Properties

Label 75.3.c.e.26.1
Level $75$
Weight $3$
Character 75.26
Analytic conductor $2.044$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,3,Mod(26,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.26"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 75.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.04360198270\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.1
Root \(-2.23607i\) of defining polynomial
Character \(\chi\) \(=\) 75.26
Dual form 75.3.c.e.26.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.23607i q^{2} +(2.00000 + 2.23607i) q^{3} -1.00000 q^{4} +(5.00000 - 4.47214i) q^{6} +6.00000 q^{7} -6.70820i q^{8} +(-1.00000 + 8.94427i) q^{9} -4.47214i q^{11} +(-2.00000 - 2.23607i) q^{12} -16.0000 q^{13} -13.4164i q^{14} -19.0000 q^{16} +4.47214i q^{17} +(20.0000 + 2.23607i) q^{18} -2.00000 q^{19} +(12.0000 + 13.4164i) q^{21} -10.0000 q^{22} +13.4164i q^{23} +(15.0000 - 13.4164i) q^{24} +35.7771i q^{26} +(-22.0000 + 15.6525i) q^{27} -6.00000 q^{28} +31.3050i q^{29} -18.0000 q^{31} +15.6525i q^{32} +(10.0000 - 8.94427i) q^{33} +10.0000 q^{34} +(1.00000 - 8.94427i) q^{36} +16.0000 q^{37} +4.47214i q^{38} +(-32.0000 - 35.7771i) q^{39} -62.6099i q^{41} +(30.0000 - 26.8328i) q^{42} -16.0000 q^{43} +4.47214i q^{44} +30.0000 q^{46} -49.1935i q^{47} +(-38.0000 - 42.4853i) q^{48} -13.0000 q^{49} +(-10.0000 + 8.94427i) q^{51} +16.0000 q^{52} +4.47214i q^{53} +(35.0000 + 49.1935i) q^{54} -40.2492i q^{56} +(-4.00000 - 4.47214i) q^{57} +70.0000 q^{58} -4.47214i q^{59} +82.0000 q^{61} +40.2492i q^{62} +(-6.00000 + 53.6656i) q^{63} -41.0000 q^{64} +(-20.0000 - 22.3607i) q^{66} -24.0000 q^{67} -4.47214i q^{68} +(-30.0000 + 26.8328i) q^{69} +125.220i q^{71} +(60.0000 + 6.70820i) q^{72} +74.0000 q^{73} -35.7771i q^{74} +2.00000 q^{76} -26.8328i q^{77} +(-80.0000 + 71.5542i) q^{78} +138.000 q^{79} +(-79.0000 - 17.8885i) q^{81} -140.000 q^{82} -93.9149i q^{83} +(-12.0000 - 13.4164i) q^{84} +35.7771i q^{86} +(-70.0000 + 62.6099i) q^{87} -30.0000 q^{88} -107.331i q^{89} -96.0000 q^{91} -13.4164i q^{92} +(-36.0000 - 40.2492i) q^{93} -110.000 q^{94} +(-35.0000 + 31.3050i) q^{96} +166.000 q^{97} +29.0689i q^{98} +(40.0000 + 4.47214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{3} - 2 q^{4} + 10 q^{6} + 12 q^{7} - 2 q^{9} - 4 q^{12} - 32 q^{13} - 38 q^{16} + 40 q^{18} - 4 q^{19} + 24 q^{21} - 20 q^{22} + 30 q^{24} - 44 q^{27} - 12 q^{28} - 36 q^{31} + 20 q^{33} + 20 q^{34}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607i 1.11803i −0.829156 0.559017i \(-0.811179\pi\)
0.829156 0.559017i \(-0.188821\pi\)
\(3\) 2.00000 + 2.23607i 0.666667 + 0.745356i
\(4\) −1.00000 −0.250000
\(5\) 0 0
\(6\) 5.00000 4.47214i 0.833333 0.745356i
\(7\) 6.00000 0.857143 0.428571 0.903508i \(-0.359017\pi\)
0.428571 + 0.903508i \(0.359017\pi\)
\(8\) 6.70820i 0.838525i
\(9\) −1.00000 + 8.94427i −0.111111 + 0.993808i
\(10\) 0 0
\(11\) 4.47214i 0.406558i −0.979121 0.203279i \(-0.934840\pi\)
0.979121 0.203279i \(-0.0651598\pi\)
\(12\) −2.00000 2.23607i −0.166667 0.186339i
\(13\) −16.0000 −1.23077 −0.615385 0.788227i \(-0.710999\pi\)
−0.615385 + 0.788227i \(0.710999\pi\)
\(14\) 13.4164i 0.958315i
\(15\) 0 0
\(16\) −19.0000 −1.18750
\(17\) 4.47214i 0.263067i 0.991312 + 0.131533i \(0.0419901\pi\)
−0.991312 + 0.131533i \(0.958010\pi\)
\(18\) 20.0000 + 2.23607i 1.11111 + 0.124226i
\(19\) −2.00000 −0.105263 −0.0526316 0.998614i \(-0.516761\pi\)
−0.0526316 + 0.998614i \(0.516761\pi\)
\(20\) 0 0
\(21\) 12.0000 + 13.4164i 0.571429 + 0.638877i
\(22\) −10.0000 −0.454545
\(23\) 13.4164i 0.583322i 0.956522 + 0.291661i \(0.0942079\pi\)
−0.956522 + 0.291661i \(0.905792\pi\)
\(24\) 15.0000 13.4164i 0.625000 0.559017i
\(25\) 0 0
\(26\) 35.7771i 1.37604i
\(27\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(28\) −6.00000 −0.214286
\(29\) 31.3050i 1.07948i 0.841831 + 0.539741i \(0.181478\pi\)
−0.841831 + 0.539741i \(0.818522\pi\)
\(30\) 0 0
\(31\) −18.0000 −0.580645 −0.290323 0.956929i \(-0.593763\pi\)
−0.290323 + 0.956929i \(0.593763\pi\)
\(32\) 15.6525i 0.489140i
\(33\) 10.0000 8.94427i 0.303030 0.271039i
\(34\) 10.0000 0.294118
\(35\) 0 0
\(36\) 1.00000 8.94427i 0.0277778 0.248452i
\(37\) 16.0000 0.432432 0.216216 0.976346i \(-0.430628\pi\)
0.216216 + 0.976346i \(0.430628\pi\)
\(38\) 4.47214i 0.117688i
\(39\) −32.0000 35.7771i −0.820513 0.917361i
\(40\) 0 0
\(41\) 62.6099i 1.52707i −0.645766 0.763535i \(-0.723462\pi\)
0.645766 0.763535i \(-0.276538\pi\)
\(42\) 30.0000 26.8328i 0.714286 0.638877i
\(43\) −16.0000 −0.372093 −0.186047 0.982541i \(-0.559568\pi\)
−0.186047 + 0.982541i \(0.559568\pi\)
\(44\) 4.47214i 0.101639i
\(45\) 0 0
\(46\) 30.0000 0.652174
\(47\) 49.1935i 1.04667i −0.852127 0.523335i \(-0.824688\pi\)
0.852127 0.523335i \(-0.175312\pi\)
\(48\) −38.0000 42.4853i −0.791667 0.885110i
\(49\) −13.0000 −0.265306
\(50\) 0 0
\(51\) −10.0000 + 8.94427i −0.196078 + 0.175378i
\(52\) 16.0000 0.307692
\(53\) 4.47214i 0.0843799i 0.999110 + 0.0421900i \(0.0134335\pi\)
−0.999110 + 0.0421900i \(0.986567\pi\)
\(54\) 35.0000 + 49.1935i 0.648148 + 0.910991i
\(55\) 0 0
\(56\) 40.2492i 0.718736i
\(57\) −4.00000 4.47214i −0.0701754 0.0784585i
\(58\) 70.0000 1.20690
\(59\) 4.47214i 0.0757989i −0.999282 0.0378995i \(-0.987933\pi\)
0.999282 0.0378995i \(-0.0120667\pi\)
\(60\) 0 0
\(61\) 82.0000 1.34426 0.672131 0.740432i \(-0.265379\pi\)
0.672131 + 0.740432i \(0.265379\pi\)
\(62\) 40.2492i 0.649181i
\(63\) −6.00000 + 53.6656i −0.0952381 + 0.851835i
\(64\) −41.0000 −0.640625
\(65\) 0 0
\(66\) −20.0000 22.3607i −0.303030 0.338798i
\(67\) −24.0000 −0.358209 −0.179104 0.983830i \(-0.557320\pi\)
−0.179104 + 0.983830i \(0.557320\pi\)
\(68\) 4.47214i 0.0657667i
\(69\) −30.0000 + 26.8328i −0.434783 + 0.388881i
