Defining parameters
Level: | \( N \) | = | \( 75 = 3 \cdot 5^{2} \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(1200\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(75))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 456 | 298 | 158 |
Cusp forms | 344 | 256 | 88 |
Eisenstein series | 112 | 42 | 70 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 1}\)