c.c.209.4 4
60.47 odd 4 240.5.c.c.209.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.5.d.c.14.1 4 15.8 even 4
15.5.d.c.14.2 yes 4 5.2 odd 4
15.5.d.c.14.3 yes 4 5.3 odd 4
15.5.d.c.14.4 yes 4 15.2 even 4
75.5.c.h.26.1 4 3.2 odd 2 inner
75.5.c.h.26.2 4 5.4 even 2 inner
75.5.c.h.26.3 4 1.1 even 1 trivial
75.5.c.h.26.4 4 15.14 odd 2 inner
240.5.c.c.209.1 4 60.47 odd 4
240.5.c.c.209.2 4 20.3 even 4
240.5.c.c.209.3 4 20.7 even 4
240.5.c.c.209.4 4 60.23 odd 4