\(70\) 0 0
\(71\) 125.220i 1.76366i 0.471568 + 0.881830i \(0.343688\pi\)
−0.471568 + 0.881830i \(0.656312\pi\)
\(72\) 60.0000 + 6.70820i 0.833333 + 0.0931695i
\(73\) 74.0000 1.01370 0.506849 0.862035i \(-0.330810\pi\)
0.506849 + 0.862035i \(0.330810\pi\)
\(74\) 35.7771i 0.483474i
\(75\) 0 0
\(76\) 2.00000 0.0263158
\(77\) 26.8328i 0.348478i
\(78\) −80.0000 + 71.5542i −1.02564 + 0.917361i
\(79\) 138.000 1.74684 0.873418 0.486972i \(-0.161899\pi\)
0.873418 + 0.486972i \(0.161899\pi\)
\(80\) 0 0
\(81\) −79.0000 17.8885i −0.975309 0.220846i
\(82\) −140.000 −1.70732
\(83\) 93.9149i 1.13150i −0.824575 0.565752i \(-0.808586\pi\)
0.824575 0.565752i \(-0.191414\pi\)
\(84\) −12.0000 13.4164i −0.142857 0.159719i
\(85\) 0 0
\(86\) 35.7771i 0.416013i
\(87\) −70.0000 + 62.6099i −0.804598 + 0.719654i
\(88\) −30.0000 −0.340909
\(89\) 107.331i 1.20597i −0.797753 0.602985i \(-0.793978\pi\)
0.797753 0.602985i \(-0.206022\pi\)
\(90\) 0 0
\(91\) −96.0000 −1.05495
\(92\) 13.4164i 0.145831i
\(93\) −36.0000 40.2492i −0.387097 0.432787i
\(94\) −110.000 −1.17021
\(95\) 0 0
\(96\) −35.0000 + 31.3050i −0.364583 + 0.326093i
\(97\) 166.000 1.71134 0.855670 0.517522i \(-0.173145\pi\)
0.855670 + 0.517522i \(0.173145\pi\)
\(98\) 29.0689i 0.296621i
\(99\) 40.0000 + 4.47214i 0.404040 + 0.0451731i
\(100\) 0 0
\(101\) 67.0820i 0.664179i −0.943248 0.332089i \(-0.892246\pi\)
0.943248 0.332089i \(-0.107754\pi\)
\(102\) 20.0000 + 22.3607i 0.196078 + 0.219222i
\(103\) −26.0000 −0.252427 −0.126214 0.992003i \(-0.540282\pi\)
−0.126214 + 0.992003i \(0.540282\pi\)
\(104\) 107.331i 1.03203i
\(105\) 0 0
\(106\) 10.0000 0.0943396
\(107\) 201.246i 1.88080i 0.340064 + 0.940402i \(0.389551\pi\)
−0.340064 + 0.940402i \(0.610449\pi\)
\(108\) 22.0000 15.6525i 0.203704 0.144930i
\(109\) 38.0000 0.348624 0.174312 0.984690i \(-0.444230\pi\)
0.174312 + 0.984690i \(0.444230\pi\)
\(110\) 0 0
\(111\) 32.0000 + 35.7771i 0.288288 + 0.322316i
\(112\) −114.000 −1.01786
\(113\) 31.3050i 0.277035i 0.990360 + 0.138517i \(0.0442337\pi\)
−0.990360 + 0.138517i \(0.955766\pi\)
\(114\) −10.0000 + 8.94427i −0.0877193 + 0.0784585i
\(115\) 0 0
\(116\) 31.3050i 0.269870i
\(117\) 16.0000 143.108i 0.136752 1.22315i
\(118\) −10.0000 −0.0847458
\(119\) 26.8328i 0.225486i
\(120\) 0 0
\(121\) 101.000 0.834711
\(122\) 183.358i 1.50293i
\(123\) 140.000 125.220i 1.13821 1.01805i
\(124\) 18.0000 0.145161
\(125\) 0 0
\(126\) 120.000 + 13.4164i 0.952381 + 0.106479i
\(127\) 26.0000 0.204724 0.102362 0.994747i \(-0.467360\pi\)
0.102362 + 0.994747i \(0.467360\pi\)
\(128\) 154.289i 1.20538i
\(129\) −32.0000 35.7771i −0.248062 0.277342i
\(130\) 0 0
\(131\) 13.4164i 0.102415i −0.998688 0.0512077i \(-0.983693\pi\)
0.998688 0.0512077i \(-0.0163070\pi\)
\(132\) −10.0000 + 8.94427i −0.0757576 + 0.0677596i
\(133\) −12.0000 −0.0902256
\(134\) 53.6656i 0.400490i
\(135\) 0 0
\(136\) 30.0000 0.220588
\(137\) 120.748i 0.881370i −0.897662 0.440685i \(-0.854736\pi\)
0.897662 0.440685i \(-0.145264\pi\)
\(138\) 60.0000 + 67.0820i 0.434783 + 0.486102i
\(139\) −82.0000 −0.589928 −0.294964 0.955508i \(-0.595308\pi\)
−0.294964 + 0.955508i \(0.595308\pi\)
\(140\) 0 0
\(141\) 110.000 98.3870i 0.780142 0.697780i
\(142\) 280.000 1.97183
\(143\) 71.5542i 0.500379i
\(144\) 19.0000 169.941i 0.131944 1.18015i
\(145\) 0 0
\(146\) 165.469i 1.13335i
\(147\) −26.0000 29.0689i −0.176871 0.197748i
\(148\) −16.0000 −0.108108
\(149\) 111.803i 0.750358i 0.926952 + 0.375179i \(0.122419\pi\)
−0.926952 + 0.375179i \(0.877581\pi\)
\(150\) 0 0
\(151\) −158.000 −1.04636 −0.523179 0.852223i \(-0.675254\pi\)
−0.523179 + 0.852223i \(0.675254\pi\)
\(152\) 13.4164i 0.0882658i
\(153\) −40.0000 4.47214i −0.261438 0.0292296i
\(154\) −60.0000 −0.389610
\(155\) 0 0
\(156\) 32.0000 + 35.7771i 0.205128 + 0.229340i
\(157\) −164.000 −1.04459 −0.522293 0.852766i \(-0.674923\pi\)
−0.522293 + 0.852766i \(0.674923\pi\)
\(158\) 308.577i 1.95302i
\(159\) −10.0000 + 8.94427i −0.0628931 + 0.0562533i
\(160\) 0 0
\(161\) 80.4984i 0.499990i
\(162\) −40.0000 + 176.649i −0.246914 + 1.09043i
\(163\) −236.000 −1.44785 −0.723926 0.689877i \(-0.757664\pi\)
−0.723926 + 0.689877i \(0.757664\pi\)
\(164\) 62.6099i 0.381768i
\(165\) 0 0
\(166\) −210.000 −1.26506
\(167\) 93.9149i 0.562364i 0.959654 + 0.281182i \(0.0907265\pi\)
−0.959654 + 0.281182i \(0.909273\pi\)
\(168\) 90.0000 80.4984i 0.535714 0.479157i
\(169\) 87.0000 0.514793
\(170\) 0 0
\(171\) 2.00000 17.8885i 0.0116959 0.104611i
\(172\) 16.0000 0.0930233
\(173\) 13.4164i 0.0775515i 0.999248 + 0.0387757i \(0.0123458\pi\)
−0.999248 + 0.0387757i \(0.987654\pi\)
\(174\) 140.000 + 156.525i 0.804598 + 0.899568i
\(175\) 0 0
\(176\) 84.9706i 0.482787i
\(177\) 10.0000 8.94427i 0.0564972 0.0505326i
\(178\) −240.000 −1.34831
\(179\) 192.302i 1.07431i −0.843483 0.537156i \(-0.819499\pi\)
0.843483 0.537156i \(-0.180501\pi\)
\(180\) 0 0
\(181\) 2.00000 0.0110497 0.00552486 0.999985i \(-0.498241\pi\)
0.00552486 + 0.999985i \(0.498241\pi\)
\(182\) 214.663i 1.17946i
\(183\) 164.000 + 183.358i 0.896175 + 1.00195i
\(184\) 90.0000 0.489130
\(185\) 0 0
\(186\) −90.0000 + 80.4984i −0.483871 + 0.432787i
\(187\) 20.0000 0.106952
\(188\) 49.1935i 0.261668i
\(189\) −132.000 + 93.9149i −0.698413 + 0.496904i
\(190\) 0 0
\(191\) 205.718i 1.07706i 0.842607 + 0.538529i \(0.181020\pi\)
−0.842607 + 0.538529i \(0.818980\pi\)
\(192\) −82.0000 91.6788i −0.427083 0.477494i
\(193\) 214.000 1.10881 0.554404 0.832248i \(-0.312946\pi\)
0.554404 + 0.832248i \(0.312946\pi\)
\(194\) 371.187i 1.91334i
\(195\) 0 0
\(196\) 13.0000 0.0663265
\(197\) 93.9149i 0.476725i −0.971176 0.238363i \(-0.923389\pi\)
0.971176 0.238363i \(-0.0766107\pi\)
\(198\) 10.0000 89.4427i 0.0505051 0.451731i
\(199\) −242.000 −1.21608 −0.608040 0.793906i \(-0.708044\pi\)
−0.608040 + 0.793906i \(0.708044\pi\)
\(200\) 0 0
\(201\) −48.0000 53.6656i −0.238806 0.266993i
\(202\) −150.000 −0.742574
\(203\) 187.830i 0.925270i
\(204\) 10.0000 8.94427i 0.0490196 0.0438445i
\(205\) 0 0
\(206\) 58.1378i 0.282222i
\(207\) −120.000 13.4164i −0.579710 0.0648136i
\(208\) 304.000 1.46154
\(209\) 8.94427i 0.0427956i
\(210\) 0 0
\(211\) 2.00000 0.00947867 0.00473934 0.999989i \(-0.498491\pi\)
0.00473934 + 0.999989i \(0.498491\pi\)
\(212\) 4.47214i 0.0210950i
\(213\) −280.000 + 250.440i −1.31455 + 1.17577i
\(214\) 450.000 2.10280
\(215\) 0 0
\(216\) 105.000 + 147.580i 0.486111 + 0.683243i
\(217\) −108.000 −0.497696
\(218\) 84.9706i 0.389773i
\(219\) 148.000 + 165.469i 0.675799 + 0.755566i
\(220\) 0 0
\(221\) 71.5542i 0.323775i
\(222\) 80.0000 71.5542i 0.360360 0.322316i
\(223\) −86.0000 −0.385650 −0.192825 0.981233i \(-0.561765\pi\)
−0.192825 + 0.981233i \(0.561765\pi\)
\(224\) 93.9149i 0.419263i
\(225\) 0 0
\(226\) 70.0000 0.309735
\(227\) 58.1378i 0.256114i −0.991767 0.128057i \(-0.959126\pi\)
0.991767 0.128057i \(-0.0408740\pi\)
\(228\) 4.00000 + 4.47214i 0.0175439 + 0.0196146i
\(229\) −282.000 −1.23144 −0.615721 0.787965i \(-0.711135\pi\)
−0.615721 + 0.787965i \(0.711135\pi\)
\(230\) 0 0
\(231\) 60.0000 53.6656i 0.259740 0.232319i
\(232\) 210.000 0.905172
\(233\) 362.243i 1.55469i −0.629074 0.777346i \(-0.716566\pi\)
0.629074 0.777346i \(-0.283434\pi\)
\(234\) −320.000 35.7771i −1.36752 0.152894i
\(235\) 0 0
\(236\) 4.47214i 0.0189497i
\(237\) 276.000 + 308.577i 1.16456 + 1.30201i
\(238\) 60.0000 0.252101
\(239\) 250.440i 1.04786i 0.851760 + 0.523932i \(0.175536\pi\)
−0.851760 + 0.523932i \(0.824464\pi\)
\(240\) 0 0
\(241\) 262.000 1.08714 0.543568 0.839365i \(-0.317073\pi\)
0.543568 + 0.839365i \(0.317073\pi\)
\(242\) 225.843i 0.933235i
\(243\) −118.000 212.426i −0.485597 0.874183i
\(244\) −82.0000 −0.336066
\(245\) 0 0
\(246\) −280.000 313.050i −1.13821 1.27256i
\(247\) 32.0000 0.129555
\(248\) 120.748i 0.486886i
\(249\) 210.000 187.830i 0.843373 0.754336i
\(250\) 0 0
\(251\) 469.574i 1.87081i −0.353573 0.935407i \(-0.615033\pi\)
0.353573 0.935407i \(-0.384967\pi\)
\(252\) 6.00000 53.6656i 0.0238095 0.212959i
\(253\) 60.0000 0.237154
\(254\) 58.1378i 0.228889i
\(255\) 0 0
\(256\) 181.000 0.707031
\(257\) 201.246i 0.783059i 0.920166 + 0.391529i \(0.128054\pi\)
−0.920166 + 0.391529i \(0.871946\pi\)
\(258\) −80.0000 + 71.5542i −0.310078 + 0.277342i
\(259\) 96.0000 0.370656
\(260\) 0 0
\(261\) −280.000 31.3050i −1.07280 0.119942i
\(262\) −30.0000 −0.114504
\(263\) 58.1378i 0.221056i −0.993873 0.110528i \(-0.964746\pi\)
0.993873 0.110528i \(-0.0352542\pi\)
\(264\) −60.0000 67.0820i −0.227273 0.254099i
\(265\) 0 0
\(266\) 26.8328i 0.100875i
\(267\) 240.000 214.663i 0.898876 0.803979i
\(268\) 24.0000 0.0895522
\(269\) 371.187i 1.37988i 0.723867 + 0.689939i \(0.242363\pi\)
−0.723867 + 0.689939i \(0.757637\pi\)
\(270\) 0 0
\(271\) 82.0000 0.302583 0.151292 0.988489i \(-0.451657\pi\)
0.151292 + 0.988489i \(0.451657\pi\)
\(272\) 84.9706i 0.312392i
\(273\) −192.000 214.663i −0.703297 0.786310i
\(274\) −270.000 −0.985401
\(275\) 0 0
\(276\) 30.0000 26.8328i 0.108696 0.0972203i
\(277\) −24.0000 −0.0866426 −0.0433213 0.999061i \(-0.513794\pi\)
−0.0433213 + 0.999061i \(0.513794\pi\)
\(278\) 183.358i 0.659560i
\(279\) 18.0000 160.997i 0.0645161 0.577050i
\(280\) 0 0
\(281\) 187.830i 0.668433i 0.942496 + 0.334217i \(0.108472\pi\)
−0.942496 + 0.334217i \(0.891528\pi\)
\(282\) −220.000 245.967i −0.780142 0.872225i
\(283\) 144.000 0.508834 0.254417 0.967095i \(-0.418116\pi\)
0.254417 + 0.967095i \(0.418116\pi\)
\(284\) 125.220i 0.440915i
\(285\) 0 0
\(286\) 160.000 0.559441
\(287\) 375.659i 1.30892i
\(288\) −140.000 15.6525i −0.486111 0.0543489i
\(289\) 269.000 0.930796
\(290\) 0 0
\(291\) 332.000 + 371.187i 1.14089 + 1.27556i
\(292\) −74.0000 −0.253425
\(293\) 469.574i 1.60264i 0.598234 + 0.801321i \(0.295869\pi\)
−0.598234 + 0.801321i \(0.704131\pi\)
\(294\) −65.0000 + 58.1378i −0.221088 + 0.197748i
\(295\) 0 0
\(296\) 107.331i 0.362606i
\(297\) 70.0000 + 98.3870i 0.235690 + 0.331269i
\(298\) 250.000 0.838926
\(299\) 214.663i 0.717935i
\(300\) 0 0
\(301\) −96.0000 −0.318937
\(302\) 353.299i 1.16986i
\(303\) 150.000 134.164i 0.495050 0.442786i
\(304\) 38.0000 0.125000
\(305\) 0 0
\(306\) −10.0000 + 89.4427i −0.0326797 + 0.292296i
\(307\) −184.000 −0.599349 −0.299674 0.954042i \(-0.596878\pi\)
−0.299674 + 0.954042i \(0.596878\pi\)
\(308\) 26.8328i 0.0871195i
\(309\) −52.0000 58.1378i −0.168285 0.188148i
\(310\) 0 0
\(311\) 160.997i 0.517675i −0.965921 0.258837i \(-0.916661\pi\)
0.965921 0.258837i \(-0.0833394\pi\)
\(312\) −240.000 + 214.663i −0.769231 + 0.688021i
\(313\) 394.000 1.25879 0.629393 0.777087i \(-0.283304\pi\)
0.629393 + 0.777087i \(0.283304\pi\)
\(314\) 366.715i 1.16788i
\(315\) 0 0
\(316\) −138.000 −0.436709
\(317\) 451.686i 1.42488i 0.701735 + 0.712438i \(0.252409\pi\)
−0.701735 + 0.712438i \(0.747591\pi\)
\(318\) 20.0000 + 22.3607i 0.0628931 + 0.0703166i
\(319\) 140.000 0.438871
\(320\) 0 0
\(321\) −450.000 + 402.492i −1.40187 + 1.25387i
\(322\) 180.000 0.559006
\(323\) 8.94427i 0.0276912i
\(324\) 79.0000 + 17.8885i 0.243827 + 0.0552116i
\(325\) 0 0
\(326\) 527.712i 1.61875i
\(327\) 76.0000 + 84.9706i 0.232416 + 0.259849i
\(328\) −420.000 −1.28049
\(329\) 295.161i 0.897146i
\(330\) 0 0
\(331\) −198.000 −0.598187 −0.299094 0.954224i \(-0.596684\pi\)
−0.299094 + 0.954224i \(0.596684\pi\)
\(332\) 93.9149i 0.282876i
\(333\) −16.0000 + 143.108i −0.0480480 + 0.429755i
\(334\) 210.000 0.628743
\(335\) 0 0
\(336\) −228.000 254.912i −0.678571 0.758666i
\(337\) −394.000 −1.16914 −0.584570 0.811343i \(-0.698737\pi\)
−0.584570 + 0.811343i \(0.698737\pi\)
\(338\) 194.538i 0.575556i
\(339\) −70.0000 + 62.6099i −0.206490 + 0.184690i
\(340\) 0 0
\(341\) 80.4984i 0.236066i
\(342\) −40.0000 4.47214i −0.116959 0.0130764i
\(343\) −372.000 −1.08455
\(344\) 107.331i 0.312009i
\(345\) 0 0
\(346\) 30.0000 0.0867052
\(347\) 183.358i 0.528408i −0.964467 0.264204i \(-0.914891\pi\)
0.964467 0.264204i \(-0.0851092\pi\)
\(348\) 70.0000 62.6099i 0.201149 0.179914i
\(349\) −362.000 −1.03725 −0.518625 0.855002i \(-0.673556\pi\)
−0.518625 + 0.855002i \(0.673556\pi\)
\(350\) 0 0
\(351\) 352.000 250.440i 1.00285 0.713503i
\(352\) 70.0000 0.198864
\(353\) 308.577i 0.874157i −0.899423 0.437078i \(-0.856013\pi\)
0.899423 0.437078i \(-0.143987\pi\)
\(354\) −20.0000 22.3607i −0.0564972 0.0631658i
\(355\) 0 0
\(356\) 107.331i 0.301492i
\(357\) −60.0000 + 53.6656i −0.168067 + 0.150324i
\(358\) −430.000 −1.20112
\(359\) 295.161i 0.822175i −0.911596 0.411088i \(-0.865149\pi\)
0.911596 0.411088i \(-0.134851\pi\)
\(360\) 0 0
\(361\) −357.000 −0.988920
\(362\) 4.47214i 0.0123540i
\(363\) 202.000 + 225.843i 0.556474 + 0.622157i
\(364\) 96.0000 0.263736
\(365\) 0 0
\(366\) 410.000 366.715i 1.12022 1.00195i
\(367\) 186.000 0.506812 0.253406 0.967360i \(-0.418449\pi\)
0.253406 + 0.967360i \(0.418449\pi\)
\(368\) 254.912i 0.692695i
\(369\) 560.000 + 62.6099i 1.51762 + 0.169675i
\(370\) 0 0
\(371\) 26.8328i 0.0723256i
\(372\) 36.0000 + 40.2492i 0.0967742 + 0.108197i
\(373\) 44.0000 0.117962 0.0589812 0.998259i \(-0.481215\pi\)
0.0589812 + 0.998259i \(0.481215\pi\)
\(374\) 44.7214i 0.119576i
\(375\) 0 0
\(376\) −330.000 −0.877660
\(377\) 500.879i 1.32859i
\(378\) 210.000 + 295.161i 0.555556 + 0.780849i
\(379\) −362.000 −0.955145 −0.477573 0.878592i \(-0.658483\pi\)
−0.477573 + 0.878592i \(0.658483\pi\)
\(380\) 0 0
\(381\) 52.0000 + 58.1378i 0.136483 + 0.152593i
\(382\) 460.000 1.20419
\(383\) 362.243i 0.945804i −0.881115 0.472902i \(-0.843206\pi\)
0.881115 0.472902i \(-0.156794\pi\)
\(384\) −345.000 + 308.577i −0.898438 + 0.803587i
\(385\) 0 0
\(386\) 478.519i 1.23969i
\(387\) 16.0000 143.108i 0.0413437 0.369789i
\(388\) −166.000 −0.427835
\(389\) 442.741i 1.13815i −0.822285 0.569076i \(-0.807301\pi\)
0.822285 0.569076i \(-0.192699\pi\)
\(390\) 0 0
\(391\) −60.0000 −0.153453
\(392\) 87.2067i 0.222466i
\(393\) 30.0000 26.8328i 0.0763359 0.0682769i
\(394\) −210.000 −0.532995
\(395\) 0 0
\(396\) −40.0000 4.47214i −0.101010 0.0112933i
\(397\) −124.000 −0.312343 −0.156171 0.987730i \(-0.549915\pi\)
−0.156171 + 0.987730i \(0.549915\pi\)
\(398\) 541.128i 1.35962i
\(399\) −24.0000 26.8328i −0.0601504 0.0672502i
\(400\) 0 0
\(401\) 268.328i 0.669148i 0.942370 + 0.334574i \(0.108592\pi\)
−0.942370 + 0.334574i \(0.891408\pi\)
\(402\) −120.000 + 107.331i −0.298507 + 0.266993i
\(403\) 288.000 0.714640
\(404\) 67.0820i 0.166045i
\(405\) 0 0
\(406\) 420.000 1.03448
\(407\) 71.5542i 0.175809i
\(408\) 60.0000 + 67.0820i 0.147059 + 0.164417i
\(409\) 458.000 1.11980 0.559902 0.828559i \(-0.310839\pi\)
0.559902 + 0.828559i \(0.310839\pi\)
\(410\) 0 0
\(411\) 270.000 241.495i 0.656934 0.587580i
\(412\) 26.0000 0.0631068
\(413\) 26.8328i 0.0649705i
\(414\) −30.0000 + 268.328i −0.0724638 + 0.648136i
\(415\) 0 0
\(416\) 250.440i 0.602018i
\(417\) −164.000 183.358i −0.393285 0.439706i
\(418\) 20.0000 0.0478469
\(419\) 594.794i 1.41956i 0.704425 + 0.709778i \(0.251205\pi\)
−0.704425 + 0.709778i \(0.748795\pi\)
\(420\) 0 0
\(421\) 562.000 1.33492 0.667458 0.744647i \(-0.267382\pi\)
0.667458 + 0.744647i \(0.267382\pi\)
\(422\) 4.47214i 0.0105975i
\(423\) 440.000 + 49.1935i 1.04019 + 0.116297i
\(424\) 30.0000 0.0707547
\(425\) 0 0
\(426\) 560.000 + 626.099i 1.31455 + 1.46972i
\(427\) 492.000 1.15222
\(428\) 201.246i 0.470201i
\(429\) −160.000 + 143.108i −0.372960 + 0.333586i
\(430\) 0 0
\(431\) 348.827i 0.809342i −0.914462 0.404671i \(-0.867386\pi\)
0.914462 0.404671i \(-0.132614\pi\)
\(432\) 418.000 297.397i 0.967593 0.688419i
\(433\) −226.000 −0.521940 −0.260970 0.965347i \(-0.584042\pi\)
−0.260970 + 0.965347i \(0.584042\pi\)
\(434\) 241.495i 0.556441i
\(435\) 0 0
\(436\) −38.0000 −0.0871560
\(437\) 26.8328i 0.0614023i
\(438\) 370.000 330.938i 0.844749 0.755566i
\(439\) −2.00000 −0.00455581 −0.00227790 0.999997i \(-0.500725\pi\)
−0.00227790 + 0.999997i \(0.500725\pi\)
\(440\) 0 0
\(441\) 13.0000 116.276i 0.0294785 0.263663i
\(442\) −160.000 −0.361991
\(443\) 201.246i 0.454280i 0.973862 + 0.227140i \(0.0729375\pi\)
−0.973862 + 0.227140i \(0.927062\pi\)
\(444\) −32.0000 35.7771i −0.0720721 0.0805790i
\(445\) 0 0
\(446\) 192.302i 0.431170i
\(447\) −250.000 + 223.607i −0.559284 + 0.500239i
\(448\) −246.000 −0.549107
\(449\) 313.050i 0.697215i −0.937269 0.348607i \(-0.886655\pi\)
0.937269 0.348607i \(-0.113345\pi\)
\(450\) 0 0
\(451\) −280.000 −0.620843
\(452\) 31.3050i 0.0692587i
\(453\) −316.000 353.299i −0.697572 0.779909i
\(454\) −130.000 −0.286344
\(455\) 0 0
\(456\) −30.0000 + 26.8328i −0.0657895 + 0.0588439i
\(457\) −334.000 −0.730853 −0.365427 0.930840i \(-0.619077\pi\)
−0.365427 + 0.930840i \(0.619077\pi\)
\(458\) 630.571i 1.37679i
\(459\) −70.0000 98.3870i −0.152505 0.214351i
\(460\) 0 0
\(461\) 93.9149i 0.203720i −0.994799 0.101860i \(-0.967521\pi\)
0.994799 0.101860i \(-0.0324794\pi\)
\(462\) −120.000 134.164i −0.259740 0.290398i
\(463\) −366.000 −0.790497 −0.395248 0.918574i \(-0.629341\pi\)
−0.395248 + 0.918574i \(0.629341\pi\)
\(464\) 594.794i 1.28188i
\(465\) 0 0
\(466\) −810.000 −1.73820
\(467\) 451.686i 0.967207i 0.875287 + 0.483604i \(0.160672\pi\)
−0.875287 + 0.483604i \(0.839328\pi\)
\(468\) −16.0000 + 143.108i −0.0341880 + 0.305787i
\(469\) −144.000 −0.307036
\(470\) 0 0
\(471\) −328.000 366.715i −0.696391 0.778588i
\(472\) −30.0000 −0.0635593
\(473\) 71.5542i 0.151277i
\(474\) 690.000 617.155i 1.45570 1.30201i
\(475\) 0 0
\(476\) 26.8328i 0.0563715i
\(477\) −40.0000 4.47214i −0.0838574 0.00937555i
\(478\) 560.000 1.17155
\(479\) 590.322i 1.23240i 0.787588 + 0.616202i \(0.211330\pi\)
−0.787588 + 0.616202i \(0.788670\pi\)
\(480\) 0 0
\(481\) −256.000 −0.532225
\(482\) 585.850i 1.21546i
\(483\) −180.000 + 160.997i −0.372671 + 0.333327i
\(484\) −101.000 −0.208678
\(485\) 0 0
\(486\) −475.000 + 263.856i −0.977366 + 0.542914i
\(487\) 886.000 1.81930 0.909651 0.415374i \(-0.136349\pi\)
0.909651 + 0.415374i \(0.136349\pi\)
\(488\) 550.073i 1.12720i
\(489\) −472.000 527.712i −0.965235 1.07917i
\(490\) 0 0
\(491\) 406.964i 0.828848i 0.910084 + 0.414424i \(0.136017\pi\)
−0.910084 + 0.414424i \(0.863983\pi\)
\(492\) −140.000 + 125.220i −0.284553 + 0.254512i
\(493\) −140.000 −0.283976
\(494\) 71.5542i 0.144847i
\(495\) 0 0
\(496\) 342.000 0.689516
\(497\) 751.319i 1.51171i
\(498\) −420.000 469.574i −0.843373 0.942920i
\(499\) −2.00000 −0.00400802 −0.00200401 0.999998i \(-0.500638\pi\)
−0.00200401 + 0.999998i \(0.500638\pi\)
\(500\) 0 0
\(501\) −210.000 + 187.830i −0.419162 + 0.374910i
\(502\) −1050.00 −2.09163
\(503\) 219.135i 0.435655i −0.975987 0.217828i \(-0.930103\pi\)
0.975987 0.217828i \(-0.0698971\pi\)
\(504\) 360.000 + 40.2492i 0.714286 + 0.0798596i
\(505\) 0 0
\(506\) 134.164i 0.265146i
\(507\) 174.000 + 194.538i 0.343195 + 0.383704i
\(508\) −26.0000 −0.0511811
\(509\) 800.512i 1.57272i 0.617771 + 0.786358i \(0.288036\pi\)
−0.617771 + 0.786358i \(0.711964\pi\)
\(510\) 0 0
\(511\) 444.000 0.868885
\(512\) 212.426i 0.414895i
\(513\) 44.0000 31.3050i 0.0857700 0.0610233i
\(514\) 450.000 0.875486
\(515\) 0 0
\(516\) 32.0000 + 35.7771i 0.0620155 + 0.0693354i
\(517\) −220.000 −0.425532
\(518\) 214.663i 0.414406i
\(519\) −30.0000 + 26.8328i −0.0578035 + 0.0517010i
\(520\) 0 0
\(521\) 527.712i 1.01288i 0.862274 + 0.506441i \(0.169039\pi\)
−0.862274 + 0.506441i \(0.830961\pi\)
\(522\) −70.0000 + 626.099i −0.134100 + 1.19942i
\(523\) −376.000 −0.718929 −0.359465 0.933159i \(-0.617041\pi\)
−0.359465 + 0.933159i \(0.617041\pi\)
\(524\) 13.4164i 0.0256038i
\(525\) 0 0
\(526\) −130.000 −0.247148
\(527\) 80.4984i 0.152748i
\(528\) −190.000 + 169.941i −0.359848 + 0.321858i
\(529\) 349.000 0.659735
\(530\) 0 0
\(531\) 40.0000 + 4.47214i 0.0753296 + 0.00842210i
\(532\) 12.0000 0.0225564
\(533\) 1001.76i 1.87947i
\(534\) −480.000 536.656i −0.898876 1.00497i
\(535\) 0 0
\(536\) 160.997i 0.300367i
\(537\) 430.000 384.604i 0.800745 0.716208i
\(538\) 830.000 1.54275
\(539\) 58.1378i 0.107862i
\(540\) 0 0
\(541\) −198.000 −0.365989 −0.182994 0.983114i \(-0.558579\pi\)
−0.182994 + 0.983114i \(0.558579\pi\)
\(542\) 183.358i 0.338298i
\(543\) 4.00000 + 4.47214i 0.00736648 + 0.00823598i
\(544\) −70.0000 −0.128676
\(545\) 0 0
\(546\) −480.000 + 429.325i −0.879121 + 0.786310i
\(547\) −1024.00 −1.87203 −0.936015 0.351961i \(-0.885515\pi\)
−0.936015 + 0.351961i \(0.885515\pi\)
\(548\) 120.748i 0.220342i
\(549\) −82.0000 + 733.430i −0.149362 + 1.33594i
\(550\) 0 0
\(551\) 62.6099i 0.113630i
\(552\) 180.000 + 201.246i 0.326087 + 0.364576i
\(553\) 828.000 1.49729
\(554\) 53.6656i 0.0968694i
\(555\) 0 0
\(556\) 82.0000 0.147482
\(557\) 67.0820i 0.120435i 0.998185 + 0.0602173i \(0.0191794\pi\)
−0.998185 + 0.0602173i \(0.980821\pi\)
\(558\) −360.000 40.2492i −0.645161 0.0721312i
\(559\) 256.000 0.457961
\(560\) 0 0
\(561\) 40.0000 + 44.7214i 0.0713012 + 0.0797172i
\(562\) 420.000 0.747331
\(563\) 254.912i 0.452774i 0.974037 + 0.226387i \(0.0726914\pi\)
−0.974037 + 0.226387i \(0.927309\pi\)
\(564\) −110.000 + 98.3870i −0.195035 + 0.174445i
\(565\) 0 0
\(566\) 321.994i 0.568894i
\(567\) −474.000 107.331i −0.835979 0.189297i
\(568\) 840.000 1.47887
\(569\) 858.650i 1.50905i −0.656271 0.754526i \(-0.727867\pi\)
0.656271 0.754526i \(-0.272133\pi\)
\(570\) 0 0
\(571\) 962.000 1.68476 0.842382 0.538881i \(-0.181153\pi\)
0.842382 + 0.538881i \(0.181153\pi\)
\(572\) 71.5542i 0.125095i
\(573\) −460.000 + 411.437i −0.802792 + 0.718039i
\(574\) −840.000 −1.46341
\(575\) 0 0
\(576\) 41.0000 366.715i 0.0711806 0.636658i
\(577\) 886.000 1.53553 0.767764 0.640732i \(-0.221369\pi\)
0.767764 + 0.640732i \(0.221369\pi\)
\(578\) 601.502i 1.04066i
\(579\) 428.000 + 478.519i 0.739206 + 0.826457i
\(580\) 0 0
\(581\) 563.489i 0.969861i
\(582\) 830.000 742.375i 1.42612 1.27556i
\(583\) 20.0000 0.0343053
\(584\) 496.407i 0.850012i
\(585\) 0 0
\(586\) 1050.00 1.79181
\(587\) 657.404i 1.11994i −0.828513 0.559969i \(-0.810813\pi\)
0.828513 0.559969i \(-0.189187\pi\)
\(588\) 26.0000 + 29.0689i 0.0442177 + 0.0494369i
\(589\) 36.0000 0.0611205
\(590\) 0 0
\(591\) 210.000 187.830i 0.355330 0.317817i
\(592\) −304.000 −0.513514
\(593\) 111.803i 0.188539i −0.995547 0.0942693i \(-0.969949\pi\)
0.995547 0.0942693i \(-0.0300515\pi\)
\(594\) 220.000 156.525i 0.370370 0.263510i
\(595\) 0 0
\(596\) 111.803i 0.187590i
\(597\) −484.000 541.128i −0.810720 0.906413i
\(598\) −480.000 −0.802676
\(599\) 223.607i 0.373300i −0.982426 0.186650i \(-0.940237\pi\)
0.982426 0.186650i \(-0.0597631\pi\)
\(600\) 0 0
\(601\) 2.00000 0.00332779 0.00166389 0.999999i \(-0.499470\pi\)
0.00166389 + 0.999999i \(0.499470\pi\)
\(602\) 214.663i 0.356582i
\(603\) 24.0000 214.663i 0.0398010 0.355991i
\(604\) 158.000 0.261589
\(605\) 0 0
\(606\) −300.000 335.410i −0.495050 0.553482i
\(607\) 506.000 0.833608 0.416804 0.908996i \(-0.363150\pi\)
0.416804 + 0.908996i \(0.363150\pi\)
\(608\) 31.3050i 0.0514884i
\(609\) −420.000 + 375.659i −0.689655 + 0.616846i
\(610\) 0 0
\(611\) 787.096i 1.28821i
\(612\) 40.0000 + 4.47214i 0.0653595 + 0.00730741i
\(613\) −556.000 −0.907015 −0.453507 0.891253i \(-0.649827\pi\)
−0.453507 + 0.891253i \(0.649827\pi\)
\(614\) 411.437i 0.670092i
\(615\) 0 0
\(616\) −180.000 −0.292208
\(617\) 93.9149i 0.152212i 0.997100 + 0.0761060i \(0.0242488\pi\)
−0.997100 + 0.0761060i \(0.975751\pi\)
\(618\) −130.000 + 116.276i −0.210356 + 0.188148i
\(619\) −802.000 −1.29564 −0.647819 0.761794i \(-0.724319\pi\)
−0.647819 + 0.761794i \(0.724319\pi\)
\(620\) 0 0
\(621\) −210.000 295.161i −0.338164 0.475299i
\(622\) −360.000 −0.578778
\(623\) 643.988i 1.03369i
\(624\) 608.000 + 679.765i 0.974359 + 1.08937i
\(625\) 0 0
\(626\) 881.011i 1.40737i
\(627\) −20.0000 + 17.8885i −0.0318979 + 0.0285304i
\(628\) 164.000 0.261146
\(629\) 71.5542i 0.113759i
\(630\) 0 0
\(631\) −698.000 −1.10618 −0.553090 0.833121i \(-0.686552\pi\)
−0.553090 + 0.833121i \(0.686552\pi\)
\(632\) 925.732i 1.46477i
\(633\) 4.00000 + 4.47214i 0.00631912 + 0.00706499i
\(634\) 1010.00 1.59306
\(635\) 0 0
\(636\) 10.0000 8.94427i 0.0157233 0.0140633i
\(637\) 208.000 0.326531
\(638\) 313.050i 0.490673i
\(639\) −1120.00 125.220i −1.75274 0.195962i
\(640\) 0 0
\(641\) 912.316i 1.42327i −0.702550 0.711635i \(-0.747955\pi\)
0.702550 0.711635i \(-0.252045\pi\)
\(642\) 900.000 + 1006.23i 1.40187 + 1.56734i
\(643\) −156.000 −0.242613 −0.121306 0.992615i \(-0.538708\pi\)
−0.121306 + 0.992615i \(0.538708\pi\)
\(644\) 80.4984i 0.124998i
\(645\) 0 0
\(646\) −20.0000 −0.0309598
\(647\) 755.791i 1.16815i 0.811701 + 0.584073i \(0.198542\pi\)
−0.811701 + 0.584073i \(0.801458\pi\)
\(648\) −120.000 + 529.948i −0.185185 + 0.817821i
\(649\) −20.0000 −0.0308166
\(650\) 0 0
\(651\) −216.000 241.495i −0.331797 0.370961i
\(652\) 236.000 0.361963
\(653\) 487.463i 0.746497i −0.927731 0.373249i \(-0.878244\pi\)
0.927731 0.373249i \(-0.121756\pi\)
\(654\) 190.000 169.941i 0.290520 0.259849i
\(655\) 0 0
\(656\) 1189.59i 1.81340i
\(657\) −74.0000 + 661.876i −0.112633 + 1.00742i
\(658\) −660.000 −1.00304
\(659\) 406.964i 0.617548i −0.951135 0.308774i \(-0.900081\pi\)
0.951135 0.308774i \(-0.0999187\pi\)
\(660\) 0 0
\(661\) 682.000 1.03177 0.515885 0.856658i \(-0.327463\pi\)
0.515885 + 0.856658i \(0.327463\pi\)
\(662\) 442.741i 0.668794i
\(663\) 160.000 143.108i 0.241327 0.215850i
\(664\) −630.000 −0.948795
\(665\) 0 0
\(666\) 320.000 + 35.7771i 0.480480 + 0.0537194i
\(667\) −420.000 −0.629685
\(668\) 93.9149i 0.140591i
\(669\) −172.000 192.302i −0.257100 0.287447i
\(670\) 0 0
\(671\) 366.715i 0.546520i
\(672\) −210.000 + 187.830i −0.312500 + 0.279508i
\(673\) 894.000 1.32838 0.664190 0.747564i \(-0.268777\pi\)
0.664190 + 0.747564i \(0.268777\pi\)
\(674\) 881.011i 1.30714i
\(675\) 0 0
\(676\) −87.0000 −0.128698
\(677\) 550.073i 0.812515i −0.913759 0.406258i \(-0.866834\pi\)
0.913759 0.406258i \(-0.133166\pi\)
\(678\) 140.000 + 156.525i 0.206490 + 0.230862i
\(679\) 996.000 1.46686
\(680\) 0 0
\(681\) 130.000 116.276i 0.190896 0.170742i
\(682\) 180.000 0.263930
\(683\) 442.741i 0.648231i 0.946018 + 0.324115i \(0.105067\pi\)
−0.946018 + 0.324115i \(0.894933\pi\)
\(684\) −2.00000 + 17.8885i −0.00292398 + 0.0261528i
\(685\) 0 0
\(686\) 831.817i 1.21256i
\(687\) −564.000 630.571i −0.820961 0.917862i
\(688\) 304.000 0.441860
\(689\) 71.5542i 0.103852i
\(690\) 0 0
\(691\) −758.000 −1.09696 −0.548480 0.836163i \(-0.684793\pi\)
−0.548480 + 0.836163i \(0.684793\pi\)
\(692\) 13.4164i 0.0193879i
\(693\) 240.000 + 26.8328i 0.346320 + 0.0387198i
\(694\) −410.000 −0.590778
\(695\) 0 0
\(696\) 420.000 + 469.574i 0.603448 + 0.674676i
\(697\) 280.000 0.401722
\(698\) 809.457i 1.15968i
\(699\) 810.000 724.486i 1.15880 1.03646i
\(700\) 0 0
\(701\) 782.624i 1.11644i 0.829693 + 0.558220i \(0.188515\pi\)
−0.829693 + 0.558220i \(0.811485\pi\)
\(702\) −560.000 787.096i −0.797721 1.12122i
\(703\) −32.0000 −0.0455192
\(704\) 183.358i 0.260451i
\(705\) 0 0
\(706\) −690.000 −0.977337
\(707\) 402.492i 0.569296i
\(708\) −10.0000 + 8.94427i −0.0141243 + 0.0126332i
\(709\) −2.00000 −0.00282087 −0.00141044 0.999999i \(-0.500449\pi\)
−0.00141044 + 0.999999i \(0.500449\pi\)
\(710\) 0 0
\(711\) −138.000 + 1234.31i −0.194093 + 1.73602i
\(712\) −720.000 −1.01124
\(713\) 241.495i 0.338703i
\(714\) 120.000 + 134.164i 0.168067 + 0.187905i
\(715\) 0 0
\(716\) 192.302i 0.268578i
\(717\) −560.000 + 500.879i −0.781032 + 0.698576i
\(718\) −660.000 −0.919220
\(719\) 858.650i 1.19423i −0.802156 0.597114i \(-0.796314\pi\)
0.802156 0.597114i \(-0.203686\pi\)
\(720\) 0 0
\(721\) −156.000 −0.216366
\(722\) 798.276i 1.10565i
\(723\) 524.000 + 585.850i 0.724758 + 0.810304i
\(724\) −2.00000 −0.00276243
\(725\) 0 0
\(726\) 505.000 451.686i 0.695592 0.622157i
\(727\) −674.000 −0.927098 −0.463549 0.886071i \(-0.653424\pi\)
−0.463549 + 0.886071i \(0.653424\pi\)
\(728\) 643.988i 0.884598i
\(729\) 239.000 688.709i 0.327846 0.944731i
\(730\) 0 0
\(731\) 71.5542i 0.0978853i
\(732\) −164.000 183.358i −0.224044 0.250488i
\(733\) −656.000 −0.894952 −0.447476 0.894296i \(-0.647677\pi\)
−0.447476 + 0.894296i \(0.647677\pi\)
\(734\) 415.909i 0.566633i
\(735\) 0 0
\(736\) −210.000 −0.285326
\(737\) 107.331i 0.145633i
\(738\) 140.000 1252.20i 0.189702 1.69675i
\(739\) 598.000 0.809202 0.404601 0.914493i \(-0.367410\pi\)
0.404601 + 0.914493i \(0.367410\pi\)
\(740\) 0 0
\(741\) 64.0000 + 71.5542i 0.0863698 + 0.0965643i
\(742\) 60.0000 0.0808625
\(743\) 782.624i 1.05333i 0.850073 + 0.526665i \(0.176558\pi\)
−0.850073 + 0.526665i \(0.823442\pi\)
\(744\) −270.000 + 241.495i −0.362903 + 0.324591i
\(745\) 0 0
\(746\) 98.3870i 0.131886i
\(747\) 840.000 + 93.9149i 1.12450 + 0.125723i
\(748\) −20.0000 −0.0267380
\(749\) 1207.48i 1.61212i
\(750\) 0 0
\(751\) −338.000 −0.450067 −0.225033 0.974351i \(-0.572249\pi\)
−0.225033 + 0.974351i \(0.572249\pi\)
\(752\) 934.676i 1.24292i
\(753\) 1050.00 939.149i 1.39442 1.24721i
\(754\) −1120.00 −1.48541
\(755\) 0 0
\(756\) 132.000 93.9149i 0.174603 0.124226i
\(757\) 656.000 0.866579 0.433289 0.901255i \(-0.357353\pi\)
0.433289 + 0.901255i \(0.357353\pi\)
\(758\) 809.457i 1.06788i
\(759\) 120.000 + 134.164i 0.158103 + 0.176764i
\(760\) 0 0
\(761\) 295.161i 0.387859i −0.981015 0.193930i \(-0.937877\pi\)
0.981015 0.193930i \(-0.0621234\pi\)
\(762\) 130.000 116.276i 0.170604 0.152593i
\(763\) 228.000 0.298820
\(764\) 205.718i 0.269265i
\(765\) 0 0
\(766\) −810.000 −1.05744
\(767\) 71.5542i 0.0932910i
\(768\) 362.000 + 404.728i 0.471354 + 0.526990i
\(769\) −82.0000 −0.106632 −0.0533160 0.998578i \(-0.516979\pi\)
−0.0533160 + 0.998578i \(0.516979\pi\)
\(770\) 0 0
\(771\) −450.000 + 402.492i −0.583658 + 0.522039i
\(772\) −214.000 −0.277202
\(773\) 1059.90i 1.37115i −0.728004 0.685573i \(-0.759552\pi\)
0.728004 0.685573i \(-0.240448\pi\)
\(774\) −320.000 35.7771i −0.413437 0.0462236i
\(775\) 0 0
\(776\) 1113.56i 1.43500i
\(777\) 192.000 + 214.663i 0.247104 + 0.276271i
\(778\) −990.000 −1.27249
\(779\) 125.220i 0.160744i
\(780\) 0 0
\(781\) 560.000 0.717029
\(782\) 134.164i 0.171565i
\(783\) −490.000 688.709i −0.625798 0.879577i
\(784\) 247.000 0.315051
\(785\) 0 0
\(786\) −60.0000 67.0820i −0.0763359 0.0853461i
\(787\) 536.000 0.681067 0.340534 0.940232i \(-0.389392\pi\)
0.340534 + 0.940232i \(0.389392\pi\)
\(788\) 93.9149i 0.119181i
\(789\) 130.000 116.276i 0.164766 0.147371i
\(790\) 0 0
\(791\) 187.830i 0.237459i
\(792\) 30.0000 268.328i 0.0378788 0.338798i
\(793\) −1312.00 −1.65448
\(794\) 277.272i 0.349210i
\(795\) 0 0
\(796\) 242.000 0.304020
\(797\) 406.964i 0.510620i −0.966859 0.255310i \(-0.917822\pi\)
0.966859 0.255310i \(-0.0821776\pi\)
\(798\) −60.0000 + 53.6656i −0.0751880 + 0.0672502i
\(799\) 220.000 0.275344
\(800\) 0 0
\(801\) 960.000 + 107.331i 1.19850 + 0.133997i
\(802\) 600.000 0.748130
\(803\) 330.938i 0.412127i
\(804\) 48.0000 + 53.6656i 0.0597015 + 0.0667483i
\(805\) 0 0
\(806\) 643.988i 0.798992i
\(807\) −830.000 + 742.375i −1.02850 + 0.919919i
\(808\) −450.000 −0.556931
\(809\) 1091.20i 1.34883i 0.738354 + 0.674414i \(0.235603\pi\)
−0.738354 + 0.674414i \(0.764397\pi\)
\(810\) 0 0
\(811\) −558.000 −0.688039 −0.344020 0.938962i \(-0.611789\pi\)
−0.344020 + 0.938962i \(0.611789\pi\)
\(812\) 187.830i 0.231317i
\(813\) 164.000 + 183.358i 0.201722 + 0.225532i
\(814\) −160.000 −0.196560
\(815\) 0 0
\(816\) 190.000 169.941i 0.232843 0.208261i
\(817\) 32.0000 0.0391677
\(818\) 1024.12i 1.25198i
\(819\) 96.0000 858.650i 0.117216 1.04841i
\(820\) 0 0
\(821\) 389.076i 0.473905i −0.971521 0.236952i \(-0.923851\pi\)
0.971521 0.236952i \(-0.0761485\pi\)
\(822\) −540.000 603.738i −0.656934 0.734475i
\(823\) 214.000 0.260024 0.130012 0.991512i \(-0.458498\pi\)
0.130012 + 0.991512i \(0.458498\pi\)
\(824\) 174.413i 0.211667i
\(825\) 0 0
\(826\) −60.0000 −0.0726392
\(827\) 31.3050i 0.0378536i 0.999821 + 0.0189268i \(0.00602495\pi\)
−0.999821 + 0.0189268i \(0.993975\pi\)
\(828\) 120.000 + 13.4164i 0.144928 + 0.0162034i
\(829\) 318.000 0.383595 0.191797 0.981435i \(-0.438568\pi\)
0.191797 + 0.981435i \(0.438568\pi\)
\(830\) 0 0
\(831\) −48.0000 53.6656i −0.0577617 0.0645796i
\(832\) 656.000 0.788462
\(833\) 58.1378i 0.0697932i
\(834\) −410.000 + 366.715i −0.491607 + 0.439706i
\(835\) 0 0
\(836\) 8.94427i 0.0106989i
\(837\) 396.000 281.745i 0.473118 0.336612i
\(838\) 1330.00 1.58711
\(839\) 62.6099i 0.0746244i −0.999304 0.0373122i \(-0.988120\pi\)
0.999304 0.0373122i \(-0.0118796\pi\)
\(840\) 0 0
\(841\) −139.000 −0.165279
\(842\) 1256.67i 1.49248i
\(843\) −420.000 + 375.659i −0.498221 + 0.445622i
\(844\) −2.00000 −0.00236967
\(845\) 0 0
\(846\) 110.000 983.870i 0.130024 1.16297i
\(847\) 606.000 0.715466
\(848\) 84.9706i 0.100201i
\(849\) 288.000 + 321.994i 0.339223 + 0.379262i
\(850\) 0 0
\(851\) 214.663i 0.252247i
\(852\) 280.000 250.440i 0.328638 0.293943i
\(853\) 684.000 0.801876 0.400938 0.916105i \(-0.368684\pi\)
0.400938 + 0.916105i \(0.368684\pi\)
\(854\) 1100.15i 1.28823i
\(855\) 0 0
\(856\) 1350.00 1.57710
\(857\) 1498.17i 1.74815i −0.485790 0.874076i \(-0.661468\pi\)
0.485790 0.874076i \(-0.338532\pi\)
\(858\) 320.000 + 357.771i 0.372960 + 0.416982i
\(859\) −842.000 −0.980210 −0.490105 0.871664i \(-0.663041\pi\)
−0.490105 + 0.871664i \(0.663041\pi\)
\(860\) 0 0
\(861\) 840.000 751.319i 0.975610 0.872612i
\(862\) −780.000 −0.904872
\(863\) 1015.17i 1.17633i 0.808740 + 0.588166i \(0.200150\pi\)
−0.808740 + 0.588166i \(0.799850\pi\)
\(864\) −245.000 344.354i −0.283565 0.398558i
\(865\) 0 0
\(866\) 505.351i 0.583547i
\(867\) 538.000 + 601.502i 0.620531 + 0.693774i
\(868\) 108.000 0.124424
\(869\) 617.155i 0.710190i
\(870\) 0 0
\(871\) 384.000 0.440873
\(872\) 254.912i 0.292330i
\(873\) −166.000 + 1484.75i −0.190149 + 1.70074i
\(874\) −60.0000 −0.0686499
\(875\) 0 0
\(876\) −148.000 165.469i −0.168950 0.188892i
\(877\) 156.000 0.177879 0.0889396 0.996037i \(-0.471652\pi\)
0.0889396 + 0.996037i \(0.471652\pi\)
\(878\) 4.47214i 0.00509355i
\(879\) −1050.00 + 939.149i −1.19454 + 1.06843i
\(880\) 0 0
\(881\) 125.220i 0.142134i −0.997472 0.0710669i \(-0.977360\pi\)
0.997472 0.0710669i \(-0.0226404\pi\)
\(882\) −260.000 29.0689i −0.294785 0.0329579i
\(883\) 964.000 1.09173 0.545866 0.837872i \(-0.316201\pi\)
0.545866 + 0.837872i \(0.316201\pi\)
\(884\) 71.5542i 0.0809436i
\(885\) 0 0
\(886\) 450.000 0.507901
\(887\) 952.565i 1.07392i 0.843608 + 0.536959i \(0.180427\pi\)
−0.843608 + 0.536959i \(0.819573\pi\)
\(888\) 240.000 214.663i 0.270270 0.241737i
\(889\) 156.000 0.175478
\(890\) 0 0
\(891\) −80.0000 + 353.299i −0.0897868 + 0.396519i
\(892\) 86.0000 0.0964126
\(893\) 98.3870i 0.110176i
\(894\) 500.000 + 559.017i 0.559284 + 0.625299i
\(895\) 0 0
\(896\) 925.732i 1.03318i
\(897\) 480.000 429.325i 0.535117 0.478623i
\(898\) −700.000 −0.779510
\(899\) 563.489i 0.626795i
\(900\) 0 0
\(901\) −20.0000 −0.0221976
\(902\) 626.099i 0.694123i
\(903\) −192.000 214.663i −0.212625 0.237722i
\(904\) 210.000 0.232301
\(905\) 0 0
\(906\) −790.000 + 706.597i −0.871965 + 0.779909i
\(907\) −1284.00 −1.41566 −0.707828 0.706385i \(-0.750325\pi\)
−0.707828 + 0.706385i \(0.750325\pi\)
\(908\) 58.1378i 0.0640284i
\(909\) 600.000 + 67.0820i 0.660066 + 0.0737976i
\(910\) 0 0
\(911\) 62.6099i 0.0687266i 0.999409 + 0.0343633i \(0.0109403\pi\)
−0.999409 + 0.0343633i \(0.989060\pi\)
\(912\) 76.0000 + 84.9706i 0.0833333 + 0.0931695i
\(913\) −420.000 −0.460022
\(914\) 746.847i 0.817119i
\(915\) 0 0
\(916\) 282.000 0.307860
\(917\) 80.4984i 0.0877846i
\(918\) −220.000 + 156.525i −0.239651 + 0.170506i
\(919\) 418.000 0.454842 0.227421 0.973797i \(-0.426971\pi\)
0.227421 + 0.973797i \(0.426971\pi\)
\(920\) 0 0
\(921\) −368.000 411.437i −0.399566 0.446728i
\(922\) −210.000 −0.227766
\(923\) 2003.52i 2.17066i
\(924\) −60.0000 + 53.6656i −0.0649351 + 0.0580797i
\(925\) 0 0
\(926\) 818.401i 0.883802i
\(927\) 26.0000 232.551i 0.0280475 0.250864i
\(928\) −490.000 −0.528017
\(929\) 169.941i 0.182929i −0.995808 0.0914646i \(-0.970845\pi\)
0.995808 0.0914646i \(-0.0291548\pi\)
\(930\) 0 0
\(931\) 26.0000 0.0279270
\(932\) 362.243i 0.388673i
\(933\) 360.000 321.994i 0.385852 0.345117i
\(934\) 1010.00 1.08137
\(935\) 0 0
\(936\) −960.000 107.331i −1.02564 0.114670i
\(937\) −534.000 −0.569904 −0.284952 0.958542i \(-0.591978\pi\)
−0.284952 + 0.958542i \(0.591978\pi\)
\(938\) 321.994i 0.343277i
\(939\) 788.000 + 881.011i 0.839191 + 0.938244i
\(940\) 0 0
\(941\) 129.692i 0.137824i −0.997623 0.0689118i \(-0.978047\pi\)
0.997623 0.0689118i \(-0.0219527\pi\)
\(942\) −820.000 + 733.430i −0.870488 + 0.778588i
\(943\) 840.000 0.890774
\(944\) 84.9706i 0.0900112i
\(945\) 0 0
\(946\) 160.000 0.169133
\(947\) 1516.05i 1.60090i 0.599398 + 0.800451i \(0.295407\pi\)
−0.599398 + 0.800451i \(0.704593\pi\)
\(948\) −276.000 308.577i −0.291139 0.325504i
\(949\) −1184.00 −1.24763
\(950\) 0 0
\(951\) −1010.00 + 903.371i −1.06204 + 0.949917i
\(952\) 180.000 0.189076
\(953\) 406.964i 0.427035i 0.976939 + 0.213518i \(0.0684920\pi\)
−0.976939 + 0.213518i \(0.931508\pi\)
\(954\) −10.0000 + 89.4427i −0.0104822 + 0.0937555i
\(955\) 0 0
\(956\) 250.440i 0.261966i
\(957\) 280.000 + 313.050i 0.292581 + 0.327115i
\(958\) 1320.00 1.37787
\(959\) 724.486i 0.755460i
\(960\) 0 0
\(961\) −637.000 −0.662851
\(962\) 572.433i 0.595045i
\(963\) −1800.00 201.246i −1.86916 0.208978i
\(964\) −262.000 −0.271784
\(965\) 0 0
\(966\) 360.000 + 402.492i 0.372671 + 0.416659i
\(967\) −674.000 −0.697001 −0.348501 0.937309i \(-0.613309\pi\)
−0.348501 + 0.937309i \(0.613309\pi\)
\(968\) 677.529i 0.699926i
\(969\) 20.0000 17.8885i 0.0206398 0.0184608i
\(970\) 0 0
\(971\) 1328.22i 1.36789i −0.729532 0.683947i \(-0.760262\pi\)
0.729532 0.683947i \(-0.239738\pi\)
\(972\) 118.000 + 212.426i 0.121399 + 0.218546i
\(973\) −492.000 −0.505653
\(974\) 1981.16i 2.03404i
\(975\) 0 0
\(976\) −1558.00 −1.59631
\(977\) 371.187i 0.379926i −0.981791 0.189963i \(-0.939163\pi\)
0.981791 0.189963i \(-0.0608367\pi\)
\(978\) −1180.00 + 1055.42i −1.20654 + 1.07917i
\(979\) −480.000 −0.490296
\(980\) 0 0
\(981\) −38.0000 + 339.882i −0.0387360 + 0.346465i
\(982\) 910.000 0.926680
\(983\) 442.741i 0.450398i 0.974313 + 0.225199i \(0.0723033\pi\)
−0.974313 + 0.225199i \(0.927697\pi\)
\(984\) −840.000 939.149i −0.853659 0.954419i
\(985\) 0 0
\(986\) 313.050i 0.317494i
\(987\) 660.000 590.322i 0.668693 0.598097i
\(988\) −32.0000 −0.0323887
\(989\) 214.663i 0.217050i
\(990\) 0 0
\(991\) 962.000 0.970737 0.485368 0.874310i \(-0.338686\pi\)
0.485368 + 0.874310i \(0.338686\pi\)
\(992\) 281.745i 0.284017i
\(993\) −396.000 442.741i −0.398792 0.445862i
\(994\) 1680.00 1.69014
\(995\) 0 0
\(996\) −210.000 + 187.830i −0.210843 + 0.188584i
\(997\) −24.0000 −0.0240722 −0.0120361 0.999928i \(-0.503831\pi\)
−0.0120361 + 0.999928i \(0.503831\pi\)
\(998\) 4.47214i 0.00448110i
\(999\) −352.000 + 250.440i −0.352352 + 0.250690i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.3.c.e.26.1 2
3.2 odd 2 inner 75.3.c.e.26.2 2
4.3 odd 2 1200.3.l.g.401.1 2
5.2 odd 4 75.3.d.b.74.3 4
5.3 odd 4 75.3.d.b.74.2 4
5.4 even 2 15.3.c.a.11.2 yes 2
12.11 even 2 1200.3.l.g.401.2 2
15.2 even 4 75.3.d.b.74.1 4
15.8 even 4 75.3.d.b.74.4 4
15.14 odd 2 15.3.c.a.11.1 2
20.3 even 4 1200.3.c.f.449.3 4
20.7 even 4 1200.3.c.f.449.2 4
20.19 odd 2 240.3.l.b.161.2 2
40.19 odd 2 960.3.l.b.641.1 2
40.29 even 2 960.3.l.c.641.2 2
45.4 even 6 405.3.i.b.26.1 4
45.14 odd 6 405.3.i.b.26.2 4
45.29 odd 6 405.3.i.b.296.1 4
45.34 even 6 405.3.i.b.296.2 4
60.23 odd 4 1200.3.c.f.449.1 4
60.47 odd 4 1200.3.c.f.449.4 4
60.59 even 2 240.3.l.b.161.1 2
120.29 odd 2 960.3.l.c.641.1 2
120.59 even 2 960.3.l.b.641.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.3.c.a.11.1 2 15.14 odd 2
15.3.c.a.11.2 yes 2 5.4 even 2
75.3.c.e.26.1 2 1.1 even 1 trivial
75.3.c.e.26.2 2 3.2 odd 2 inner
75.3.d.b.74.1 4 15.2 even 4
75.3.d.b.74.2 4 5.3 odd 4
75.3.d.b.74.3 4 5.2 odd 4
75.3.d.b.74.4 4 15.8 even 4
240.3.l.b.161.1 2 60.59 even 2
240.3.l.b.161.2 2 20.19 odd 2
405.3.i.b.26.1 4 45.4 even 6
405.3.i.b.26.2 4 45.14 odd 6
405.3.i.b.296.1 4 45.29 odd 6
405.3.i.b.296.2 4 45.34 even 6
960.3.l.b.641.1 2 40.19 odd 2
960.3.l.b.641.2 2 120.59 even 2
960.3.l.c.641.1 2 120.29 odd 2
960.3.l.c.641.2 2 40.29 even 2
1200.3.c.f.449.1 4 60.23 odd 4
1200.3.c.f.449.2 4 20.7 even 4
1200.3.c.f.449.3 4 20.3 even 4
1200.3.c.f.449.4 4 60.47 odd 4
1200.3.l.g.401.1 2 4.3 odd 2
1200.3.l.g.401.2 2 12.11 even 2